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Abstract

Background: COVID-19 has mutation capability, and there are no specific drug therapies that are available to fight
or inhibit the proteins of this virus. The present study aims to investigate the binding affinity of the bioactive and
synthetic compounds with the main protease (Mpro) enzymes and angiotensin-converting enzyme 2 (ACE 2) by
computational approach. PASS prediction, pharmacokinetics, and toxicological properties prediction studies were
performed through the Google PASS prediction and Swiss ADME/T website. Besides, molecular docking studies
were accomplished by BIOVIA Discovery Studio 2020, UCSF Chimera, and PyRx autodock vina.

Results: The docking scores were inferred and the selected compounds showed results varying from —3.2 to —9.8
(kcal/mol). Theaflavin scored the highest docking score to the 5REB, 6VW1, and 1R42 enzymes and showed the
binding affinity as —6.3 kcal/mol, —9.8 kcal/mol, and —8.6 kcal/mol, respectively. Again, kaempferol showed the best
binding affinity to the 7BQY (—7.1 kcal/mol) and 6Y2FB (—6.6 kcal/mol) enzymes. All the chemical constituents
showed better probability in action in pass prediction analysis. Besides, no ligands (except theaflavin) have any
conflict with Lipinski’s rules of five, which authorized the drug probability of these ligands.

Conclusion: Therefore, the selected compounds could be considered a potential herbal treatment source against
SARS-CoV-2.
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Background

According to the WHO (World Health Organization),
SARS-CoV-2 is now a pandemic crisis. It first appeared
in the Wuhan province of China on 31 December 2019,
and spread rapidly in the different parts of the world.
Till 30 April 2021, there are 151,837,341 confirmed
cases of 2019-nCoV infection, with 3,188,507 deaths
found around the globe. The causative agent was identi-
fied from throat swab samples conducted by the Chinese
Center for Disease Control and Prevention (CCDC) on 7
January 2020, and was subsequently named severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2). The
disease was named COVID-19 by the WHO [1]. Most
SARS-CoV-2 infected patients are seen with symptoms
such as dry cough, sore throat, and fever. The majority
of cases have spontaneously resolved. However, some
have developed various fatal complications, including
organ failure, septic shock, pulmonary edema, severe
pneumonia, and acute respiratory distress syndrome
(ARDS) [2]. WHO declared the Chinese outbreak of
COVID-19 to be a public health emergency of inter-
national concern, posing a high risk to countries with
vulnerable health systems on 30 January 2020. The
emergency committee has stated that the spread of
COVID-19 may be interrupted by early detection, isola-
tion, prompt treatment, and the implementation of a ro-
bust system to trace contacts [3].

Coronaviruses belong to the Coronaviridae family in
the Nidovirales order. Corona contains crown-like spikes
on the outer surface of the virus; thus, it was named cor-
onavirus. Coronaviruses are minute in size (65-125 nm
in diameter) and contain a single-stranded RNA as a nu-
cleic material, varying in length from 26 to 32 kbs. The
subgroups of the coronaviruses family are alpha (a), beta
(B), gamma (y), and delta (5) coronavirus [4]. SARS-
CoV-2 fits the beta Coronavirus group [5]. COVID-19
(SARS-CoV-2) is composed of a spike protein (S), a
membrane glycoprotein (M), a hemagglutinin-esterase
dimer (HE), an envelope protein (E), a nucleocapsid pro-
tein (N), and an RNA. Spike glycoproteins are composed
of two subunits (S1 and S2). Homotrimers of S proteins
compose the spikes on the viral surface, guiding the link
to host receptors [5, 6]. Nucleocapsid protein (N) binds
in vitro to RNA and is heavily phosphorylated. N protein
binds with the viral genome in a bead on a string type
conformation, and E protein is found in small quantities
within the virus, whereas the most abundant structural
protein is the M protein. This M protein contains no
signal sequence and is present in the virion as a dimer.
HE is present in a subset of beta coronaviruses and
binds sialic acids on surface glycoproteins [7]. Currently,
no specific therapies for SARS-CoV-2 are available and
investigations regarding the treatment of SARS-CoV-2
are lacking [8]. The viral genome also encodes
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nonstructural proteins which can be potential drug tar-
gets, including RNA-dependent RNA polymerase
(RdRp), CoV main protease (3CLpro), and papain-like
protease (PLpro) [9, 10].

