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CT has become widely used for a variety of diagnos-
tic tasks since its integration in clinical workflows, 

with 219 CT scans per 1000 inhabitants in the United 
States in 2019 and with rising trends (1). Because the 
radiation from CT imaging is comparatively high and is 
the main source of human-made radiation exposure (2), 
CT imaging requires careful planning to limit radiation 
exposure. The delimitation of the scan range is crucial 
because radiation dose is dependent on the length of the 
CT examination.

The examination range is typically delimited manually 
by a radiographer in the CT topogram (also known as scout 
view), which is a digital overview image acquired with low 
radiation exposure in anteroposterior and/or lateral orien-
tation. Whereas unnecessarily large CT examinations can 
result in increased radiation exposure, an examination that 
does not completely cover the area of interest may not de-
pict all pathologic abnormalities and could therefore result 
in the need for a second scan, which exposes the patient to 
yet more radiation. Therefore, radiographers tend toward a 
generous delimitation of the scan range, and recent studies 
reported overscanning in 23% to 95% of chest CT exami-
nations in clinical routine (3–5).

Because sufficient scan range delimitation is crucial and 
manual definition of the scan range is time-consuming 

and subject to high intra- and interreader variability (5), 
an automated definition of the scan range for CT imaging 
would be of great interest. Several challenges must be over-
come when computer algorithms are used for automated 
scan range delimitation. Because topograms are obtained 
with a low radiation dose, these images are naturally noisy 
and of low contrast. In addition, in the presence of patho-
logic abnormalities (eg, pleural effusion and atelectasis), 
important anatomic markers such as the diaphragm are 
difficult or even impossible to delimit.

Deep learning methods recently produced excellent 
results in the field of medical imaging, with performances 
close to that of humans (6,7), thereby demonstrating that 
these methods can cope with obstacles such as noisy im-
age quality.

Therefore, our study aimed to develop and evaluate 
fully automatic scan range delimitation for routine chest 
CT by using deep learning.

Materials and Methods

Patients
Ethical approval for this retrospective study was granted 
by the local ethics committee (19–8999-BO), and in-
formed consent was waived.
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Purpose:  To develop and evaluate fully automatic scan range delimitation for chest CT by using deep learning.

Materials and Methods:  For this retrospective study, scan ranges were annotated by two expert radiologists in consensus in 1149 (mean 
age, 65 years 6 16 [standard deviation]; 595 male patients) chest CT topograms acquired between March 2002 and February 2019 
(350 with pleural effusion, 376 with atelectasis, 409 with neither, 14 with both). A conditional generative adversarial neural network 
was trained on 1000 randomly selected topograms to generate virtual scan range delimitations. On the remaining 149 topograms the 
software-based scan delimitations, scan lengths, and estimated radiation exposure were compared with those from clinical routine. For 
statistical analysis an equivalence test (two one-sided t tests) was used, with equivalence limits of 10 mm.

Results:  The software-based scan ranges were similar to the radiologists’ annotations, with a mean Dice score coefficient of 0.99 6 0.01 
and an absolute difference of 1.8 mm 6 1.9 and 3.3 mm 6 5.6 at the upper and lower boundary, respectively. An equivalence test 
indicated that both scan range delimitations were similar (P , .001). The software-based scan delimitation led to shorter scan ranges 
compared with those used in clinical routine (298.2 mm 6 32.7 vs 327.0 mm 6 42.0; P , .001), resulting in a lower simulated total 
radiation exposure (3.9 mSv 6 3.0 vs 4.2 mSv 6 3.3; P , .001).

Conclusion:  A conditional generative adversarial neural network was capable of automating scan range delimitation with high accuracy, 
potentially leading to shorter scan times and reduced radiation exposure.
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per boundary (anatomically superior) and 20 mm at the lower 
boundary (anatomically inferior). Therefore, every topogram 
had two annotations: one made by the radiographers in clinical 
routine, and one made by the two expert radiologists (Fig 2).

Software Development
From the 1149 annotated topograms, 1000 were randomly se-
lected for training the deep learning algorithm, whereas the re-
maining 149 datasets were preserved for subsequent testing of 
the performance of the final algorithm. Only the radiologists’ 
annotations were used to train the algorithm.

