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abstract

PURPOSE Liquid biopsy–based biomarkers, including circulating tumor cells (CTCs) and circulating tumor DNA
(ctDNA), are increasingly important for the characterization of metastatic breast cancer (MBC). The aim of the
study was to explore CTCs and ctDNA dynamics to better understand their potentially complementary role in
describing MBC.

METHODS The study retrospectively analyzed 107 patients with MBC characterized with paired CTCs and ctDNA
assessments and a second prospective cohort, which enrolled 48 patients with MBC. CTCs were immuno-
magnetically isolated and ctDNA was quantified and then characterized through next-generation sequencing in
the retrospective cohort and droplet digital polymerase chain reaction in the prospective cohort. Matched pairs
variations at baseline, at evaluation one (EV1), and at progression were tested through the Wilcoxon test. The
prognostic role of ctDNA parameters was also investigated.

RESULTSMutant allele frequency (MAF) had a significant decrease between baseline and EV1 and a significant
increase between EV1 and progression. Number of detected alterations steadily increased across timepoints,
CTCs enumeration (nCTCs) significantly increased only between EV1 and progression. MAF dynamics across
the main altered genes was then investigated. Plasma DNA yield did not vary across timepoints both in the
retrospective cohort and in the prospective cohort, while the short fragments fraction showed a potential role as a
prognostic biomarker.

CONCLUSION nCTCs and ctDNA provide complementary information about prognosis and treatment benefit.
Although nCTCs appeared to assess tumor biology rather than tumor burden, MAF may be a promising
biomarker for the dynamic assessment of treatment response and resistance.
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BACKGROUND

Despite the advances in prevention and antineoplastic
treatments, breast cancer (BC) is still the most frequently
diagnosed cancer in women. Among all new cases, 6%-
7% are diagnosed with de-novo metastatic disease and
approximately 30% of patients initially diagnosed in
earlier stages eventually relapse in distant sites.1-3

The growing scalability and the steady decrease in
costs have favored the investigation of new clinical
algorithms based not only on baseline (BL) liquid bi-
opsy characteristics but also on their longitudinal
evolution.4

Circulating tumor cells (CTCs) were the first modern
liquid biopsy marker deployed in clinical practice
because of their strong prognostic value. However,
their longitudinal implementation is still debated.5-7 In
this context, the characterization of circulating tumor
DNA (ctDNA) has proven useful for treatment selection

and encouraging data support its potential role in
clinical trial enrollment. By contrast, it has been ob-
served how different information could be obtained by
ctDNA according to the analytic workflow.8-11

Notwithstanding the potentials of both liquid biopsy
techniques, little is known about their dynamics across
longitudinal evaluations. To better grasp potential
specificities and confounding factors and therefore
enhance their deployment and integration in clinical
practice, we analyzed the variations in CTCs enu-
meration and ctDNA-detected features in patients
receiving treatment for metastatic breast cancer
(MBC) to comprehensively explore the composite
nature of liquid biopsy biomarkers.

METHODS

Study Population and Ethical Approval

The study was based on two distinct cohorts. The
retrospective NU16B06 cohort was analyzed for
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hypothesis generation on the overall dynamics comparison
of liquid biopsy–derived parameters. Patients were char-
acterized for CTCs (Data Supplement), total plasma DNA
levels (DNA yield) and ctDNA sequencing through the
Guardant360 (Guardant Health, Redwood City, CA) next-
generation sequencing platform (Data Supplement).12-14

Patients with ≥ 5 CTC/7.5 mL of blood were defined as
stage IVaggressive, whereas patients with , 5 CTC/7.5 mL of
blood were defined as stage IVindolent.6

Subsequently, the prospective CRO-2018-56 cohort was
used to validate the DNA yield findings and to further
characterize the different components of plasma DNA and
their clinical meaning through droplet digital polymerase
chain reaction (ddPCR) (Data Supplement).15