SARS-CoV-2 (2019-nCoV) outbreak has become a glo-
bal pandemic that has raised the concern of the scientific
community to design and discover a definitive cure for
this deadly virus. Research institutions are accelerating
the discovery of vaccines and therapies for the SARS-
CoV-2. During the epidemic and pandemic outbreak of
new viral pathogens, the conventional method of devel-
oping drugs and vaccination is not possible to control as
it is a time-consuming process [11]. Consequently, the
rapid approach based on in silico informatics has be-
come very popular with recent advances in sequencing
many pathogen genomes and protein sequence databases
[12]. The steady rise of corona patient’s with high mor-
tality rate reinforces the urgency to produce a safe and
efficient vaccine. The pharmacological effect of phyto-
chemicals can be adequately explained by the use of vir-
tual screening [13]. Methods and resources like
computer-aided drug discovery (CADD) is also an effect-
ive way to design new pharmaceutical products. An ef-
fective molecular interaction through molecular docking
can activate the native ligand to detect the three-
dimensional binding site of the enzyme and link to the
relationship to the accompanying chemical compounds
[14]. Taking the truth into account, a molecular docking
study has been conducted to explain the phytoconstitu-
ents binding affinity with the five SARS-CoV-2 recep-
tors. In this work, pass prediction, molecular docking,
and pharmacokinetic regarding Lipinski’s rules were
checked for twelve ligands. To investigate the binding af-
finity of the ligands and SARS-CoV-2’s receptors, the li-
gands were docked with the main protease and human
angiotensin-converting enzyme 2 (ACE2) receptors of
the SARS-CoV-2 virus owing to the best-characterized
target among the SARS-CoV-2. Mainly, the binding
interaction of caffeine, theaflavin, achyranthine, betaine,
catechin, kaempferol, limonene, sabinene, piperine, pi-
nene, favipiravir, and hydroxychloroquine (Fig. 1) against
the proteins of COVID-19 have been screened by imply-
ing molecular docking simulations. The main protease
(Mpro) (PDB ID: 7BQY, 6Y2F, 5REB) and human
angiotensin-converting enzyme 2 (PDB ID: 6VW]I,
1R42) were used as the target of the ligand interaction
(Fig. 2). It was also previously reported that polyphenols,
flavonoids, tannin, and derivate have fighting endeavors
against many virions [15-17]. These components were
chosen based on their therapeutic properties to bind
with the SARS-CoV-2 proteins. Again, the mechanism
of action of the established antiviral compounds like
favipiravir and hydroxychloroquine is not fully uncov-
ered. These compounds have the probable capacity to
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Fig. 1 3D chemical structure of selected ligands (caffeine, theaflavin, achyranthine, betaine, catechin, kaempferol, limonene, sabinene, piperine,

bind with the pockets of SARS-CoV-2; the study was en-
couraged to investigate the potential binding affinity of
selected proteins with the previously selected ligands.

Methods

Bioactive constituents from black tea (Camellia sinensis L.)
Tea (Camellia sinensis L.) is the second most used non-
alcoholic beverage in the world after water. It has been
consumed traditionally for about 5000 years. Black tea
has 3 to 6% thearubigin, theaflavin, phenolics, and cat-
echin. Thearubigins of tea are responsible for the deep
red color of the tea, while theaflavins are accountable for
the astringency and red/orange color of the tea. In black
tea, the highest number of phenolic pigments in black
tea is thearubigin. Theaflavins individually claimed to
show antiviral potency [18]. Caffeine is one of the most
popular natural stimulants which can be found in tea,
cacao, and coffee [19]. A cup of black tea may contain
47 to 90 mg of caffeine [20]. Caffeine seems to have a
strong behavioral effect which is widely used as CNS
stimulants. The phenolic component of tea was reported
to have antiviral efficacy over adenovirus [21, 22].

Bioactive constituents from prickly chaff (Achyranthes
aspera L.)

The herb is well known owing to have anti-
inflammatory, antidot (snake and scorpion bite), car-
minative, gastric, blood purifier, and diuretic effects. De-
coction of the entire plant has been used in ascites,
eczema, gastritis, skin rashes, and boils, and juice of the
leaves often used to treat toothache [23]. The constitu-
ents of this pant are also reported to have antiviral

properties [24, 25]. Though the entire plant ash has been
used in herbal medicines for asthma, gaseous distention,
urinary bladder stones, gastritis, and cough, honey ash
can also be used to alleviate cough [26]. Achyranthine
and betaine are abundantly found in A. aspera [27].
Betaine (BET) is known to protect the liver from toxi-
cants as an indigenous drug. Betaine inhibits hepatitis B
viruses with the advantages of reducing resistance to
interferon and lamivudine [28].

