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The novel coronavirus disease 2019 (COVID-19) is a contagious disease that has caused thousands of deaths and infected millions
worldwide. Thus, various technologies that allow for the fast detection of COVID-19 infections with high accuracy can offer
healthcare professionals much-needed help. This study is aimed at evaluating the effectiveness of the state-of-the-art pretrained
Convolutional Neural Networks (CNNs) on the automatic diagnosis of COVID-19 from chest X-rays (CXRs). The dataset used
in the experiments consists of 1200 CXR images from individuals with COVID-19, 1345 CXR images from individuals with
viral pneumonia, and 1341 CXR images from healthy individuals. In this paper, the effectiveness of artificial intelligence (AI) in
the rapid and precise identification of COVID-19 from CXR images has been explored based on different pretrained deep
learning algorithms and fine-tuned to maximise detection accuracy to identify the best algorithms. The results showed that deep
learning with X-ray imaging is useful in collecting critical biological markers associated with COVID-19 infections. VGG16 and
MobileNet obtained the highest accuracy of 98.28%. However, VGG16 outperformed all other models in COVID-19 detection
with an accuracy, F1 score, precision, specificity, and sensitivity of 98.72%, 97.59%, 96.43%, 98.70%, and 98.78%, respectively.
The outstanding performance of these pretrained models can significantly improve the speed and accuracy of COVID-19
diagnosis. However, a larger dataset of COVID-19 X-ray images is required for a more accurate and reliable identification of
COVID-19 infections when using deep transfer learning. This would be extremely beneficial in this pandemic when the disease
burden and the need for preventive measures are in conflict with the currently available resources.

1. Introduction

The novel coronavirus disease 2019 (COVID-19) pandemic
remains a worldwide concern, threatening to devastate global
health. Early detection of infections is one of the first lines
of defence against this pandemic, in a bid to reduce the spread
of infections [1, 2]. While Reverse Transcription-Polymerase
Chain Reaction (RT-PCR) is the current gold standard for
disease diagnosis, molecular testing of respiratory tract speci-
mens is also highly recommended, which allows for labora-
tory confirmation of infections. However, the dramatic
proliferation of COVID-19 has resulted in an insufficient

number of laboratory kits, creating a significant challenge
[3]. Thus, the use of radiological examinations in identifying
infections has become increasingly attractive during the
COVID-19 outbreak [4].

Although computed tomography (CT) scans have proven
to be more effective, the increasing number of patients and
the consequent rise in radiological examinations are making
it impossible to continuously rely on chest CT scans for each
individual patient from diagnosis to discharge. Also, a high
reliance on CT scans will impose a significant burden on
radiology departments, thus rendering chest X-rays (CXRs)
a more feasible option for COVID-19 detection [5].
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Although CXRs are deemed less sensitive in diagnosing
early-stage pulmonary involvement in COVID-19, it is bene-
ficial to track the gradual development of lung anomalies [6].
Previous studies have observed and identified various radio-
logical manifestations of COVID-19, such as consolidation,
reticular interstitial thickening, ground-glass opacities
(GGO), pulmonary nodules, and pleural effusion [7, 8].

With the rapid global spread of COVID-19, researchers
have begun using state-of-the-art deep learning techniques
for the automated detection of COVID-19 within patients.
The onerousness of obtaining COVID-19 data in its initial
stages has forced researchers to create their own model
using pretrained networks [9–22]. However, the bulk of
these experiments used a limited dataset comprising just a
few COVID-19 samples. This renders the stated results in
these studies are difficult to generalize and does not ensure
the reported output would be retained when these models
are evaluated on a larger dataset. Therefore, the transfer
learning approach for detecting COVID-19 X-ray images
must be verified on a large dataset. In addition to the fact
that the combination of healthy and pneumonia cases is
considered inappropriate where the model would attempt
to disregard the intraclass variation between these two clas-
ses, the accuracy obtained in this way is not an accurate
measure [23].