A conditional generative adversarial neural network (8), 
which is an image-to-image network, was trained. This network 
was chosen because it was shown to produce high-quality out-
put, is robust to train, and does not easily overfit. The training 
procedure followed best practices in machine learning. First, a 
fivefold cross-validation was applied to the training dataset to 
estimate the performance of the neural network by computing 
Dice scores. Then a final network was retrained with all train-
ing data, which was subsequently evaluated once on the holdout 
test dataset. More details regarding the training procedure are in 
Appendix E1 (supplement). All experiments were conducted on 
a workstation that was not connected to the network used for 
clinical routine. The network was developed using Python (ver-
sion 3.6) and PyTorch (version 1.0; pytorch.org) (11).

Evaluation of the Deep Learning Algorithm
By using a dataset of 149 patients (51 patients, pleural effusion; 
50 patients, atelectasis; and 48 patients, neither pleural effusion 
nor atelectasis), which had not been used to train the algorithm, 
the quality of the final model was evaluated in three ways.

First, a comparison of the software-generated scan ranges 
with the radiologists’ scan range annotations was performed be-
cause a high overlap between these would indicate a successful 
training of the deep learning algorithm. For this purpose, Dice 
scores measuring the relative overlap of the regions were calcu-
lated. Moreover, absolute differences between the annotated and 
the software-generated scan range boundaries and the resulting 
scan lengths were calculated and compared by using a Bland-
Altman–type analysis (12) and an equivalence test.

Second, the clinical usefulness of the final model was eval-
uated by comparing the software-generated scan ranges with 
the true lung boundaries (ground truth) within the acquired 
CT scan. For this assessment in all 149 CT scans, the sec-
tion position in which the tip of the lung was no longer vis-
ible and the section position in which the cost-diaphragmatic 
recesses were just no longer visible were recorded, whereby 
the specification was based on sections with a thickness of 
5 mm. A boundary at either end was considered correct if it 
showed larger than necessary margins because a larger scan 
range would not have an effect on diagnosis. However, if a 
boundary was too short and thus parts of the lung were not 
depicted in the CT scan, the range was considered erroneous. 
Here, a boundary was considered too short if it was shorter 
than at least 10 mm of the ground truth boundaries, which 
corresponded to twice the section thickness of the CT scans.

Because pleural effusions and atelectasis are the conditions 
that most influence the ability to demarcate important anatomic 
markers in chest topograms, a single full-text search was per-
formed in our radiologic information system at the University 
Hospital Essen (Germany) to select CT reports containing the 
keywords “atelectasis” or “pleural effusion” or “no pleural effu-
sion and no atelectasis”. From this query, 1200 CT scans ac-
quired between March 2002 and February 2019 were randomly 
chosen and exported from the picture archiving and commu-
nication system in anonymized form. Patients were considered 
eligible and included if they were older than 18 years and if a 
topogram corresponding to the CT scan was available. Thereaf-
ter, images were checked by two radiologists in consensus regard-
ing whether each topogram covered the entire thorax from the 
base of the neck to below the diaphragm; topograms that did not 
fulfill this requirement were excluded (n = 51) (Fig 1). Together, 
these criteria resulted in a dataset of 1149 CT scans (mean age, 
65 years 6 16; 595 men), of which 350 showed pleural effusion, 
376 atelectasis, 409 neither pleural effusion nor atelectasis (but 
may show other pathologic abnormalities such as lung infiltrates 
or tumors), and 14 scans showed both pleural effusion and atel-
ectasis (Table 1).

Topogram Acquisition
The selected CT scans were performed on various Siemens CT 
scanners (Siemens Healthineers) (Table E1 [supplement]). All 
topograms were acquired in inspiration in anteroposterior di-
rection with a tube voltage of 120 kV and tube currents be-
tween 20 mA and 100 mA. The topograms were then exported 
as PNG files.

Scan Range Delimitation
The scan ranges previously delimited by the radiographers in 
the topograms were revised by using a custom-tailored soft-
ware developed in Python and corrected by two expert radi-
ologists (K.N. and M.S.K., with 15 and 3 years of experience, 
respectively) in consensus, whereby the aim was to limit the 
scan range from the apices of the lungs to just below the cos-
tophrenic recesses with a safety margin of 15 mm at the up-

Summary
Fully automatic scan range delimitation is possible in chest CT by 
using a trained conditional generative adversarial neural network.

