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+e mental stress faced by many people in modern society is a factor that causes various chronic diseases, such as depression,
cancer, and cardiovascular disease, according to stress accumulation. +erefore, it is very important to regularly manage and
monitor a person’s stress. In this study, we propose an ensemble algorithm that can accurately determinemental stress states using
a modified convolutional neural network (CNN)- long short-term memory (LSTM) architecture. When a person is exposed to
stress, a displacement occurs in the electrocardiogram (ECG) signal. It is possible to classify stress signals by analyzing ECG signals
and extracting specific parameters. To maximize the performance of the proposed stress classification algorithm, fast Fourier
transform (FFT) and spectrograms were applied to preprocess ECG signals and produce signals in both the time and frequency
domains to aid the training process. As the performance evaluation benchmarks of the stress classification model, confusion
matrices, receiver operating characteristic (ROC) curves, and precision-recall (PR) curves were used, and the accuracy achieved by
the proposed model was 98.3%, which is an improvement of 14.7% compared to previous research results. +erefore, our model
can help manage the mental health of people exposed to stress. In addition, if combined with various biosignals such as
electromyogram (EMG) and photoplethysmography (PPG), it may have the potential for development in various healthcare
systems, such as home training, sleep state analysis, and cardiovascular monitoring.

1. Introduction

Stress is a mental and physical reaction that a person may
feel when they find themselves in a difficult and/or unfa-
miliar environment or situation. Excessive stress accumu-
lation can cause chronic diseases such as high blood
pressure, heart disease, and cancer and, in severe cases, can
lead to death [1, 2]. For this reason, stress observation is
becoming increasingly important in modern society.

Studies measuring stress by using various biological
signals such as electroencephalography (EEG), electro-
myogram (EMG), oxygen saturation, and pulse waves have
been published [3–5]. However, these measurement
methods require expensive and bulky systems to acquire
data, are complicated and expensive to use, and require
signal analysis by experts.

Existing studies using EEG signals have analyzed stress
using support vector machines (SVMs), multilayer per-
ceptrons (MLPs), and näıve Bayes (NB) and have obtained
accuracies of 75%, 85.20%, and 64.29%, respectively [6–8].
However, because these studies used only 15 EEGs as
training data, underfitting can occur. Furthermore, because
an EEG produces a 7-channel signal, it involves a complex
and time-consuming process to measure stress signals.
Previous studies using EMG signals analyzed by SVM
achieved an 85% accuracy. However, despite the same action
being taken (the characteristic movement of the muscles),
the magnitude of the signal amplitude varies from mea-
surement to measurement, and noise in the signal makes it
difficult to extract accurate feature points [9].

Studies that classify stress using an electrocardiogram
(ECG) have been the most popular because the signal
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acquisition method is simpler than other methods and a
clear waveform is acquired. Two studies achieved 89.21%
and 84.4% accuracy using SVM [10, 11], but extracting
feature points can be difficult because of noise and the time
required to measure multichannel ECG signals and because
preprocessing is not always accurate. Two different studies
achieved 75% and 89% accuracy by considering the standard
deviation of the R-R interval of the heart rate variability
(HRV) signal [12, 13]. Accurate stress classification is dif-
ficult because it takes more than 5min to calculate the
standard deviation of the R-R interval, and because the
difference in parameter values is minimal. Furthermore,
because the ECG waveform is not accurate in the frequency
domain, it is difficult to extract feature points, making it
difficult to directly evaluate or minimize the effect of noise
generated by the human body.

In addition, certain research results have exhibited
63.97% and 82.7% accuracy using fuzzy c-means (FCM)
clustering and convolutional neural network (CNN) [14, 15].
+ese studies have difficulty classifying stress signals because
the distance between the center point and the data is slight,
and the scale of the training data is small, making it easier for
the occurrence of underfitting.