Deep learning has been shown to play an important role
in distinguishing between viral and bacterial pneumonia [24–
26] and diagnosing the most common thoracic diseases [27–
29]. Moreover, the challenge is to develop an algorithm capa-
ble of identifying a patient with COVID-19. Nevertheless,
this task remains challenging as COVID-19 can share similar
radiographic features with other types of pneumonia. In [10],
the authors mentioned the poor performance of MobileNet
in distinguishing cases of COVID-19 from other pneumonia
cases when the training dataset included only bacterial pneu-
monia cases. We thus attempt to distinguish COVID-19
from viral pneumonia (not bacterial pneumonia) by aiming

to rapidly detect clusters of COVID-19 caused by a novel
virus. Furthermore, the COVID-19 versus non-COVID clas-
sification is a severe imbalance problem regarding the num-
ber of COVID-19 versus non-COVID-19 samples due to
the difficulty of obtaining an adequate number of positive
COVID-19 samples.

This paper is aimed at reducing both the false-positive
and false-negative rate as much as possible. The number
of frozen layers has been shown to affect the recognition
capability of pretrained models [30]. However, no work
has been carried out to investigate the performance of the
popular pretrained models with different number of frozen
layers, and previous works have not comprehensively con-
sidered comparative analysis of these models’ performances
in COVID-19 diagnosis. Therefore, it is sensible to tune the
frozen layers to utilize the full potential of pretrained
models in order to improve COVID-19 recognition capabil-
ity. With this goal in mind, eight popular pretrained deep
learning networks were compared in terms of various per-
formance metrics, each with different numbers of frozen
layers. This enabled the identification of the best framework
in the extraction of COVID-19 manifestations. Thereby,
our work differs from the prior proposals [10, 13, 21, 22]
in that the proposed model is not only evaluation-based
but also COVID-19-specific. As such, this work could
potentially help researchers to identify the best-practice
CNN descriptor, i.e., the appropriate deep CNNs with
proper layers and convolutional blocks to extract the fea-
tures of COVID-19. The contributions of this work are
summarized as follows.

(i) The development of a state-of-the-art automated
COVID-19 diagnosis framework based on a pre-
trained deep learning model is proposed. The devel-
oped model exploits the VGG16 CNN with 18
frozen layers to detect COVID-19 patients using
CXR images
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Figure 1: Block diagram of the proposed method.
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(ii) Provides insight into the performance of each of the
eight well-known pretrained models with different
frameworks arising by adjusting the number of the
frozen layers and identifying the number of trainable
convolutional blocks

(iii) A comparative study of eight well-known pretrained
CNN models, with different frameworks, is con-
ducted through many experiments on a large dataset
consisting of CXRs from individuals with COVID-
19, demonstrating the superiority of the proposed
framework in (i) in terms of achieving the least num-
ber of false positives and false negatives

(iv) Identifying the best performance of each model and
then evaluated it on the test set again to make sure
the model is more generalizable

This paper is organized as follows. Section 2 describes
the methods used in this study. The quantitative results
and discussion are presented in Section 3, while Section 4
illustrates the approach taken for comparison with previous
studies. Finally, the conclusion of this study is presented in
Section 5.

2. Materials and Methodology

In this section, we briefly describe the approach used to
achieve the objectives of the study. The diagram of the pro-
posed method is represented in Figure 1.

2.1. Dataset and Input Preprocessing. In this work, the chest
X-ray image dataset was downloaded from https://www
.kaggle.com/tawsifurrahman/covid19-radiography-database,
17 December 2020, which was prepared by the authors of
[21], who undertook the tedious task of collecting and index-
ing the X-ray images. This dataset consists of CXRs from
1200 individuals with COVID-19, 1341 CXRs from healthy
individuals, and 1345 CXRs from individuals with other
types of viral pneumonia. All the images are in the Portable
Network Graphics (PNG) file format, and with a resolution
of either 1024-by-1024 pixels or 256-by-256 pixels. It must
be noted that the dataset is divided into 3575 training and
311 test images, as outlined in Table 1. In the training phase,
the dataset was prepared and verified as reliable by reviewing
it with chest specialists. In addition, cases of viral pneumonia
should be free from any instances of COVID-19. Before pass-
ing the images into a pretrained model for feature extraction,
we resized all images to a size of 224 × 224 × 3 pixels. All
images were normalized according to the pretrained model
standards. Figure 2 shows examples of CXR images within
the training set that were used in this study.