The NU16B06 cohort. This retrospective cohort consisted
of 107 patients with MBC longitudinally characterized for
CTCs and ctDNA at the Thomas Jefferson University
(Philadephia, PA) and the Robert H. Lurie Comprehensive
Cancer Center at Northwestern University (Chicago, IL).
Patients were enrolled between 2013 and 2019 under the
Investigator Initiated Trial NU16B06 independently from
treatment line. BL staging was performed according to the
investigators’ choice. CTCs and ctDNA collection were
performed before treatment start (BL), at progression
(progressive disease), and at the first clinical evaluation,
with a median of 3 months after the BL timepoint (evalu-
ation one [EV1]). ctDNA analysis comprised the number of
detected alterations (NDA), mutant allele frequency (MAF),
and DNA yield. The Investigator Initiated Study was ap-
proved by the institutional review board under the protocol
number NU16B06.

The CRO-2018-56 study. To validate the findings for DNA
yield, 48 women with hormone receptor–positive human
epidermal growth factor receptor 2 (HER2)-negative
(luminal-like) MBC were prospectively enrolled through a
multicenter pragmatic study between 2018 and 2019.

Patients were eligible for endocrine therapy (ET) as first-line
treatment and could have received both ET and chemo-
therapy (CT) in the adjuvant and neoadjuvant settings.
Samples were collected at BL and after 3 months con-
comitantly with imaging evaluation (EV1) and were ana-
lyzed through ddPCR for the detection of small, medium,
and long fragments of the gene coding for Beta-Actin
(ACTB). The study was approved by the ethics commit-
tee under the CEUR-2018-Sper-056-CRO protocol.

Statistical Analysis

Clinical and pathologic variables were reported using de-
scriptive analyses. Categorical variables were reported as
frequency distributions, whereas continuous variables were
described through median and interquartile ranges (IQRs).
Matched pairs variations of CTCs enumeration (nCTCs),
NDA, MAF, and DNA yield were tested across three
timepoints: BL, EV1, and progression. Wilcoxon signed
rank test was used for continuous variables, whereas
categorical variables were investigated through the
McNemar test. Progression-free survival (PFS) was defined
as the time from BL to progression (defined through im-
aging) or death for any cause, whichever came first. Pa-
tients without an end point event at the last follow-up visit
were censored. Differences in survival were tested by
logrank test and Cox regression with 95% CI and repre-
sented by Kaplan-Meier estimator plot. Statistical analysis
was conducted using StataCorp 2016 Stata Statistical
Software: Release 15.1 (College Station, TX), R (version
3.3.1; The R foundation for Statistical Computing, Vienna,
Austria) and JMP (version 14; SAS Institute, Cary, NC).

RESULTS

The 107-patient NU16B06 cohort was characterized for
nCTCs and ctDNA at BL, EV1, and progression. Median
age at BL was 55 years (IQR 46-63). Luminal-like was the
most represented subtype (56 patients, 52%), followed by

CONTEXT

Key Objective
With a steady decrease in costs and the noninvasive nature of testing, liquid biopsy has a growing potential role in the

management of metastatic breast cancer. However, the optimal way of integrating different biomarkers remains unclear.
The study explored the different dynamics of circulating tumor DNA (ctDNA) and circulating tumor cell enumeration
(nCTCs) to better describe their specific features and potential ways of integration for future clinical algorithms based on the
longitudinal evolution of liquid biopsy characteristics.

Knowledge Generated
ctDNA provides a more quantitative, real-time assessment of tumor burden and treatment benefit. Furthermore, ctDNA, when

analyzed at a single gene level, can provide insights on treatment resistance. nCTCs likely describe the underlying
metastatic biology.

Relevance
ctDNA can be used to monitor treatment response and anticipate clinical progression; nCTCs provide an overall biologic

readout of the disease’s clinical aggressiveness.