Certain earlier study results have exhibited 87.39% and
90.19% accuracy using CNNs and convolutional recurrent
neural networks (CRNNs) [16, 17]. In these studies, the
hierarchical structure of the stress classifier is complex, and
there is a considerable amount of noise; therefore, it is
difficult to achieve a high-stress classification accuracy by
detecting an incorrect R peak value. Models based on long
short-term memory (LSTM) achieved 88.13% accuracy [18].
However, owing to the high noise of the ECG signal, it is
difficult to calculate the root mean square (RMS) of the R-R
interval.

+e aforementioned stress signal classification algorithm
using the ECG signal has disadvantages such as underfitting,
the calculation of a standard deviation for the R-R interval of
a long-time HRV signal, and the detection of an incorrect R
peak value. To overcome these problems, we propose an
ensemble model that accurately classifies mental stress by
combining CNN and LSTM. +e proposed model extracts
the R − Speak feature point using the threshold value, con-
verts it into a spectrogram, and classifies the stress signal
using ECG signal analysis.

To improve the stress classification accuracy, batch
normalization (BN), flatten layers, and fully connected layers
were added. Subsequently, the accuracy of the stress clas-
sification model was improved by separately classifying ECG
signals in the time domain and frequency domain. Con-
fusion matrices, receiver operating characteristic (ROC)
curves, and precision-recall (PR) curves were used to
evaluate the performance of the stress classification model.
In this study, we proposed an ensemble method to classify
the mental stress of the CNN-LSTM model using ECG
signals. +e data of the ST Change Database and WESAD
Database were trained, and more than 98% classification
performance was achieved.

2. Materials and Methods

2.1. Subject. Figure 1 shows the procedure for classifying
stress signals. In this study, we used the ST Change Database
andWESADDatabase, which provide ECG signals that were
acquired in different stress environments. +e ST Change
Database contains ECG data that records physical stress and
consists of 28 ECG signals obtained from 15 male subjects
[19]. +e WESAD database contains 30 ECG signals mea-
sured at the wrist and chest obtained from 15 subjects (12
men and 3 women) [20].

2.2. Preprocessing and Feature Extraction.
Electrocardiography is the most common way to check
health status by noninvasively checking the electrical status
of the heart. When taking an electrocardiogram, noise is
generated by several factors, which greatly reduces ECG
classification accuracy [21]. To solve this problem, we used a
low-pass filter and confirmed that 90.89% of the noise was
eliminated using a low-pass filter with a sampling frequency
of 360Hz and a cutoff frequency of 150Hz.

Figure 2 shows the extracted R − Speak values from an
ECG signal. By extracting these data under stress and
without stress, the ECG can be accurately analyzed [22].
Rpeak and Speak were extracted from ECG signals after setting
a threshold. Rpeak extracted the pole when the threshold
value was greater than 0.2mV in one period of the signal and
extracted the pole when the threshold value was less than
−0.54mV in one period.

In the under-stress state, the heart beats irregularly and
quickly, the R-R interval of the ECG signal becomes narrow,
and the R − Speak increases. On the other hand, in the un-
stressed state, the heart is relatively stable, the R-R interval
widens, and the R − Speak decreases [23]. In each state, the
average R − Speak without stress was found to be 1.47mV,
and under stress, it was 4.25mV. Figure 3 shows the con-
version of either signal (under stress or without stress) into a
spectrogram.

2.3. CNN-LSTM Model Design. Figure 4 shows the archi-
tecture of the ensemble model proposed in this study. +e
classification layer consists of 14 levels.

Table 1 lists the structure of the layers comprising the
ensemble model. First, 124×124× 3 image sequence data are
input to the sequence input layer. Subsequently, the ECG
image data are converted into an array form (vertical,
horizontal, and channel) using a sequence folding layer and
then transferred to the convolution layer.

+e reason for using the sequence folding layer is so that
the image sequence data can be converted into an array,
arranged, and then transferred to the two-dimensional (2D)
convolution layer. +e first 2D convolution layer contains
six filters of size 5× 5.

Because of calculating the convolution layer using
equation (1), the size of the output value is 124×124× 6.
Equation (1) represents the calculation process for the
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convolution layer. When padding and stride are applied, and
the size of the input data and filter is given, the output value
can be calculated. H andW are the input data size, FH (filter
height) and FW (filter weight) are filter size, S is the stride, P
is padding, andOH (output height) andOW (output weight)
are output value sizes.