2.2. PretrainedModel and Sequential Model. In this study, the
transfer learning technique was applied using ImageNet data
to resolve the problems of inadequate data and preparation
time. The weights trained on ImageNet were downloaded
for each model. The feature maps were treated as input size
in the applied layers training process. Moreover, for fine-tun-
ing, a brief description of the CNNs employed for automatic

detection was created. Table 2 shows the parameters of the
applied CNNs in terms of classification function and transfer
learning criteria. The fine-tuning parameters were deter-
mined after several experiments. The frozen layer parameter
refers to the number of untrainable layers starting from the
bottom of the CNN, which is good because their weights
are not expected to change during model training. The bot-
tleneck features parameter refers to the last feature map that
was flattened to feed a fully connected deep neural network
classifier during the pretraining.

Table 2: The parameters of CNNs for transfer learning.

Classifier Frozen layers Bottleneck features

InceptionV3 230 27648

Xception 116 142688

InceptionResNetV2 779 38400

MobileNet 66 100352

VGG16 18 25088

DenseNet169 575 6272

NasNetLarge 858 32928

DenseNet121 403 6272

(a) COVID-19

(b) Healthy

(c) Viral pneumonia

Figure 2: Samples of X-ray images used in this study.

Table 1: Summarized dataset for training and testing.

Data COVID-19 Healthy Viral pneumonia Total images

Train 820 1140 1150 3575

Test 82 114 115 311
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The other layers that were closer to the output features
were trained to extract more information from the later con-
volution layers. We added three more layers to the top of
each model, namely, a fully connected layer (FC2) with the
output of 512, a dropout layer, and another fully connected
layer (FC1) with a softmax classifier as depicted in Figure 3.
A dropout layer [31] was added to prevent overlapping
[32], passing with 0.5 for each neural network used in this
study. The network was trained with a softmax classifier for
15 epochs using an RMSprop optimizer [33], with a learning
rate of 0.00001 and a batch size of 32. Simultaneously, the
sequential model used as a classifier with the last three layers
includes the softmax classifier. The frozen layer and bottle-
neck features parameters are shown in Table 2.

2.3. Performance Metrics. This subsection describes the eval-
uation of the performance of different deep learning models
for classifying the CXR images. The trained models were val-
idated using tenfold cross-validation, and the performance
metrics derived from the confusion matrix were used for
experimental analyses. The confusion matrix provides a
guideline to the four outcomes of false negative (FN), false
positive (FP), true negative (TN), and true positive (TP).
The presence of both FNs and FPs could affect medical deci-
sions negatively. An FP result is produced when an individual
is inaccurately assigned to a class, such as when a healthy
individual is incorrectly categorized as a COVID-19 patient.
An FN occurs when an individual who is supposed to fall into
a given class is instead excluded from this group. The perfor-
mance of the different networks was evaluated on the test set
by computing the macroaverage of accuracy (Acc), F1 score,
precision (PPV), specificity (Spc), sensitivity (Sen), and Mat-
thew Correlation Coefficient (MCC) [34] as quantitative
evaluation indices. These are defined as

Accuracy Accð Þi =
TPi + TNi

TPi + FPi + TNi + FNi
, ð1Þ

F1 scorei = 2 ×
PPVi × Seni
PPVi + Seni

, ð2Þ

Precision PPVð Þi =
TPi

TPi + FPi
, ð3Þ

Specificity Spcð Þi =
TNi

FPi + TNi
, ð4Þ

Sensitivity Senð Þi =
TPi

TPi + FNi
, ð5Þ

MCCi =
TPi × TNið Þ − FPi × FNið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPi + FPið Þ TPi + FNið Þ TNi + FPið Þ TNi + FNið Þp
,

ð6Þ
where i refers to the class of COVID-19, healthy, and viral
pneumonia.

Due to the imbalanced data, it is difficult to determine
which classifier performs better in the detection of COVID-
19 infections. Misdiagnosis can potentially lead to severe
consequences, especially where the COVID-19 cases are con-
cerned. Therefore, it is necessary to calculate the parameters
of the COVID-19 class.

3. Results and Discussion

In this paper, the experiments were implemented via utilizing
Python programming language. All experiments were con-
ducted with a Tesla K80 GPU graphics card on Google Col-
laboratory with an Intel© i7-core @3.6GHz processor and a
16GB RAM on 64-bit Windows 10 operating system.
Table 3 illustrates the comparative computational times of
the tested deep learning image classifiers in seconds. The run-
ning time of all deep learning models was relatively short,
ranging from 363.0 to 2170.0 seconds.