Gerratana et al

944 © 2021 by American Society of Clinical Oncology



triple-negative BC (28 patients, 26%) and HER2-positive
(23 patients, 22%) (Table 1). Fifty-three patients (50%)
were diagnosed with inflammatory BC (Table 1). The most
common metastatic site was bone (51 patients, 48%),
followed by lymph nodes (44 patients, 42%) and liver (26
patients, 25%) (Table 1). The main treatment option was
CT (N = 65, 60.8), as single agent (N = 31, 28.9%) or in
association (anti-HER2 agents: N = 18, 16.8%; mamma-
lian target of rapamycin [mTOR] inhibitors: N = 9, 8.4%)
(Table 1). ET was prescribed in 33 patients (30.8%).
Fulvestrant and aromatase inhibitors were the main ET
backbones (N = 19, 17.8%, and N = 14, 13.1%, re-
spectively). ET was combined with cyclin-dependent ki-
nase (CDK) inhibitors in 21 patients (19.6%), with mTOR

inhibitors in 7 (6.5%), and with anti-HER2 agents in five
patients (4.7%) (multiple combinations were possible)
(Table 1). CT was the most common previous treatment
type (N = 88, 82.2%), 71 patients had received previous ET
(66.4%), and 32 anti-HER2 agents (29.9%). Eleven pa-
tients (10.3%) were not exposed to previous treatments.

nCTCs at BL were performed in 74 patients; 37% was
classified as stage IVaggressive (27 patients), whereas the
proportion was 75% at progression (47 patients) (Table 2).
Median time to the first evaluation was 3 months (IQR 2-4).

nCTCs, NDA, and MAF Showed Differential Dynamics

Across Timepoints

Median MAF at BL was 3, NDA was 4, and nCTCs was 2
(Table 2). At EV1, the median MAF was 0.6, NDA was 5,
and nCTCs was 1 (Table 2). At progression, the median
MAF was 3.8, NDA was 6, and nCTCs was 5.5 (Table 2;
Figs 1A, 1C, and 1E).

With serial assessments, MAF significantly decreased and
NDA significantly increased between BL and EV1 (de-
creased and increased, respectively, P , .0001), whereas
both were significantly increased between EV1 and pro-
gression (P , .0001) and BL and progression (P = .0241
and P , .0001, respectively) (Figs 1B and 1D).

No significant variations were observed for nCTCs between
BL and EV1 and BL and progression (Fig 1F). A significant
increase was observed between EV1 and progression
(P = .0010) (Fig 1F).

The cohort was then stratified into stage IVindolent and stage
IVaggressive.6 Although the general trend was confirmed in
the stage IVaggressive subgroup (Figs 1G and 1H), a sig-
nificant increase was observed in the stage IVindolent sub-
group both between EV1 and progression (P = .0109) (Fig
1H) and between BL and progression (P = .0027) (Fig 1G).
No significant differences were observed in either subgroup
between BL and EV1 (Fig 1H).

MAF Was a Composite Measure Comprising Genes With

Different Dynamics

TP53, PIK3CA, MET, ERBB2, EGFR, MYC, NF1, ESR1,
ARID1A, and NOTCH1 were the main altered genes at BL
(Fig 2A), whereas across all timepoints, TP53, PIK3CA,
ERBB2,MET, EGFR, and ESR1were themost represented.
A considerable proportion of patients at BL had more than
one alteration for TP53 and PIK3CA (14 and 12, respec-
tively) (Data Supplement).

A significant increase inMAF between EV1 and progression
was observed for TP53 (P = .0053), PIK3CA (P = .0457),
ERBB2 (P = .0456), and ESR1 (P = .0016) (Figs 2B-2D
and 2G). Similarly, an increase between BL and progres-
sion was highlighted for TP53 (P = .0283), PIK3CA
(P = .0456), and ESR1 (P = .0003) (Figs 2B, 2C, and 2G).
No significant variations in MAF were observed for EGFR
and MET across all timepoints (Fig 2F). Notably, no new
ESR1 alteration was observed in EV1, whereas a significant

TABLE 1. Clinicopathologic Characteristics of the NU16B06 Cohort
Characteristics No. %