Key Points
	n Fully automatic scan range delimitation at chest CT was feasible 

with high accuracy and showed excellent agreement with the de-
limitations made by two expert radiologists in consensus (mean 
Dice score coefficient, 0.99 6 0.01; mean absolute differences, 1.8 
and 3.3 mm at the upper and lower boundaries, respectively).

	n Software-based scan range delimitation led to shorter scan ranges 
compared with those of radiographers in clinical routine (298.2 
mm 6 32.7 vs 327.0 mm 6 42.0; P , .001).

	n When radiation dose was simulated with the scan ranges deter-
mined by the software and radiographers, the radiation doses were 
lower than that of radiographers (3.9 mSv 6 3.0 vs 4.2 mSv 6 
3.3; P , .001).

http://radiology-ai.rsna.org
http://pytorch.org
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topograms, subgroup analysis was 
performed in patients with pleu-
ral effusion, with atelectasis, or 
without either.

Robustness of the Neural 
Network
To assess the robustness of the 
trained neural network, each 
of the 149 scans was randomly 
deformed 10 times and evalu-
ated a second time by the neu-
ral network. Four basic types of 
deformations that are common 
in clinical routine were used: 
horizontal and vertical shifts 
(ranging between 210 and 10 
pixels), rescaling (25% to 5%), 
and adding Poisson noise. The 
differences between the imag-
ing ranges were calculated for 
the upper and lower scan range 
boundaries.

Estimation of Radiation Dose
A commercially available radiation dose 
tracking software (Radimetrics, version 2.9A; 

Bayer Healthcare) was used, as previously 
described, to calculate the effective dose as 
defined by International Commission on 
Radiological Protection publication 103 (25) 
of the acquired CT scans and to simulate the 
dose that would have resulted if the software-
based imaging boundaries had been used (4). 
In short, this software first matches a virtual 
phantom to the topogram of the patient and 
then uses Monte Carlo simulations to esti-
mate the organ doses and the effective dose 
(13). Because radiation exposure could be as-
sociated with the risk of thyroid cancer (14), 
the radiation dose to the thyroid gland was 
estimated in addition to the effective dose.

Statistical Analysis
The determination of a minimum sample size 
for a successful training of a neural network 
strongly depends on the complexity and qual-
ity of the data and the nature of the problem.

Unfortunately, to the authors’ knowl-
edge, there is no comprehensive theory that 
would determine a lower bound estimate 
of the sample size for a given problem. Al-

though initial steps are being taken in this direction (15), 
the problem is still not understood in its entirety (16). For 
example, the U-Net is able to produce segmentations with 
high accuracy even for training sets with only a few dozen 

Third, the scan ranges defined by the radiographers in clinical 
routine were compared with those of the neural network.

To understand whether the results depended on pathologic 
abnormalities masking important anatomic structures in the 

Figure 1:  Patient inclusion and exclusion flowchart. PACS = picture archiving and communication system.

Table 1: Demographics and Clinical Characteristics of the Study Patients

Characteristic All* Training Test

Patient characteristics
  No. of patients 1149 1000 149
  Mean patient age (y)† 65 (4–102) 65 (4–102) 67 (8–96)
  No. of men 595 (52) 509 (51) 86 (58)
Clinical characteristics
  Pleural effusion 350 (30.5) 299 (29.9) 51 (34.2)
  Atelectasis 376 (32.7) 326 (32.6) 50 (33.6)
  Pleural effusion and atel-

ectasis
14 (1.2) 14 (1.4) 0

  Neither pleural effusion nor 
atelectasis

409 (35.6) 361 (36.1) 48 (32.2)