(OH, OW) �
H + 2P − FH

S
+ 1,

W + 2P − FW

S
+ 1􏼒 􏼓.

(1)

+e output data are then connected to the batch nor-
malization layer. After normalizing the size of the output
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Figure 1: Procedure for classifying stress signals and validating the model.
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Figure 3: (a) Without stress ECG converted to a spectrogram. (b) Under stress ECG converted to a spectrogram.
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data to 124×124× 6 in the batch normalization layer, it was
connected to the max pooling layer. According to equation
(2), the size of the output data is determined by dividing the
row and column size by the pooling size.

(ORs, OCs) �
H

P
,
W

P
􏼒 􏼓. (2)

Its output is fed to a batch normalization layer and then
to a max pooling layer. +e max pooling layer is a 2× 2 filter
with a stride of 2. As a result, the original data are reduced to
a size of 62× 62× 6. +e second 2D convolution layer
contains 12 filters of size 3× 3. As a result, the data are
further reduced to a size of 31× 31× 12. Normalization is
then performed and the data are passed to the LSTM layer.
To transfer the size of the output data to the LSTM layer,
normalization was performed using a sequence unfolding

layer, and feature vectors were obtained using a flattening
layer (or flattened layer).

+e flattening layer has the advantage of not affecting the
parameter by converting the output of the extracted feature
map into a 1D array, which allows reconstructing the feature
maps as the input to the LSTM [24]. At this time, the input is
transmitted through the hidden layer of the LSTM.

A weight value of 800×11532 at the input layer is applied
to equations (3)–(7), which represents the computational
process of the LSTM layer, to extract the feature value. +e
LSTM layer consists of input gates (it, gt), forget gates (ft), and
output gates (Ot).+eLSTM layer is composed of an input gate
(it, gt), forgetting gate (ft), and output gate (Ot). In each gate,
a weight value is multiplied according to an input vector (xt), a
hidden state (ht−1), and a cell state (Ct) using the sigmoid and
Tanh functions, and then a feature value is extracted.
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Figure 4: Classification architecture.

Table 1: Classification layers used to evaluate stress signals using CNN-LSTM.

Number Layer Activation Weights Bias
1 Sequence input layer 124×124× 3 — —
2 Sequence folding layer 124×124×1 — —
3 Convolution 2D layer 124×124× 6 5× 5× 3× 6 1× 1× 6
4 Batch normalization layer 124×124× 6 — —
5 Max pooling layer 62× 62× 6 — —
6 Convolution 2D layer 62× 62×12 3× 3× 6×12 1× 1× 12
7 Batch normalization layer 62× 62×12 — —
8 Max pooling layer 31× 31× 12 — —
9 Sequence unfolding layer 31× 31× 12 — —
10 Flatten layer 11532 — —
11 LSTM layer 200 Input: 800×11532 recurrent: 800× 200 800×1
12 Fully connected layer 2 2× 200 2×1
13 Softmax layer 2 — —
14 Classification — — —
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it � σ Wxxt + Whiht−1 + bi( 􏼁, (3)

gt � tanh Wxgxt + Whght−1 + bg􏼐 􏼑, (4)

ft � σ Wxfxt + Whfht−1 + bf􏼐 􏼑, (5)

Ot � σ Wxoxt + Whoht−1 + bo( 􏼁, (6)

Ct � ft ∘Ct−1 + it ∘gt. (7)

Subsequently, it is applied to equation (8) to pass the
feature value calculated at the output gate to the output layer.
Equation (8) is the process of extracting a required feature
value from several feature values calculated at the output
gate. After extracting a feature value from −1 to 1 using the
Tanh function, the feature value in the range calculated using
the output gate is transferred to the output layer.

ht � Ot ∘ tanh Ct( 􏼁. (8)

+e feature value extracted from the LSTM layer clas-
sifies the image using a fully connected layer of size two and
calculates a probability value for the image classified by the
softmax layer. Subsequently, image classification is per-
formed using the feature values extracted earlier using the
fully connected layer, and the probability value of the
classified image is calculated using the softmax layer. Finally,
in the classification step, the signal is classified as either
under stress or without stress.