Age, years

, 45 21 19.6

45-65 68 63.6

. 65 18 16.8

IBC

No 54 50.5

Yes 53 49.5

BC subtype

Luminal-like 56 52.3

HER2-positive 23 21.5

Triple-negative 28 26.2

Metastatic sites

Liver 26 24.5

Lung 20 18.9

CNS 8 7.6

Bone 51 48.1

Lymph node 44 41.5

Treatment type

CT and targeted therapy 34 31.8

CT 31 29.0

ET and targeted therapy 30 28.0

Immunotherapy 4 3.7

CT and immunotherapy 3 2.8

ET 3 2.8

Targeted therapy 2 1.9

Previous treatments

CT 88 82.2

ET 71 66.7

Anti-HER2 32 29.9

Immunotherapy 4 3.7

Abbreviations: BC, breast cancer; CT, chemotherapy; ET, endocrine
therapy; HER2, human epidermal growth factor receptor 2; IBC,
inflammatory breast cancer.
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occurrence of ERBB2 alterations was observed for HER2-
negative patients (McNemar test P = .0253). For de-
scriptive purposes, the median MAF across all detected
gene variants is shown in Figure 2H.

Plasma DNA Yield Did Not Vary Across Timepoints and

Was Not Correlated With MAF and NDA

To better understand the value of ctDNA characterization
over total plasma DNA, the NU16B06 samples were also
characterized for DNA yield. Median DNA yield at BL was
30.7 ng, at EV1 was 27.2 ng, and at progression was
38.55 ng (Table 2). No significant differences were ob-
served between BL and EV1 or between EV1 and pro-
gression (Fig 3A). No correlation was observed with MAF or
NDA at BL (Figs 3B and 3C).

The DNA yield dynamics were, moreover, analyzed in the
prospective CRO-2018-56 cohort. Forty-eight patients
with luminal-like MBC who were candidates for first-line
ET were enrolled and their blood samples were collected
at BL and at EV1 (first CT scan after 3 months). The most
common regimen was ET plus CDK4/6 inhibitors (92%),
whereas only 6% of patients received ET as a single
agent. Further patients’ characteristics are shown in the
Data Supplement. Consistent with what was observed in
the unselected NU16B06 cohort, no differences were
observed for DNA yield between BL and EV1 (P = .2027)
(Fig 3D).

Short Plasma DNA Fragments Showed Different

Dynamics and Clinical Outcome

Plasma DNA originates from different sources through
shedding or cell lysis. The former is more likely to be related
to ctDNA and is composed by short fragments. The latter is
predominantly derived by leukocytes and usually consists
of longer fragments. For exploratory purposes, a ddPCR
analysis was performed on the CRO-2018-56 cohort to
evaluate potential differences within the overall DNA yield
by measuring the different fractions of the ACTB DNA
fragments (136 bp, 420 bp, and 2,000 bp, respectively, of
ACTBshort, ACTBmedium, and ACTBlong) and their proportion
(ACTBshort/ACTBshort plus ACTBmedium plus ACTBlong).15

A significant increase in DNA proportion was observed
between BL and EV1 (P = .0064) (Fig 3E) because of
significant decreased levels not only in ACTBshort (71% of
cases, P = .0162) (Fig 3F), but also for ACTBmedium (66% of
cases, P = .0011) (Fig 3G) and ACTBlong (78% of cases,
P = .0001) (Fig 3H).

Since ACTBmedium and ACTBlong were mainly derived by
cytolysis of neutrophils, the white blood cell count dy-
namics was also investigated.15 As expected, because of
the mechanism of CDK4/6 inhibitors, a significant drop in
neutrophil count was observed between BL and EV1
(decrease in 94% of cases, P , .0001), whereas a de-
crease in lymphocyte count was trended toward signifi-
cance (decrease in 65% of cases, P = .0615).