Note.—Unless otherwise indicated, data are number of cases, with percentage in 
parentheses. The following are the mean age and proportion of men for each clinical 
group for all patients (n = 1149): pleural effusion, mean age, 67 years (age range, 
44–102 years), 182 (52%) men; atelectasis, mean age, 66 years (7–102 years), 212 
(56%) men; pleural effusion and atelectasis, mean age, 67 years (36–89 years), eight 
men (57%); and neither plural effusion or atelectasis, mean age, 62 years (8–95 
years), 193 (47%) men.
* A x2 test indicated that there is no difference in sex between the whole group and 
each of the subgroups (P . .10 in all cases) within all 1149 patients. A t test indi-
cated that there is no difference in age between the training and the test set (P . .09).
† Data in parentheses are range.
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that software-generated scan ranges were not different than those 
of the radiologists for all test patients (P = .001), patients with 
pleural effusion (P = .03), and patients with atelectasis (P = .02); 
however, for patients with neither pleural effusion nor atelectasis, 
the software-generated range was shorter (300 mm 6 31 vs 304 
mm 6 32; P = .11) (Table 3).

Software-generated Scan Ranges versus True Lung 
Boundaries
Comparison of the software-generated scan range limits and 
the radiologists’ annotations with the true lung boundaries 
(ground truth) showed a mean difference at the upper bound-
ary of 15.3 mm 6 17.4 for the neural network and 16.6 mm 
6 17.3 for the radiologists. Additionally, it showed a mean 
difference at the lower boundary of 21.1 mm 6 15.9 for the 
neural network and 22.7 mm 6 16.5 for the radiologists (Fig 
5). An equivalence test indicated that the software-generated 
scan ranges and those of the radiologists were equivalent at 
both boundaries (P , .001). Subgroup analysis showed the 
largest differences between software-generated imaging range 
boundaries and true lung boundaries in patients with atelec-
tasis at the upper and lower boundaries. The smallest differ-
ences were observed at the upper boundary in patients who 
had neither pleural effusion nor atelectasis, and at the lower 
boundary in patients with pleural effusions (Table 4).

When considering a scan range boundary that is at least 10 
mm shorter than the ground truth (true lung boundary on the 
CT scan) as clinically unacceptable, the neural network showed 
an accuracy of 97.3% (145 of 149) for all patients at the upper 
boundary, which had only one less error than the radiologists’ an-
notations (98.0%; 146 of 149). On the lower boundary the per-
formance of the neural network and the radiologists was the same 
(accuracy, 98.0%; 146 of 149). Subgroup analysis showed highest 

examples (9), whereas the ChestNet has been trained on a 
dataset with more than 650 000 images for a network to 
achieve accuracy similar to that of a human radiologist (17). 
For this reason, we decided to use a medium and manage-
able dataset of 1000 images, which we believe covers the 
actual complexity of the data well enough for our purposes.

For the evaluation of the final model, a power analysis of 
a one-sided t test with b power of .9, an a significance level 
of .025, and an expected difference of at least 5 mm and vari-
ance of 10 mm resulted in a minimum sample size of 100.

Paired t tests for equivalence were conducted to assess 
whether the software-generated scan ranges are equivalent to 
the radiologists’ annotations (18). Here equivalence bound-
aries were taken to be 5 mm, corresponding to the section 
thickness. Additionally, paired two-sided Wilcoxon signed 
rank tests were used to assess statistical difference. A P value 
less than .05 was considered to indicate a statistically signifi-
cant difference. No adjustments were performed for multiple 
testing. Descriptive values were reported as reported means 
6 standard deviations. Statistical analyses were conducted by 
using R 3.4.4 and by using the TOSTER package (version 
0.3.4) (19).

Results

Software-generated Scan Ranges versus Radiologists’ Scan 
Range Delimitations
The correlation of the software-generated and the radiologists’ 
scan range delimitations measured by the Dice score was 0.99 
6 0.01 for all patients and all subgroups.

The annotations at both boundaries were close (Figs 3, 4). 
The mean absolute difference between the software-generated 
and the radiologists’ scan range annotation was 1.8 mm 6 
1.9 at the upper boundary and 3.3 mm 6 5.6 at the lower 
boundary (Fig 3). The Bland-Altman plot revealed a mean 
difference of 1.4 mm and −2.8 mm for the upper and lower 
boundary, respectively, showing that there is no large bias be-
tween the two scan ranges. A Shapiro-Wilk test indicated that 
the differences are not normally distributed (P , .001), and 
the 2.5% and 97.5% quantiles were used as limits of agree-
ment; these were, respectively, 7.2 mm and 22.0 mm for the 
upper boundary and 8.5 mm and 218.5 mm for the lower 
boundary. This indicates that the expected difference between 
the measured scan ranges is less than 10 mm except at the 
lower boundary, where the software-generated scan ranges are 
slightly shorter. A linear regression to predict the difference 
from the average of measures revealed that at both boundar-
ies the slope is not different from 0 (P . .1; ie, there is no 
systematic difference visible).