Bioactive constituents from catechu (Areca catechu Linn.)
Areca nut (Areca catechu) is frequently used in betel
quid, often consumed in betel and lime. Betel quid
chewing seems to be extremely common, particularly in
many countries in Southeast Asia [19]. Areca catechu is
one of 54 recognized alkaloid-containing species in the
Areca [29]. Several active ingredients such as arecatan-
nin B1, procyanidins, and seed extracts have shown HIV
enzyme inhibitory function. Alkaloids (0.5 %), phenol
(31.1%), fiber (10.8%), fat (14.0%), and polysaccharide
(18.7%) are key elements of the fruits of Areca catechu
L. Alkaloids and polyphenols are the primary compo-
nents in flower [30]. In Areca catechu, catechin and
kaempferol were identified previously [31].

Bioactive constituents from lemon (Citrus limon)

Citrus limon is a flowing plant in the Rutaceae family
[32]. The compounds of Citrus plants are the most com-
mon essential oil sources used in food products and
medicines. Lemon seems to be very abundant in natural
substances such as flavonoids, citric acid, minerals, as-
corbic acid, and essential oils. Although modern citrus
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Fig. 2 3D structure of the pure receptors (5REB, 6VW1, 1R42, 7BQY, and 6Y2F) of SAR-CoV-2
.

cultivars were primarily designed for fresh use, their nat-
urally drawn constituents, such as the flavonoids and
phenolic compound, contributed to their use throughout
food technology and pharmacological research [33].
Valuable academic publications concentrate on lemon
fruit extract, juice, and essential oil, which are becoming
much more comprehensive in pharmacological terms.
These reports claim antiviral, antibacterial, anti-cancer,
anti-inflammatory, and cardioprotective activities of
lemon [34]. Sabinene (15.9%) and limonene (31.5%), are
the major constituents of the citrus lemon [35]. Citrus

flavonoids exert several pharmacological potentialities,
including antiviral action [33].

Bioactive constituents from black pepper (Piper nigrum)

Among the kitchen spices, pepper is one of the most com-
monly used spices around the globe. Pepper contains pip-
erine and due to the pungent odor of the piperine, it has
taken place as a kitchen spice. It is commonly used and
widely permissible in various western medicinal systems,
such as Unani and Ayurvedic [36]. Many illnesses, includ-
ing antihypertensives [37, 38], antiplatelets, antioxidant,
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analgesic, antitumor, antithyroid, anticonvulsant [39], anti-
bacterial, antidiarrheal, antidepressants, antispasmodic,
immunomodulatory, anti-inflammatory, hepatoprotective,
and antifungal have already been treated by this plant
[37]. As a result, studies on its derivative synthesis, SAR
modification and biological tests are underway and this has
encouraged researchers to keep investigating it [40]. Piperine
is also used in both conventional Chinese and Indian therap-
ies. In influenza, nausea, rheumatoid arthritis, fever, and
chills, piperine is used extensively [41]. Again, the previous
studies reported that pinene has a strong suppression cap-
acity for the herpes simplex virus [42]. It has been used for
centuries to manufacture aromas and fragrances and demon-
strates fungicidal activity. Various pharmacological activities,
including natural insecticide, are attributed to pinenes. The
studies showed strong antiviral potency of pinens against in-
fectious bronchitis virus [42].

Synthetic bioactive compounds (favipiravir and
hydroxychloroquine)

Favipiravir and hydroxychloroquine are under examin-
ation for the treatment of SARS-CoV-2, but the antiviral
efficacy of these drugs is not apparent [43]. Favipiravir is
a nucleoside precursor approved for the treatment of
pandemic influenza in Japan [44]. However, its antiviral
effect in patients with COVID-19 needs demanding data
to support [45]. Hydroxychloroquine is a safer analog of
chloroquine that has fewer concerns about drug-drug in-
teractions [46]. Over one research, patients with com-
bined treatment had lower viral loads in contrast to
patients with a similar viral load-receiving hydroxychlor-
oquine alone [47]. The suppression of cytokine release
has been accelerated by downregulating the inflamma-
tory effect of the drug [48]. Inhibition of cytokines re-
duces the elevation of chemotaxin of
polymorphonuclear leucocytes in the lungs, which finally
decreases the orientation of reactive oxygen [49].