For exploratory purposes, the prognostic impact of BL DNA
yield was tested in terms of PFS. Patients with a DNA yield
higher than the 75th percentile experienced a similar
prognosis with respect to the lower percentiles (P = .9325)
(Fig 4A). Patients with a DNA proportion in the top quartile
at BL had a significantly worse outcome (PFS at 6 months
56% v 90%, P = .0007) (Fig 4B). The prognostic impact of
a ≥ 20% decrease between BL and EV1 was then inves-
tigated across the different ACTB fragments lengths. Al-
though a significant impact was observed for ACTBshort

(hazard ratio [HR]: 3.82; 95% CI, 1.29 to 11.29; P = .0153)
(Fig 4C), no significant difference was observed for
ACTBmedium and ACTBlong (HR, 1.95; 95%CI, 0.67 to 5.67;
P = .2212 and HR, 1.04; 95% CI, 0.13 to 8.00; P = .9712,
respectively). The prognostic impact of ACTBshort was also
retained after correction for ACTBmedium and ACTBlong in
multivariate analysis (HR, 5.24; 95% CI, 1.06 to 25.97;
P = .0423) (data not shown).

DISCUSSION

This study analyzed the dynamic behavior of liquid biopsy
biomarkers with respect to treatment response, with the
goal of integrating different information that could poten-
tially guide BL treatment choices and serial assessments
after treatment initiation.

The study found significant differences between CTCs and
ctDNA throughMAF andNDA characterization. Importantly,

TABLE 2. Distribution of Liquid Biopsy Biomarkers Across Timepoints in the
NU16B06 Cohort
Distribution Median IQR Stage IVindolent Stage IVaggressive

BL

MAF, % 3 0.6-10 47 (63.1%) 27 (36.9%)

NDA, No. 4 2-7

nCTCs, No. 2 0-14

DNA yield, ng 30.7 17.6-54.9

EV1

MAF, % 0.6 0.2-3.3 31 (64.6%) 17 (35.4%)

NDA, No. 5 2-7

nCTCs, No. 1 0-9

DNA yield, ng 27.2 13.2-60.1

Progression

MAF, % 3.8 0.7-13.6 16 (25.4%) 47 (74.6%)

NDA, No. 6 4-10

nCTCs, No. 5.5 1-17

DNA yield, ng 38.55 22.9-60.8

NOTE. MAF, number of detected gene alterations (NDA), DNA yield in ng,
number of CTCs as a continuous variable (nCTCs) and classified based on the 5
CTCs/7 mL of blood (stage IVindolent , 5 CTCs, stage IVaggressive ≥ 5 CTCs).
Abbreviations: BL, baseline; EV1, evaluation one; IQR, interquartile range; MAF,

mutant allele frequency; nCTC, circulating tumor cell enumeration; NDA, number
of detected alteration.
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MAF appeared to follow treatment response versus pro-
gression. By contrast, NDA increased steadily across
timepoints, whereas nCTCs increased only at the time of
clinical progression.

CTCs enumeration was the first clinically deployed liquid
biopsy biomarker and, although the prognostic implications
were consistently confirmed, monitoring results have been
controversial.5-7 The SWOG 0500 phase III trial was the first
attempt to use CTCs as a longitudinal clinical decision-
making tool.7 The study was negative with respect to early
change of CT regimen for patients with persistently high
CTCs, jeopardizing the clinical utility of longitudinal CTCs
characterization. However, the study lacked a precision
medicine approach for treatment selection and biology-
defined sampling timeframes.7

Similarly, the CirCe01 trial investigated whether it was
possible to discontinue a potentially noneffective treatment
based on CTCs dynamics in patients with MBC treated

beyond the second line.16 The study confirmed the prog-
nostic impact of BL stage IVaggressive on overall survival, but
not for PFS.16 It, moreover, observed that patients with ≥ 5
CTCs/7.5mL (Stage IV aggressive) at BL and with either, 5
CTCs/7.5 mL at the second cycle or a relative decrease of at
least 70% of the BL CTCs enumeration experienced a
longer PFS.16

Interestingly, consistent results were observed in this
study’s NU16B06 cohort (HR, 2.04; 95% CI, 0.96 to 4.35;
P = .0653).