An equivalence test showed that the boundary difference be-
tween the software and the radiologists was not different when 
using an equivalence limit of 5 mm (P , .001) on any of the 
subgroups of the test dataset (Table 2).

The mean length of the software-generated scan ranges was 
298 mm 6 33 and 302 mm 6 33 for the radiologists’ scan 
range delimitation. Subgroup equivalence test analysis revealed 

Figure 2:  Example of a scan range limitation of radiologists (green) and ra-
diographers (orange).

http://radiology-ai.rsna.org
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Software-generated Scan Ranges versus Radiographers’ 
Scan Range Delimitation
Comparison of the software-generated scan ranges with those 
of the radiographers showed shorter scan ranges for the soft-
ware approach for the entire test population (298.2 mm 6 

accuracy (100%; 49 of 49) at the upper and at the lower boundary 
in patients who had neither pleural effusion nor atelectasis. The 
lowest accuracy was observed at the upper boundary in patients 
with atelectasis (96%; 48 of 50) and at the lower boundary in 
patients with pleural effusions (96.1%; 49 of 51) (Table 4).

Figure 3:   A, D, Waterfall plots, B, E, Bland-Altman plots, and, C, F, histograms of the differences between the software-generated scan ranges and the radiologists’ 
scan ranges for each patient. A positive difference indicates that the radiologists’ scan range was longer. A, The differences at the upper boundary were sorted and plotted 
as bars. B, The average of both measurements at the upper boundary were plotted against their differences. The solid line marks the mean of differences, and the dashed 
lines mark the limits of agreement based on the 2.5% and 97.5% quantiles. C, The differences at the upper boundary were plotted by counts with a bin width of 2 mm. D, 
The differences at the lower boundary were sorted and plotted as bars. E, The average of both measurements at the lower boundary were plotted against their differences. 
The solid line marks the mean of differences, and the dashed lines mark the limits of agreement based on the 2.5% and 97.5% quantiles. F, The differences at the lower 
boundary were plotted by counts with a bin width of 2 mm.

Figure 4:  Scan range delimitations of the radiologists (green) and the network (blue) show that, A, the software-generated scan range is shorter (Dice score, 0.94), B, 
the scan ranges are close (Dice score, 0.99), and, C, the software-generated scan range is longer (Dice score, 0.96).
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32.7 vs 327.0 mm 6 42.0; P , .001) and all subgroups (Table 
5). In percentage terms, software-generated scan range de-
limitation led to a relative reduction in scan length by 8.8%, 
with the greatest reduction achieved in patients with atelectasis 
(10.7%). For the entire test dataset, the shortening of the scan 
range was 12.1 mm 6 16.7 at the upper scan field border and 
20.9 mm 6 18.7 at the lower border (P , .001).

Robustness of the Neural Network
Transformed images resulted in similar scan ranges, with a 
mean difference of −0.4 mm 6 2.2 at the upper boundary (P 
= .002) and −7.6 mm 6 3.7 at the lower boundary (P = .15).

Estimation of Radiation Dose
Simulated radiation dose of the software-generated scan ranges 
was lower than that of the radiographers (3.925 mSv 6 3.0 vs 
4.176 mSv 6 3.3; P , .001), corresponding to a mean dose 
reduction of 6.0%. There was also a reduction in radiation ex-
posure to the thyroid (3.84 mSv 6 7.3 vs 4.667 mSv 6 9.3; 
P , .001). The relative reduction was higher (17.7%). The 
reduction is also statistically significant across all subgroups for 
both total radiation dose and dose to the thyroid (P , .001 in 
all cases).