Protein targets

Several approaches have been taken to establish CoV
vaccines, most of which aim against spikes (S) or S-
proteins, as they are the primary adjuvant to collapse
antibodies. The main protease (M-pro) enzyme has been
described as one of the primary goals for producing anti-
viral vaccines or drugs [50]. M-pro is present in the
SARS-CoV-2’s polyprotein ORFlab and is important for
virus replication. This protease participates in the degen-
eration of polyprotein [51]. Except for a residue
(Ala285Thr), the association of the M-pro enzyme has
been highly identified in the SARS-CoV virus [52]. In
addition, two subunits S1 and S2, are found in the S pro-
tein molecule. Again, the ACE-2 receptor is linked to
the S2 subunit and within this receptor, the S2 subunit
forms fusion between the membrane of the host cell and
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the virus. As a result, the viral RNA can access the cyto-
plasm of the viral cell and replicate again [53]. Vaccine
regarding S protein can also trigger antibodies that ob-
struct the binds of a viral receptor and even the uncoat-
ing of the viral genome in the cytoplasm. The S protein-
based vaccine will play a major role in inducing protect-
ive immunity from SARS-CoV infection by neutralizing
the T cell responses and triggering antibodies [53].
Based on the full-length genome phylogenetic study,
SARS-CoV-2 has an almost 89% similarity with the
SARS-CoV [54]. This was the foundation for the initial
development of SARS-CoV-2 and indicated that the re-
ceptor of SARS-CoV-2 may be consistent with the re-
ceptor of SARS-CoV (ACE2) [55]. SARS-CoV-2 is
reported to wuse angiotensin-converting enzyme 2
(ACE2) receptors to penetrate the target cells [56].
Therefore, any agent increasing ACE2 production may
be anticipated to improve its susceptibility to intense
COVID-19 by enhancing viral cellular invasion. How-
ever, biochemically, Angiotensin II is converted to angio-
tensin (1-7), defending lung damage by reducing the
ACE2 receptor and vasodilation [57]. The patients with
COVID-19 and co-morbidities such as hypertension,
cardiovascular disorder, and diabetes that often have
angiotensin-converting enzyme inhibitors ACEIs or
angiotensin receptor blockers ARBs, there is often
contradictory evidence about continuity or discontinu-
ation of medications inhibiting the renin-angiotensin al-
dosterone system (RAAS), including inhibitors of
angiotensin-converting enzyme (ACEIs) and angiotensin
receptor blockers (ARBs) [58]. 5REB [59], 7BQY [60],
and 6Y2F [61] have been previously denoted as main
protease (Mpro) of SARS-CoV-2, and 6VW1 [62] and
1R42 [63] have been denoted as human angiotensin-
converting enzyme 2 (ACE2). Taking all these consider-
ations into account, five proteins (5REB, 7BQY, 6Y2F,
6VW1, 1R42) have been selected to comply with the
binding interactions between proteins and ligands.

Pass prediction

Caffeine, theaflavin, achyranthine, betaine, catechin,
kaempferol, limonene, sabinene, piperine, pinene, favi-
piravir, and hydroxychloroquine were allowed to predict
the antiviral activity by using the PASS online server
[64]. PASS online server predicts the activity as probable
of activity (Pa) and probable inactivity (Pi).

Molecular analysis: compounds and target proteins

Three-dimensional structures of the main protease in
complex (hydrolase receptor) (PDB: 5REB) [65], the
structure of SARS-CoV-2 chimeric receptor-binding do-
main complexed with its human receptor ACE2 (PDB:
6VW1) [66], native human angiotensin-converting
enzyme-related carboxypeptidase (ACE2) (PDB: 1R42)
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[67], the crystal structure of the COVID-19 main protease
(PDB: 7BQY) [68], and crystal structure (monoclinic form)
of the COVID-19 main protease were downloaded in PDB
format. Besides, the chemical compounds have been se-
lected based on the bioactive dietary compounds and syn-
thetic compounds (caffeine, theaflavin, achyranthine,
betaine, catechin, kaempferol, limonene, sabinene, piper-
ine, pinene, favipiravir, and hydroxychloroquine) including
antiviral properties. The compounds have been derived
from the PubChem database (https://pubchem.ncbi.nlm.
nih.gov/) [69] in SDF format.