The study reported here further highlighted more nuanced
trend of nCTCs since an increase was observed only at
progression. These results may suggest that, although MAF
could be more suitable for real-time disease monitoring,
nCTCs could be more likely linked to metastatic biology, in
particular in the stage IVindolent population. Previous studies
suggested that nCTCs is a composite biomarker comprising
different subpopulation at different stages of epithelial to
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FIG 1. MAF, NDA, and nCTCs distribution and dynamics across the three investigated timepoints (BL, first clinical evaluation [EV1], and progression) and
nCTCs dynamics across the three investigated timepoints according to BL CTCs status (stage IVindolent v stage IVaggressive) (G and H). (A, C, and E) Median,
interquartile range, and outliers are described for the overall biomarker distribution at each timepoint through box and whiskers plots. (B, D, and F) Biomarker
dynamics was then plotted for each patient. MAF initially decreased between BL and EV1, whereas it increased at progression (P , .0001). This trend was
observed both in the (A) overall distribution and (B) at a single patient’s level normalized on the BL levels. NDA had a steady increase across all timepoints
(P , .0001) in the (C) general cohort and (D) at a single patient’s level. (E) nCTCs did not vary significantly at EV1 (P = .1182) and it generally increased
significantly at progression (P = .0010), (F) although some patients experienced a decrease. In the stage IVaggressive subgroup, (G) a significant increase was
observed only between EV1 and progression (P = .0444), and a significant increase was observed in the stage IVindolent subgroup both (G) between EV1 and
progression (P = .0109) and (H) BL and PD (P = .0027). (G) No significant differences were observed in either subgroup between BL or EV1. BL, baseline;
CTC, circulating tumor cell; EV1, evaluation one; MAF, mutant allele frequency; nCTC, circulating tumor cell enumeration; NDA, number of detected
alteration; PD, progressive disease.
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mesenchymal transition and that patients who respond to
therapy have a proportional decrease of the mesenchymal
subpopulation. Patients who experience progressive dis-
ease show an increased number of mesenchymal
CTCs.17,18 CTCs were, moreover, associated with distinctive
biologic features such as mutations and metastatic
organotropism.19,20

This study then analyzed how single genes can differently
account for the overall MAF, demonstrating that a limited

set of genes (ie, TP53 and PIK3CA) actually contributed to
the overall measure. Consistent results on ctDNA dynamics
were reported in the BEECH study, which highlighted a
decrease in ctDNA after 8 days of treatment, while the
longitudinal characterization of 21 patients treated with
pyrotinib confirmed that the mean allele fraction at each
timepoint was correlated with tumor size by computed
tomography, with a lead time of 8 to 16 weeks in pro-
gression detection.21,22
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FIG 3. (A) DNA yield dynamics in the NU16B06 cohort. (B and C) Scatter plot of the correlation between MAF and NDA with DNA yield measured through
the Qubit system. (D) DNA yield dynamics in the CRO-2018-56 cohort, (E) together with the early dynamics of the DNA proportion and (F, G, and H) different
ACTB fragments. No significant differences were observed for (A) DNA yield in the NU16B06 cohort across study timepoints and (B) no correlation was
observed between DNA yield and MAF or NDA at BL. (D) No significant variations were confirmed in the CRO-2018-56 prospective cohort for DNA yield,
whereas (E) a significant increase in DNA proportion was observed between BL and EV1. A consistent decrease was observed for (F) ACTBshort, (G)
ACTBmedium, and (H) ACTBlong. BL, baseline; EV1, evaluation one; MAF, mutant allele frequency, NDA, number of detected alteration; PD, progressive
disease.