Discussion
Currently, CT is the largest source of human-made radiation 

exposure, dependent on scan length. Therefore, the exact defi-
nition of the scan range is important. Our results show that 
software-based, fully automatic determination of the scan 
range is feasible in chest CT with high accuracy and robust-
ness. Furthermore, our results suggest that the neural network 
approach could allow for a reduction in radiation dose com-
pared with the radiographers’ scan range delimitation because 
of a shortening of the scan range.

For automatic scan range delimitation, a conditional gen-
erative adversarial neural network, which is a special type of 
image-to-image network, was trained to mimic the radiologists’ 
annotations by using scan range delimitations made by two ex-
pert radiologists. The overall agreement between the software-
based scan ranges and those of the radiologists was excellent, 
even though, based on an equivalence test with an equivalence 
limit of 10 mm and the Bland-Altman analysis, the software-
based scan ranges were slightly shorter. This demonstrates the 
successful training of the neural network and the potential of 
this approach.

Although deep learning methods have recently produced ex-
cellent results in the field of medical imaging, few studies have 
investigated automatic scan range delimitation in CT. In 2019 
Huo et al (20) introduced a neural network based on the U-
Net framework for segmentation of the lung region at chest CT. 
They reported a high correlation of their software-generated scan 
ranges and the manual scan range delimitations with a Dice score 
of 0.976, a finding similar to that of our study. In contrast to our 
study, however, which deliberately included a high proportion of 

Table 2: Mean Difference between the Software-generated Scan Ranges and the Radi-
ologists’ Scan Range Delimitation at the Upper and Lower Boundary

Variable

Upper Boundary Lower Boundary

Mean Difference (mm) P Value Mean Difference (mm)P Value

All patients (n = 149) 1.8 6 1.9 (1.5, 2.1) ,.001 3.3 6 5.6 (2.4, 4.2) ,.001
Pleural effusion (n = 51) 2.0 6 2.4 (1.3, 2.7) ,.001 3.4 6 5.4 (1.8, 4.9) ,.001
Atelectasis (n = 50) 1.6 6 1.3 (1.2, 2.0) ,.001 2.9 6 5.1 (1.5, 4.4) ,.001
Neither pleural effusion 

nor atelectasis (n = 48)
1.8 6 1.6 (1.3, 2.3) .02 3.7 6 6.2 (1.9, 5.5) ,.001

Note.—Mean data are 6 standard deviation. Data in parentheses are 95% CIs. Reported P value is 
for the equivalence tests. A P value less than .05 indicates that the two values (software-generated and 
radiologist measurements) are not statistically different from one another. 

Table 3: Software-generated Scan Ranges versus Radiologists’ Scan Range Delimitation

Variable Software Generated (mm) Radiologists (mm) P Value

All patients (n = 149) 298 6 33 302 6 33 .001
Pleural effusion (n = 51) 293 6 37 297 6 36 .03
Atelectasis (n = 50) 302 6 29 305 6 29 .02
Neither pleural effusion nor atelectasis (n 

= 48)
300 6 31 304 6 32 .11

Note.—Mean data are 6 standard deviation. Reported P value is for the equivalence tests. A value less than .05 indi-
cates that the two values are not statistically different from one another.

http://radiology-ai.rsna.org
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patients with pathologic abnormalities that make segmentation 
of the lung region difficult (pleural effusions and atelectasis), 
Huo et al (20) analyzed only chest CT examinations performed 
in the context of lung cancer screening. Because of the exclusive 
use and analysis of CT scans with an extremely low prevalence 
of acute thoracic pathologic abnormalities, the study by Huo et 
al (20) does not allow a determination of whether their software-
based scan range delimitation is feasible in daily clinical routine 
with a higher prevalence of thoracic pathologic abnormalities. 
A different approach was investigated by Zhang et al (21), who 
used a Markov random field in detecting multiple predefined 
landmarks (eg, apex of the lung and tracheal bifurcation), which 
were then used for scan range delimitation. A disadvantage of 
this approach is that it requires the precise manual annotation 
of a large number of anatomic landmarks for training. More-
over, in patients with thoracic pathologic abnormalities, some 
landmarks may not be delimitable in the topogram, which may 

impair the scan range delimitation. Unfortunately, the valida-
tion of their model was not very extensive and was performed on 
only 36 cases, and no information was given regarding whether 
any pathologic abnormalities were present in their datasets. As 
a result, it is unclear whether their approach is suitable for daily 
clinical routine. Thus, our study overcomes the limitations that 
arose in these previous studies to show that automatic scan range 
delimitation is also possible in the presence of thoracic patho-
logic abnormalities that impede lung segmentation.