Molecular analysis: preparation of target protein and
compounds

The ligands have been imported in 2DSDF format; hereafter,
the ligands have been minimized and converted to pdbqt
format across the PyRx tools to find the best hit in these tar-
gets. The protein structure was created with Discovery Stu-
dio and UCSF Chimera. Default settings in the PyRx from
the MGL tools [70] have been used for the virtual screening.
Through the Discovery Studio 2020, all water and the het-
eroatom were eliminated from proteins. A combination of
non-polar hydrogen and the Gasteiger charge was used to
assemble proteins. Besides, extra solvents were deleted, sele-
nomethionine (MSE), methionine (MET), bromo UMP to
UMP (U), methylselenyl-dUMP (UMS), to UMP (U),
methylselenyl-dCMP (CSL) to CMP (C) have been marked
to keep only highest occupancy. Again, the incomplete side
chains were replaced by Dunbrack 2010 rotomer library.
Furthermore, all proteins have been lowered to the least en-
ergy level by keeping the residues in AMBER ff14sB and
Gasteiger mode in UCSF Chimera [71].

Molecular analysis: molecular docking

For the protein-ligand binding operation of the selected
protein-ligand complexes, PyRx Autodock Vina was used
[26]. A semi-flexible docking system has been applied to
perform the docking research. A semi-flexible docking
system has been applied to perform the docking re-
search. The phytochemicals were translated into PDBQT
formats with PyRx AutoDock tools. The rigidity of pro-
teins and ligands was retained for this analysis. Ligand
molecules had given the freedom for 10 degrees. Auto-
Dock determines the molecules to format pdbqt, box
style, grid box formation, etc. The grid box with an ac-
tive position was built in the middle of the box. BIOVIA
Discovery Studio Visualizer 2020 [72] was eventually ac-
celerated to evaluate the docking sites for the possible
linking approaches.

Determination of pharmacokinetic parameters by Swiss
ADME

Lipinski’s rule evaluates the different descriptors which
are important for drug design. According to Lipinski’s
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rule, an orally active drug should fulfill the following
drug-likeness parameters to demonstrate their pharma-
ceutical fidelity such as (i) molecular mass less than 500
Daltons, (ii) no more than 5 H-bond donors, (iii) no
more than 10 H-bond acceptors, and (iv) O/W partition
coefficient log P not greater than 5. If the molecule vio-
lates more than 3 descriptor parameters, it will not fit
into the criteria of drug likeliness, and it is not consid-
ered to proceed with drug discovery.

Results

Pass prediction of selected ligands

The results of the PASS prediction have been presented
in Table 1. The study revealed that, among the four
compounds, favipiravir and theaflavin retained the high-
est drug probability Pa (0.662 and 0.609).

Molecular docking study for SARS-CoV-2 inhibition

In the case of the antiviral docking study, the selected
compounds were docked against the SARS-CoV-2’s main
protease (PDB: 5REB, 7BQY, 6Y2F), and angiotensin-
converting enzyme 2 (PDB: 6VW1, 1R42) enzymes and
displayed docking scores ranging from -3.2 to —9.8 (kcal/
mol). The docking score and the best interaction figure
have been shown in Table 2 and Fig. 3. From the findings,
it was observed that the compound theaflavin exposed the
highest score against PDB ID: 5REB, 6VW1, and 1R42,
followed by kaempferol attained the highest binding affin-
ity with the pockets of the main protease enzyme (Mpro)
(7BQY and 6Y2F). The ranking of docking score for anti-
viral (SARS-CoV-2) effect against PDB ID: 5REB is as fol-
lows: theaflavin > kaempferol > favipiravir >
hydroxychloroquine > caffeine > limonene > sabinene >
achyranthine > betaine. Docking observed docking score