Figure 5 shows the components of the convolution 2D
layer and LSTM layer to which equations (1)–(8) are applied.
Equations (1) and (2) show the calculation process of the
convolution 2D layer among the CNN models, and equa-
tions (3)–(7) show the process of outputting feature values
using the weight values of the input gate, forgetting the gate,
and output gate in the LSTM layer. Equation (8) transfers the
feature values in the range from the output gate to the output
layer.

We used the confusion matrix, receiver operating
characteristic (ROC) curve, and precision-recall (PR) curve
to evaluate the stress signal classification performance of the
proposed ensemble model [25]. +e confusion matrix is a
matrix that allows one to evaluate how accurately the pre-
dicted value is compared to the actual observed value. We
used ECG data from the ST Change Database (DB) and the
WESAD DB. +e total number of data points was 58.
However, with such a small amount of data, it is difficult to
accurately evaluate the stress signal classification model.
+erefore, to improve the accuracy of the classification
model and better analyze its performance, the data were
doubled by transforming the time domain data to frequency
domain data using the fast Fourier transform (FFT), as
indicated in Figure 6. After preprocessing, the performance
of the ensemble model was evaluated using 58 time domain
data and 58 frequency domain data.

3. Experimental Results

Table 2 shows the accuracy, sensitivity, specificity, precision,
and negative predictive values obtained to evaluate the
classification model’s performance using formulas (9)–(13)
[26–28]. Formula (1) defines accuracy and indicates the
probability of accurately classifying all under stress and
without stress conditions. In the formula, TP, TN, FP, and
FN indicate true positive, true negative, false positive, and
false negative, respectively. For the time and frequency
domains, the accuracies of the stress classifier were 94.8%
and 98.3%, respectively.

Accuracy �
TP + TN

TP + TN + FP + FN
. (9)

Sensitivity refers to the proportion of data correctly
classified as without stress to all without stress data (actual
observed data). In the time and frequency domains, the
sensitivities of the stress classifier were 96.4% and 100%,
respectively.

Sensitivity �
TP

FN + TP
. (10)

Specificity is the proportion of data correctly classified as
under stress among all under stress data (actual observed
data). In the time and frequency domains, the sensitivities of
the stress classifier were 96.4% and 100%, respectively.

Specificity �
TN

TN + FP
. (11)

Precision is the ratio of the data correctly classified by the
stress classification algorithm as without stress to the value
of all data classified as without stress. In the time and fre-
quency domains, the precision of the stress classifier was
93.1% and 96.6%, respectively.

Precision �
TP

TP + FP
. (12)

+enegative predictive value is the ratio of data classified
correctly as under stress to the actual value without stress
data. In the time and frequency domains, the negative
predictive values of the stress classifier were 96.6% and
100%, respectively.

Negative PredictiveValue �
TN

TN + FN
. (13)

Figure 6 shows the results of the classification model’s
performance using a confusionmatrix.+ematrix on the left of
Figure 7 uses the data converted to the time domain, and the
matrix on the right is the result of using the data in the fre-
quency domain. +e highest classification accuracy of the
proposed ensemblemodel was 98.3% for the frequency domain.
In previous studies, the accuracy of the model was 83.6% [29].
+ese results indicate that accuracy was improved by 14.7%
using the proposed ensemble compared to previous results.
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Figure 8 shows the classification performance
according to the epochs for the time and frequency do-
mains. +e graph shows the mean squared error (MSE)
according to the number of epochs. +e time domain
yielded the lowest MSE at 219 epochs (the validation curve
shown), while the frequency domain yielded the lowest
MSE at 223 epochs.