FIG 2. (A) Landscape plot at BL, and (B-G) MAF variations of the top six mutated genes across timepoints as a whole and (H) broken down at variant level.
Detected genomic alterations at BL are detailed in the (A) landscape plot as a heat map by type of alteration, MAF, and Ampl (from 1+ to 3+). Variants are
classified as CNV, del, ins, FS, spl, PTC, and SNV. Boxplots (right) show themedian and interquartile range for MAF, whereas the histograms (left) show the
mean Ampl with standard deviation. Shown in the bottom right is a scale for the heat map; variants under the median prevalence are marked as blue, and
above the median are depicted in red. (A) TP53 and PIK3CA aberrations were the most represented and (B, C, and H) their MAF varied across all
timepoints consistently with the overall MAF. (D, G, and H) An increase in ERBB2 and ESR1MAF was significant at progression especially in the luminal-
like subtype (orange). Ampl, amplification; BL, baseline; CNV, copy-number variants; del, deletion; EV1, evaluation one; FS, frameshift; HER2, human
epidermal growth factor receptor 2; ins, insertion; MAF,mutant allele frequency; PD, progressive disease; PTC, premature termination codons; SNV, single
nucleotide variants; spl, splicing variants; TNBC, triple-negative breast cancer.
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By contrast, the increasingly high sensitivity of sequencing
technologies can introduce potentially confounding factors
such as the detection of somatic mutations deriving from
normal tissues, in particular clonal hematopoiesis of in-
determinate potential.23,24 This could also explain the
higher incidence of co-occurring TP53 mutations, with
respect to public databases. In our study, we did not
concurrently sequence paired white blood cells to rule out
clonal hematopoiesis of indeterminate potential.

Ma et al,22 moreover, suggested that a broad gene char-
acterization is needed to correct potential biases deriving by
their biologic role and treatment-derived selective pressure.
Although genes encompassing truncal mutations (eg, TP53
and PIK3CA) were generally in line with the overall MAF
trend, ESR1 and ERBB2 mutations were mainly a later
event with a rising MAF and incidence because of the onset
of treatment resistance. Although genetic alterations of
ESR1 have an established role as resistance biomarkers,
other genes such as ERBB2 in HER2-negative patients still
need to be fully explored.8,25 It has been reported that
patients with luminal-like MBC who acquired ctDNA-
detectable ERBB2 alterations during the course of ET
had promising responses with the use of tyrosine kinase
inhibitors such as neratinib.25,26

Our study, moreover, suggested that the DNA yield fluo-
rometric measurement was not correlated with MAF and
NDA and did not vary across treatment timepoints, ex-
cluding its potential as a low-cost biomarker. Based on the
proportion between plasma-detectable short fragments of
ACTB, the study suggested a prognostic impact of the BL
DNA proportion over the total plasma concentration. By
contrast, this approach showed potential caveats for its
longitudinal utilization as the genomic DNA fraction could
be affected by drug-related events such as leukopenia and

neutropenia, representing a potential confounding factor in
the interpretation of the DNA proportion dynamics.
Nonetheless, the study suggested how only the short
fragment fraction was actually linked to prognosis, inde-
pendent from the genomic DNA one, supporting the proof
of concept that the ctDNA fraction should be accurately
selected for a proper liquid biopsy–based disease
characterization.

There are several limitations of this study. Since current
clinical next-generation sequencing platforms are mainly
based on targeted gene panels, MAF could have been
underestimated if (1) the driver gene was not included in
the panel, or (2) in the presence of two separate subclonal
populations not sharing high-MAF mutations.

The retrospective cohort, moreover, was focused on
standard, EpCAM-based nCTCs rather than an in-depth
CTCs characterization, which could be a limiting factor as
demonstrated by previous studies.17,18

The retrospective cohort was large but heterogenous both
in terms of disease subtype and treatment line. Although
this may increase the generalizability of the findings, it may
also have introduced potential biases derived by specific
biologic features. By contrast, the prospective cohort is
highly homogeneous, but this may in turn jeopardize the
results’ applicability in other treatment settings.

In conclusion, the study suggests that both CTCs and
ctDNA provide complementary information about prog-
nosis and treatment benefit. nCTCs describe the underlying
metastatic biology, whereas ctDNA provides a more
quantitative, real-time assessment of tumor burden and
treatment benefit. In addition, serial ctDNA measurements
can be analyzed for early detection of clinically significant
resistance alterations.
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