Table 2 Docking score of the selected dietary bioactive and
synthetic compounds

Compounds Docking score

5REB 6VW1 1R42 7BQY 6Y2F
Caffeine 5.1 -4.8 -57 - -50
Theaflavin -6.3 -9.8 -8.6 -6.7 —64
Achyranthine —44 —4.1 -40 —42 -47
Betaine =35 -32 -32 -34 =35
Catechin - —6.7 -6.9 -7.0 —6.5
Kaempferol —6.2 -7.0 —6.8 -7.1 —6.6
Limonene -4.6 —4.8 —4.7 —44 =52
Sabinene —45 —45 —48 —4.1 —4.7
Piperine - -6.8 -7.0 -6.5 =71
Pinene - —4.5 —45 —44 —46
Favipiravir —54 —4.7 -52 -55 -53
Hydroxychloroquine -54 -56 -58 -57 -6.0
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Table 3 Absorption, distribution, metabolism, excretion, and toxicological properties of the selected compounds

Compounds Molecular Weight (M.W) (g/mol) HBD HBA log P (o/w) HIA Carcinogenicity (binary) Violation score
Caffeine 194.19 0 6 -1.03 09824  0.9429 0
Theaflavin 564.50 12 9 2.21 09836 09571 3
Achyranthine 129.16 1 2 0.02 09021 09571 0
Betaine 117.15 0 2 -1.56 09333 07316 0
Catechin 290.27 5 6 1.55 09887 09286 0
Kaempferol 286.24 4 6 228 09881 06985 0
Limonene 136.24 0 0 331 09692  0.5856 0
Sabinene 136.24 0 0 3.00 09828  0.7286 0
Piperine 285.34 0 3 3.00 09639 09198 0
Pinene 136.24 0 0 3.14 09677  0.7286 0
Favipiravir 157.10 2 3 -0.99 09612 09286 0
Hydroxychloroquine  335.88 2 4 378 0.9934  0.8429 0

HBD hydrogen bond donor, HBA hydrogen bond acceptor, LogP lipophilicity, HIA human intestinal absorption

and with the selected components and PDB ID: 6VW1 re-
ceptor, the scores were observed: theaflavin (-9.8 kcal/
mol), kaempferol (7.0 kcal/mol), piperine (-6.8 kcal/mol),
catechin (-6.7 kcal/mol), hydroxychloroquine (5.4 kcal/
mol), limonene (4.8 kcal/mol), caffeine (4.8 kcal/mol), favi-
piravir (4.7 kcal/mol), sabinene (4.5 kcal/mol), pinene
(4.5 kcal/mol), achyranthine (4.1 kcal/mol), and betaine
(3.2 kcal/mol) and respectively. Theaflavin yields the high-
est docking score against the 1R42 receptor. Theaflavin
binds to the pocket of the 1R42 receptor through a series
of bonds: conventional hydrogen bond (arg518, thr371),
Pi-anion (glu406, glu375), and Pi-alkyl (leu370). The order
of docking score against PDB ID: 7BQY is as follows:
kaempferol > catechin > theaflavin > piperine > hydroxy-
chloroquine > favipiravir > limonene > pinene > achyr-
anthine > sabinene > betaine. Caffeine does not conjugate
and neither oriented any docking to this ACE2 receptor.
Again, kaempferol also exerted the best docking score as
well as the best binding affinity to the main protease en-
zyme (PDB: 6Y2F). Kaempferol obtained the highest bind-
ing score via interaction of the amino acid series (asnl158,
phe294, pro293, and thr292) of the protein.

Pharmacokinetics (ADME) and toxicological properties
prediction

The study was performed to check the pharmacokin-
etics and the toxicological properties of the caffeine,
achyranthine, betaine, catechin, kaempferol, limonene,
sabinene, and sabinene, piperine, pinene, favipiravir,
and hydroxychloroquine. The pharmacokinetics and
the toxicological properties of the selected ligands for
the antiviral (SAR-CoV-SAR) efficacy have been
shown in Table 3. The study revealed no violation of
Lipinski’s five rules and the ligands does not contain
carcinogens.