Figure 9 shows the ROC curves according to the epochs
for the time and frequency domains of the ECG data. +e
ROC curve is a performance evaluation technique applicable
to a binary classifier system that indicates how the perfor-
mance of the classification model changes as the threshold
changes [30]. +e area under the curve (AUC) (the area
under the ROC curve) is an index used to evaluate the

ST change database WESAD

Image data 1

Image data 28

Image data 1

Image data 30

 Frequency image data 1

 Frequency image data 28

 Frequency image data 1

 Frequency image data 30

Figure 6: FFT transformation to increase input data quantity.

Table 2: Classification performance assessment of stress signals in time and frequency domains.
Time domain

Stress Precision Sensitivity Specificity Negative predictive value Accuracy
Performance (%) 93.1% 96.4% 93.3% 96.6% 94.8%
Error (%) 6.9% 3.6% 6.7% 3.4% 5.2%

Frequency domain
Stress Precision Sensitivity Specificity Negative predictive value Accuracy
Performance (%) 96.6% 100% 96.7% 100% 98.3%
Error (%) 3.4% 0.0% 3.3% 0.0% 1.7%
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classification performance of different types of signals (stress
signals in this study). When the AUC range falls between 0.9
and 1.0 (90%–100%), the classification performance is ex-
cellent, and when the AUC range falls between 0.8 and 0.9
(80%–90%), the classifier’s performance is low. In the time
domain, the AUC of the ROC curve was 94.67%, and it was
98.12% in the frequency domain. +e AUC of a previous
study was 85.7% [14], and it was confirmed that the en-
semble proposed in this study represents a 12.42% im-
provement. +e AUC value of the frequency domain was
3.45% higher than that of the time domain in our model
indicating that the classification performance of the stress
signal is better in the former.

Figure 10 shows the PR curves for the ECG data
according to the epochs for the time and frequency domains.
When considering the ROC curve, if the dataset is unbal-
anced, the shape of the curve is skewed to one side, and the
classifier performance cannot be accurately evaluated [31].
+e PR curve can be used to overcome the shortcomings of
the ROC curve and shows the correlation between precision
and recall. +e average precision (AP) of the PR curve is an
index that can be used to evaluate the classification per-
formance of stress signals [32].

+e X-axis represents the recall, and the Y-axis repre-
sents the precision. In the PR curve, the larger the AP is, the
better the stress signal classification performance. +e PR
curve AP of the time domain was 93.8%, and it was 97.6% for
the frequency domain. +e AP obtained using the PR curve
in [32] was 84.2%. +erefore, compared to the previously
proposed stress signal classifier, the AP of the PR curve is
improved by 13.4% using the proposed classifier. In addi-
tion, the AP value of the frequency domain was 3.8% higher
than that of the time domain in our model, indicating that
the stress classification performance is better in the former.

In previous studies using the time domain or frequency
domain of ECG data, the epochs were set to 10, and the batch
size was set to 64. As a result, the time domain and frequency
domain accuracies were 83.6% and 74.5%, respectively [33].
However, the architectures used are susceptible to over-
fitting, and the accuracies achieved after 10 epochs may
reflect this problem. Figure 11 shows the accuracy of stress
classification using the proposed CNN-LSTM. After setting
the epochs to 20 and the batch size to 64, the classification
accuracies involving ECG stress signals in the time and
frequency domains were measured. Under these settings, the
time required for the time domain classification was 7min
48 s and the verification accuracy was 94.13%. +e elapsed
time for the frequency domain was 7min 31 s and the
verification accuracy was 98.26%, which represents 10.53%
and 23.76% improvements in accuracy compared to pre-
vious results [33].

For comparison purposes, we evaluated the stress clas-
sification performance of the CNN, LSTM, and CNN-LSTM
models. First, stress signals were classified using CNN. After
inputting the time series data values from the DBs into the
image input layer, feature maps were extracted using

convolutional, batch normalization, and max pooling layers.
+e stress was classified using a fully connected layer and a
softmax layer under stress and without stress as the final
classification. +e classification accuracy of the stress signals
using CNN was 88.35%.