Beforehand, we conducted many experiments on a large
chest X-ray dataset of COVID-19 samples fed into eight
well-known pretrained CNN models, namely, InceptionV3,
Xception, InceptionResNetV2, MobileNet, VGG16, Dense-
Net169, NasNetLarge, and DenseNet121, each with different
selections of frozen layers and number of trainable convolu-
tion blocks. All models were trained via 10-fold cross-
validation. Furthermore, we chose the best performance of
each model separately and finally evaluated each model on
test set. Figure 4 indicates how the number of fine-tuned con-
volutional blocks influenced the classification performance

Classification
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Sequential model

Feature extraction

Pre-trained model

Resize image to
224×224×3 FC

2

drop
ou

t
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Figure 3: Outline of the method.

Table 3: Computational times of all tested CNNs on a GPU (s).

Classifier Training time Testing time

InceptionV3 280 83

Xception 660 135

InceptionResNetV2 980 389

MobileNet 320 54

VGG16 480 138

DenseNet169 799 332

NasNetLarge 1660 510

DenseNet121 740 249
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where the mean classification accuracy and standard devia-
tion (StD) are shown as well. For all pretrained CNN models
InceptionV3, Xception, InceptionResNetV2, MobileNet,
VGG16, DenseNet169, NasNetLarge, and DenseNet121, the
best performance was obtained when we trained 12, 12, 7,
10, 5, 31, 18, and 13 convolution blocks, respectively.

Table 4 summarizes the comparative performance for
each of the different pretrained CNN models. It is apparent
from Table 4 that all the evaluated pretrained models per-
formed well in classifying COVID-19, healthy, and viral
pneumonia CXR images. While there was only a marginal
difference between the results of the various CNNs, VGG16
and MobileNet obtained the highest accuracy of 98.29%.
However, VGG16 outperformed MobileNet in the aspects
of F1 score, PPV, and Sen while failing MCC, Spc, and testing
time. The receiver operating characteristic (ROC) curve for
VGG16 and MobileNet is shown in Figure 5.

The confusion matrices of VGG16 and MobileNet show
consistency between the predicted and actual results, thus
indicating better performance as demonstrated in Figure 6.
It is clear from Figure 6(a) that only one COVID-19 CXR
image was misclassified as a viral pneumonia CXR image.
None of the other COVID-19 CXR images were misclassified
as healthy images. Two healthy and viral pneumonia CXR
images were misclassified as COVID-19 by the VGG16
model. In contrast, Figure 6(b) shows the results from the
MobileNet model, where only one COVID-19 CXR image
was misclassified as healthy. None of the other COVID-19
CXR images were misclassified as viral pneumonia CXR
images. One healthy and three viral pneumonia images were
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Figure 4: Accuracy versus convolutional blocks and standard deviation of each experiment.

Table 4: Parameters of different classification models for all classes
with the best value in bold (%).

Classifier Acc F1 MCC PPV Spc Sen

InceptionV3 97.43 96.22 94.26 96.34 98.04 96.29

Xception 97.86 96.64 95.21 96.54 98.45 96.87

InceptionResNetV2 93.00 90.70 86.38 91.27 95.37 90.36

MobileNet 98.29 97.39 96.13 97.26 98.74 97.56

VGG16 98.29 97.44 96.11 97.34 98.72 97.57

DenseNet169 95.71 93.82 90.26 93.72 96.70 93.95

NasNetLarge 97.00 95.22 93.20 95.25 97.77 95.24

DenseNet121 95.93 93.60 90.75 94.00 96.87 93.32
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also misclassified as COVID-19 CXR images. In general, only
one healthy CXR image was misclassified as a viral pneumo-
nia CXR image in both models. COVID-19 images being
misclassified as healthy CXR images has more harmful con-
sequences than it being misclassified as another disease class
(i.e., viral pneumonia). In contrast, healthy images that are
misclassified as viral pneumonia images have less severe con-
sequences as opposed to when it is misclassified as COVID-
19. It can be said that VGG16 does not confuse COVID-19
and healthy images, but it confuses COVID-19 with viral
pneumonia. In contrast, the MobileNet model confuses
healthy and COVID-19 images, but does not confuse
COVID-19 with viral pneumonia images. However, the high
precision and F1 score show that the network still performs
excellently in the reliable classification of most images, which
is of utmost importance, as the computer-aided system
(CAD) should not classify any COVID-19 patients as healthy
or vice versa.