Discussion

Molecular docking and computer-aided drug design
(CADD) are vital tools in structural molecular biology.
This tool contributes to predicting the binding mode of
active compounds against the targeted proteins [73].
Additionally, it is used to comprehend the possible mo-
lecular mechanism of actions of various pharmacological
activities [74]. The molecular docking was also per-
formed to correlate with our current research outcomes
and better understand the molecular mechanism [72]. In
this study, twelve bioactive and synthetic compounds
were examined against five targeted receptors or en-
zymes. The ideal antiviral drug candidate should have
low toxicity, appropriate pharmacokinetics, and prefera-
bly a large spectrum of activity. Many adjuvants failed to
be clinically used due to the lack of one or more of these
properties [75]. In this study, 10 bioactive dietary con-
stituents have been selected owing to their wide avail-
ability with antiviral efficacy. Besides, favipiravir and
hydroxychloroquine have been pronounced to antiviral
efficacy in previous investigations, though the investiga-
tions were not successfully proven [76-79]. The search
for effective inhibitors of 5REB, 6Y2F, 6VW1, 1R42, and
7BQY has been the focus of drug discovery efforts and
has led to the identification of some promising leads
(caffeine, theaflavin, achyranthine, betaine, catechin,
kaempferol, limonene, sabinene, piperine, pinene, favi-
piravir, and hydroxychloroquine) have shown good in-
hibitory activity on selective enzymes. Theaflavin yielded
highest binding score among all the selected com-
pounds. It scored —6.3, -9.8, and -8.6 (kcal/mol) upon it
was docked with the 5REB, 6VW1, and 1R42 enzymes.
Theaflavin binds to the pocket of 6VW1 receptor
through a series of bonds: conventional hydrogen bond
(lys541, his535, gly537, gIn531, glu527, leu539, gly537,
glu430, gly536), Pi-alkyl (lys534), unfavorable donor
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(glu536, asn526), and resulted best binding affinity
among the selected compounds. Besides, kaemperol
showed highest binding affinity to the rest of the recep-
tors (Fig. 3 and Table 2).

Favipiravir is one of the antiviral drugs tested against
several SARS-CoV-2 envelope proteins [80]. Favipiravir,
a pyrazine carboxamide derivative molecule, works as an
antiviral molecule that is a prodrug against RNA viruses.
This antiviral activity is attenuated by the competitive
nature of favipiravir with purine nucleoside rather than
pyrimidine nucleosides. Madin Darby Canine Kidney
(MDCK) cell treated with favipiravir during in vitro
assay provided favipiravir ribofuranosyl-5’-triphosphate
(favipiravir-RTP), favipiravir ribofuranose (favipiravir-R),
and favipiravir ribofuranosyl-5’'-monophosphate (favipir-
avir-RMP) in HPLC analysis as metabolites among
which chemically synthesized favipiravir-RTP showed
positive outcome to inhibit the viral RNA polymerase
activity in concentrations ranging from nanomolar to
micromolar. This assay infers the projection that favipir-
avir, a prodrug, emits the antiviral property when it is
intra-cellularly phosphoribosylated to be an active form,
favipiravir-RTP to halt RNA polymerase. When a single
molecule of favipiravir-RTP is efficiently incorporated
into a nascent RNA strand, a partial inhibition of exten-
sion in viral RNA is observed and when double incorp-
oration takes place, complete inhibition results in [81].

Despite not being an elucidated absolute mechanism
of action of hydroxychloroquine against coronavirus,
several mechanisms to elucidate its antiviral property are
already proposed. Being a weekly basic drug, hydroxy-
chloroquine upraises the pH within cells and at the cel-
lular membrane, consequently inhibiting the virus’s
ability to fuse onto the cell membrane and enter host
cells. Another proposed hydroxychloroquine mechanism
includes inhibition of DNA and RNA synthesis along
with immunomodulating and anti-inflammatory effects
[82]. Hydroxychloroquine also infers the constraint of
glycosylation of viral proteins, virus assembly, new virus
particle transport, virus release, and other processes to
achieve its antiviral effects [83]. Docking studies indi-
cated that the binding interaction of selected bioactive
and synthetic constituents with 5REB, 6Y2F, 6VWI1,
1R42, and 7BQY had been concluded that the selected
constituents might, in part, be responsible for the anti-
viral activity against SARS-CoV-2 through interactions
with these target enzyme or receptor.

Conclusions

Theaflavin and kaempferol exert a high binding affinity
to the pockets of SARS-CoV-2 proteins. Interaction of
caffeine, theaflavin, achyranthine, betaine, catechin,
kaempferol, limonene, sabinene, piperine, pinene, favi-
piravir, and hydroxychloroquine with main protease and
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angiotensin-converting enzyme 2 (ACE-2) proteins is
ensured by molecular docking, which accredits the asser-
tion of remarkable antiviral properties of these test moi-
eties. Owing to design drugs for anti-COVID-19, this is
just a primary investigation and further investigations
are suggested to confirm the capacity of the ligands.
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