Our study showed that a significant reduction in the 
scan lengths is possible in chest CT while maintaining high 
accuracy. Whereas the software-based scan range delimi-
tation led to an average scan length of 298 mm 6 33 in 
our study, the average scan length in clinical routine as de-
termined by the radiographers was 327 mm 6 42, which 
corresponds to a difference of almost 10%. Recently, several 
studies focused on the topic of overscanning at chest CT, 

Figure 5:  A, C, Waterfall plots and, B, C, histograms show the differences between the software-generated scan ranges and the ground 
truth scan ranges for each patient. A positive difference indicates that the generated scan range was longer. A, The differences at the upper 
boundary were sorted and plotted as bars. B, The differences at the upper boundary were plotted by counts with a bin width of 2 mm. C, 
The differences at the lower boundary were sorted and plotted as bars. D, The differences at the lower boundary were plotted by counts 
with a bin width of 2 mm.
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whereby overscanning was defined as a scan larger than the 
upper and lower lung border with a 2-cm safety margin for 
each border. Schwartz et al (4), who analyzed the incidence 
of overscanning among six hospitals, found that it occurred 
in 221 of 600 (36.8%) chest CT scans, most frequently at 
the lower scan boundary (147 of 600), while observing great 
differences between the six hospitals (incidence of overscan-
ning, 7%–65%). An even greater frequency of overscanning 
was reported by Cohen et al (3), who evaluated 1118 chest 
CT scans and observed overscanning in 81% and 95% at the 
upper and lower boundary, respectively. However, Colevray et 
al (5) reported overscanning in only 23% of patients, which 
highlighted the great differences between different hospitals 
in determining the scan range. However, because an unneces-
sarily long scan range leads to unnecessary radiation exposure, 
these studies show the clinical need for improved scan range 
delimitation.

Clearly, more accurate scan ranges result in reduced total 
radiation exposure. Accordingly, we observed a reduction of 
6% when our software was used. This reduction was lower 
than expected, because the scan range length was reduced by 

nearly 10%. The reason for this difference likely results from 
the fact that radiation exposure in modern CT examination is 
not uniformly distributed over the chest and is lower around 
the neck. Thus, more accurate scan range delimitations at the 
upper border do not correspond to a similarly high reduction 
in total radiation dose. Increased accuracy at the upper border 
has a more profound effect on the radiation exposure of the 
thyroid gland, where we consequently observed an increased 
reduction in radiation dose (18%). Because there are large dif-
ferences in the definition of the scan field between different 
hospitals (3–5), it must be noted that the dose saving by our 
software strongly depends on the previous habits of scan field 
definition and may be much higher in individual cases. How-
ever, because radiation exposure is harmful in principle, the 
dose reduction achieved by using our software is desirable. This 
is especially true because patients often undergo multiple CT 
examinations over the years, which can result in high cumula-
tive radiation doses (22).

The neural network produced results similar to those of radi-
ologists, and it seems possible that a deployment in clinical routine 
can be successful. The predictions of the network were robust, and 

Table 5: Software-generated Scan Ranges versus Radiographers’ Scan Range Delimitation

Variable
Software Generated 
(mm) 

Radiographers 
(mm) P Value*

Absolute Reduction 
(mm)†

Relative Reduction 
(%)†

All patients (n = 149) 298 6 33 327 6 42 ,.001 29 8.8
Pleural effusion (n = 51) 293 6 37 322 6 46 ,.001 29 9.0
Atelectasis (n = 50) 302 6 29 338 6 40 ,.001 36 10.7
Neither pleural effusion 

nor atelectasis (n = 48)
300 6 31 321 6 37 ,.001 21 6.5

Note.—Mean data are 6 standard deviation.
* Wilcoxon signed rank test.
† Values indicated a comparison of the software-generated measurements to the radiographers’ scan range delimitation.