The performance of each CNN concerning COVID-19
cases is presented in Table 5. In terms of COVID-19 detec-
tion accuracy, Table 6 shows that VGG16, MobileNet, Incep-
tionV3, and DenseNet169 models outperformed the rest of
the models.

Moreover, Figure 7 shows that DenseNet169 and Incep-
tionV3 have more FN cases. The most optimal models are
those with the lowest number of FN when concerning a spe-
cific disease. After all, an FN scenario will contribute to the
misguided belief that the patient is not infected, which may
eventually contribute towards the propagation of infections
among the healthy population. Therefore, out of these four
models, VGG16 excelled in achieving values up to 98.72%,
97.59%, 96.43%, 98.69%, and 98.78% for Acc, F1 score,
PPV, Spc, and Sen, respectively.

4. Comparison with State-of-the-Art Methods

AI techniques regarding image classification can assist in the
early diagnosis of diseases. When AI techniques are incorpo-
rated, CNNmethods are able to achieve better results as com-
pared to other classification methods [35, 36]. Although

there are a large number of COVID-19 patients worldwide,
there is only a small number of publicly available CXR
images scattered online. However, several recent works have
reported promising results when using the transfer learning
approach to detect COVID-19 CXR images from a small
dataset. To evaluate the proposed CNN model, the general
performance comparison of our study with the state-of-the-
art methods is shown in this section. In the model evalua-
tions, these related studies depend onmulticlass classification
of CXR images with various AI techniques.

Apostolopoulos and Mpesiana [10] established a deep
learning model using 224 confirmed COVID-19 images,
and their model achieved a performance rate of 98.75% and
93.48% when using two and three classes, respectively. Wang
et al. [37] proposed a deep COVID-19 detection model
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Figure 6: Confusion matrix of (a) VGG16 and (b) MobileNet.

Table 5: Parameters of different CNNs for COVID-19 with the best
value in bold (%).

Classifier Acc F1 PPV Spc Sen

InceptionV3 98.39 96.97 96.39 98.69 97.56

Xception 97.43 95.24 93.02 97.38 97.56

InceptionResNetV2 94.21 88.46 93.24 97.82 84.15

MobileNet 98.39 97.01 95.29 98.25 98.78

VGG16 98.71 97.59 96.43 98.69 98.78

DenseNet169 98.07 96.39 95.24 98.25 97.56

NasNetLarge 96.14 92.68 92.68 97.38 92.68

DenseNet121 95.50 91.14 94.73 98.25 87.81

Table 6: Performance of the best CNN on dataset prepared by [21]
(%).

Acc F1 PPV Spc Sen

COVID-19 97.43 95.24 93.02 97.38 97.56

Healthy 96.77 95.76 92.62 95.43 99.12

Viral pneumonia 96.14 95.76 100 100 89.56

Overall 96.79 95.17 95.22 97.60 95.42
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(COVID-Net) that achieved 93.3% accuracy in the classifica-
tion of three categories (healthy, non-COVID-19 pneumo-
nia, and COVID-19). A CNN model called DarkNet was
proposed by [13] and achieved a performance rate of
98.08% and 87.02% for two and three classes, respectively.
Khan et al. [22] proposed a CoroNet model to classify CXR
images that managed to achieve an accuracy of 99% and
95% for 2-class and 3-class classification tasks, respectively,
on a dataset containing 310 COVID-19, 657 pneumonia,
and 284 healthy CXR images. Toraman et al. [38] proposed
a convolutional CapsNet for detecting COVID-19 by using
CXRs with capsule networks. Their proposed method
achieved an accuracy of 97.24% and 84.22% for binary and
multiclasses, respectively. The transfer learning technique
was used in [21] with image augmentation to train and vali-
date several pretrained deep CNNs. Their proposed method
achieved an accuracy of 97.94% for DenseNet201 with image
augmentation and 97.74% for CheXNet without image
augmentation.

Our best-performing CNN was also tested on another
dataset prepared by Chowdhury et al. [21] to verify its gener-
alizability and robustness further. The dataset contains 1341
healthy, 1345 non-COVID viral pneumonia, and 423
COVID-19 CXR images. All the images used are from the

same source as the dataset used in this study. Our method
obtained an accuracy of over 96% on this dataset after train-
ing, as outlined in Table 6.