In addition, stress signals were classified using LSTM.
LSTM is a type of recurrent neural network (RNN), which is
an artificial neural network that recognizes patterns in data
that can be represented as an array and is used for tasks such
as text and gene signal analysis. After inputting the sequence
data of the ECG DBs into the sequence input layer, the
output was calculated using the LSTM layer (with the ReLU
activation function). +e signal was then classified as under
stress or without stress using a fully connected layer. +e
classification accuracy of the stress signals using LSTM was
86.25%.

Table 3 compares the stress classification accuracies of
the CNN, LSTM, and CNN-LSTM models. We set the
epochs to 20 and the batch size to 64 and then determined
the elapsed time and accuracy.+e results confirmed that the
CNN-LSTM model was approximately 1min faster than the
CNN and LSTM models, and accuracy was improved by
9.91% and 12.01%, respectively.

Figure 12 shows the AUC and AP curves for each model
based on the ROC and PR results. +e AUC of CNN-LSTM
was 98.12%, while those of CNN and LSTM were 87.5% and
84.3%, respectively. +erefore, the AUC of the CNN-LSTM
model was 10.62% and 13.82% higher than that of the CNN
and LSTM models, respectively, confirming that its stress
classification performance is better. +e AP of CNN-LSTM
was 97.6%, and it was 88.2% and 86.02%, respectively, for
CNN and LSTM. +e CNN-LSTM model achieved AP
values that were 9.4% and 11.58% higher than the CNN and
LSTM models, respectively, further confirming improved
classification performance.

4. Discussion

In this study, to improve the performance of stress classi-
fication and prevent overfitting, an optimized ensemble
model was developed by generating additional data using
spectrograms and adding layers such as batch normalization,
a flattening layer, and a fully connected layer. +e perfor-
mance of the classifier was evaluated using a confusion
matrix, ROC, and other measures. By applying the average
value of the R − Speak of the ECG signal, the characteristics of
under-stress and without-stress signals are extracted to
improve the stress classification accuracy. In the time do-
main, a precision of 93.1%, a sensitivity of 96.4%, and a
specificity of 93.3% were achieved. In the frequency domain,
a precision of 96.6%, a sensitivity of 100%, and a specificity of
96.7% were achieved. +e CNN-LSTM achieved 94.8% ac-
curacy for time domain signals and 98.3% accuracy for
frequency domain signals. +e best stress classification ac-
curacy of the proposed CNN-LSTM algorithm is 98.3%,
which is approximately 14.7% higher than the best
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accuracies reported in previous studies. +e proposed stress
classifier achieves optimal stress signal classification per-
formance when the number of epochs is 219 in the time
domain and 223 in the frequency domain. In addition, the

model’s performance was evaluated using ROC and PR
curves. It was confirmed that improvements of 12.42% and
13.4%, respectively, were obtained compared to previous
study results.

Table 3: Classification accuracy comparison of stress signals using CNN, LSTM, and CNN-LSTM.

CNN LSTM CNN-LSTM
Elapsed time 8min 32 s 8min 45 s 7min 31 s
Accuracy 88.35% 86.25% 98.26%
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Figure 10: Evaluation of classification performance using PR curve.
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Figure 11: Time and frequency domain stress signal classification.
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5. Conclusions

In this study, we proposed an improved ensemble model
based on CNN-LSTM to accurately classify stress states. To
prevent the overfitting of the algorithm and improve the
accuracy of the classifier, ECG signals were classified sep-
arately in the time domain and frequency domain. +e
proposed ensemble model achieved a stress classification
accuracy of 98.3%. +ese results exhibit an approximate
14.7% improvement in accuracy compared to earlier studies
that classify the existing under stress and without stress. In
the future, we plan to improve the preprocessing method,
such as a subtle noise removal of biological signals, and to
improve accuracy by applying a wearable transform filter
that will remove baseline fluctuations and noise using
Fourier transforms. +e stress classifier proposed by us is
expected to be helpful inmental health management as it can
quickly and accurately classify the stress experienced by
modern people. It is also expected to assist in preventing
various diseases such as depression, high blood pressure, and
diabetes through periodic stress management.
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