Table 4: Mean Differences between Software-based and Radiologists’ Scan Range Delimitations with 
True Lung Boundaries at the Upper and Lower Boundaries for all Subgroups

Variable Boundary

Software vs True Lung Boundaries
Radiologists vs True Lung Bound-

aries

Mean Difference (mm) Accuracy (%)
Mean Difference 
(mm) Accuracy (%)

All patients (n = 149) Upper 15.3 6 17.4 97.3 16.6 6 17.3 98.0
Lower 21.1 6 15.9 98.0 22.7 6 16.5 98.0

Pleural effusion (n = 51) Upper 13.6 6 7.0 98 15.0 6 7.4 100
Lower 17.8 6 15.8 96 18.6 6 14.3 96

Atelectasis (n = 50) Upper 19.6 6 28.1 96 20.9 6 27.8 96
Lower 24.8 6 16.4 98 26.0 6 16.8 98

Neither pleural effusion nor 
atelectasis (n = 48)

Upper 12.7 6 6.6 98 13.7 6 6.4 98
Lower 20.9 6 14.7 100 23.5 6 17.4 100

Note.—The errors indicate the number of scans on which the lung borders had been cut by at least 10 mm. Accuracy 
was calculated based on the assumption that cutting the lung by at least 10 mm is clinically unacceptable.
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the prediction time for each scan range was less than a few seconds 
(Appendix E1 [supplement]). However, because in some cases 
the software-based imaging boundaries had been too narrow and 
small parts of the lungs were not included in the scan range, super-
vision by the radiographers would be necessary, and the usefulness 
of the model would depend on their choices. In practical terms, 
deployment of our software in clinical use could be achieved by in-
tegrating it as an additional module on the CT scanner. As soon as 
a topogram is acquired, this module would generate a scan range 
and suggest it to the radiographer. The radiographer could then 
decide to use, correct, or discard the proposal.

There were limitations within our study. It should be 
noted that our study was conducted at a single site, which 
limits the generalizability of the results, especially the com-
parison of the software-based scan ranges to those of the 
radiographers. In addition, all examinations were performed 
by using Siemens CT scanners, which limited the transfer-
ability to other vendors. However, we deliberately used 
topograms acquired with various Siemens CT scanners, 
from an older four-section CT scanner to a modern high-
end dual-source CT scanner, to ensure that the impression 
and quality of the topograms varied. As a consequence of 
using partly old CT datasets, only CT datasets with a sec-
tion thickness of 5 mm were available, which impeded the 
comparison of the software-based scan boundaries with the 
true lung boundaries. Therefore, further analysis of CT 
scans acquired at other sites with CT scanners from other 
vendors should be conducted. Moreover, because reliability 
is key for a successful deployment, a thorough analysis of 
the influence of patient characteristics and pathologic ab-
normalities other than those we explicitly considered (ie, 
patients with atelectasis or pleural effusion) on the software-
generated scan ranges should be conducted. Whereas such 
patients (eg, with lung infiltrations) were in our patient col-
lective, they were not the focus of our study and they may 
have a larger than expected influence on the network predic-
tions. Our test for robustness showed minimal but statisti-
cally significant variations at the upper scan range boundary, 
which could be an effect of the shifting and rescaling that 
pushed the upper border at the first line of the topogram. 
Because such scan ranges were rarely present in the training 
set, it is plausible that the predictions of the neural network 
were not good enough for these cases. However, it can be 
expected that a larger training dataset composed of more 
such cases might help to reduce this kind of error. Finally, 
it should be noted that we adapted an off-the-shelf condi-
tional generative adversarial neural network architecture for 
this study (10); however, the use of a more optimized model 
(23) or an alternative architecture (eg, Fast–region-based 
convolutional neural network, or Fast-RCNN; 24) may in-
crease performance.

In summary, our study showed that automatic scan range 
delimitation in chest CT using a conditional generative adver-
sarial neural network was feasible and showed a performance 
comparable to that of two expert radiologists in consensus. Be-
cause software-based scan range delimitation led to shorter scan 
ranges compared with radiographers’ scan range delimitation, 

the software described in our study could enable dose reduction 
for chest CT in clinical routine.
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