Table 7 shows the comparison between the method pro-
posed in this study and the current classification method of
COVID-19, non-COVID viral pneumonia, and healthy
CXR images. Each index in Table 7 was directly taken from
their original source papers, in view of the fact that their data-
sets were either ever-growing or not publicly available.
Meanwhile, as different models use different datasets, com-
parisons between different researches are made more diffi-
cult. Nevertheless, our method was characterized by a fast
and smooth execution, though it was trained on a relatively
large dataset. The results demonstrate that the approach sug-
gested by our research generally worked better. Performance
was improved by conducting several experiments on the
CXR dataset to identify which layer extracted the best fea-
tures for the detection of COVID-19, to obtain the best
results.

Although Table 7 shows that a better performance value
was achieved in [21], our result remains acceptable due to
the fact that image augmentation was performed in [21] to
achieve this value, while 95.19% was obtained without image
augmentation.
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Figure 7: Confusion matrix of (a) DenseNet169 and (b) InceptionV3.

Table 7: General comparison of the best CNN obtained with state-of-the-art method.

Study Method used Database size Acc%

[10] VGG-19 224 COVID-19, 504 healthy, and 700 pneumonia 93.48

[10] MobileNet v2 224 COVID-19, 504 healthy, and 700 pneumonia 94.72

[21] DenseNet201 423 COVID-19, 1341 healthy, and 1345 viral pneumonia 97.94

[38] CapsNet 231 COVID-19, 1050 healthy, and 1050 pneumonia 84.22

[37] COVID-Net 358 COVID-19, 8066 healthy, and 5538 pneumonia 93.3

[13] DarkCOVIDNet 157 COVID-19, 500 healthy, and 500 pneumonia 87.02

[22] CoroNet 157 COVID-19, 500 healthy, and 500 pneumonia [13] 90.21

[22] CoroNet 284 COVID-19, 310 healthy, and 657 pneumonia 95

Our work VGG16
423 COVID-19, 1341 healthy, and 1345 viral pneumonia [21] 96.79

1200 COVID-19, 1341 healthy, and 1345 viral pneumonia 98.29
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The promising deep learning models used for the detec-
tion of COVID-19 from radiography images indicate that
deep learning likely still has untapped potential and can pos-
sibly play a more significant role in fighting this pandemic.
There is definitely still room for improvement, through other
processes such as increasing the number of images and
implementing preprocessing techniques (i.e., data augmenta-
tion and/or image enhancement).

5. Conclusions

In this paper, different pretrained deep learning networks
were applied to identify the best deep learning technique in
terms of extracting the various COVID-19 manifestations.
Many experiments were conducted using the CXR dataset
to recognize which layer is able to extract the best features
to obtain the best performance. It was observed that deep
networks performed well in classifying COVID-19, healthy,
and viral pneumonia CXR images—especially the VGG16
and MobileNet networks, which surpassed other networks
in all metrics. The results also showed the superiority of
VGG16, MobileNet, DenseNet169, and InceptionV3 in iden-
tifying COVID-19 CXR images with a high sensitivity and
accuracy. However, excellence in high performance
remained besides VGG16 with high precision. The classifica-
tion accuracy, F1 score, precision, specificity, and sensitivity
of COVID-19 were 98.72%, 97.59%, 96.43%, 98.7%, and
98.78%, respectively. This study demonstrated that deep
learning with X-ray imaging might be able to extract signifi-
cant biological markers that are related to the COVID-19
disease.

However, this study does have its shortcomings. In par-
ticular, a more detailed analysis requires a larger amount of
patient data, especially COVID-19 data. After all, effective
deep learning models are usually trained on more than a mil-
lion images, a number that is difficult to obtain in the medical
domain. Besides, there is a possibility that training deep neu-
ral networks on limited dataset results in overfitting and hin-
ders its generalization. Visual ablation studies can be
performed along with deep transfer learning, which will sig-
nificantly improve the detection of COVID-19 manifesta-
tions in the CXR images.

Data Availability

All datasets used in the experiments were obtained from J. C.
Monteral (2020) COVID Chest X-ray Database (https://
github.com/ieee8023/covid-chestxray-dataset) and COVID-
19 Radiography Database (https://www.kaggle.com/
tawsifurrahman/covid19-radiography-database).
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