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Brain metastases are the most common central nervous 
system tumor (1). Recent advancements in systemic 

treatment of primary tumors have led to an increase in the 
number of patients with metastatic cancer (2). Increased 
prevalence of brain metastases combined with more re-
cent effective treatment methods, particularly stereotac-
tic radiosurgery, have in turn led to a dramatic increase 
in imaging to plan treatment and track the longitudinal 
course of intracranial metastatic disease (3). Detection 
and segmentation of intracranial metastases on studies 
obtained for stereotactic radiosurgery treatment planning 
is a tedious and time-sensitive task requiring high sensi-
tivity and specificity by neuroradiologists and radiation 
oncologists. Thus, a reliable automated and quantitative 
longitudinal assessment tool for brain metastases could 
have a substantial clinical impact by augmenting the abil-
ity of radiologists and radiation oncologists to form rapid 
and accurate treatment plans.

A variety of approaches have been previously used for 
automated detection and segmentation of intracranial me-
tastases. Several earlier methods used template-matching 
approaches (4,5), which demonstrated moderate sensitivity 
and high false-positive (FP) rates in small sample sizes (n , 

30). Within the past 5 years, deep learning–based approaches 
have been established as being superior to the previous gen-
eration of atlas or template-matching approaches. Typically, 
convolutional neural networks (CNNs) (6) have been used 
for image-based problems, as they allow for the identifica-
tion of lower- and intermediate-level image features. Prior 
studies using CNNs for the detection and/or segmentation 
of brain metastases (7–12) have shown promise but have 
also been limited by large numbers of FP results and rela-
tively poor performance in detecting smaller metastases.

Here, we evaluated the performance of a customized, 
three-dimensional (3D) U-Net–based, fully convolutional 
CNN (13) for the detection and segmentation of brain 
metastases in a large sample of patients undergoing ste-
reotactic radiosurgery treatment planning. We evaluated 
detection and segmentation performance by using differ-
ent input images and loss functions, including focal loss 
(14,15), which is thought to improve performance for de-
tection of small lesions. We also carefully evaluated the de-
pendence of detection and segmentation performance on 
metastasis size and established a performance baseline by 
evaluating neuroradiologist interrater reliability for detec-
tion and segmentation of metastases in the test set.
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Purpose: To develop and validate a neural network for automated detection and segmentation of intracranial metastases on brain MRI 
studies obtained for stereotactic radiosurgery treatment planning.

Materials and Methods: In this retrospective study, 413 patients (average age, 61 years 6 12 [standard deviation]; 238 women) with a total 
of 5202 intracranial metastases (median volume, 0.05 cm3; interquartile range, 0.02–0.18 cm3) undergoing stereotactic radiosurgery at 
one institution were included (January 2017 to February 2020). A total of 563 MRI examinations were performed among the patients, 
and studies were split into training (n = 413), validation (n = 50), and test (n = 100) datasets. A three-dimensional (3D) U-Net con-
volutional network was trained and validated on 413 T1 postcontrast or subtraction scans, and several loss functions were evaluated. 
After model validation, 100 discrete test patients, who underwent imaging after the training and validation patients, were used for final 
model evaluation. Performance for detection and segmentation of metastases was evaluated using Dice scores, false discovery rates, and 
false-negative rates, and a comparison with neuroradiologist interrater reliability was performed.

Results: The median Dice score for segmenting enhancing metastases in the test set was 0.75 (interquartile range, 0.63–0.84). There 
were strong correlations between manually segmented and predicted metastasis volumes (r = 0.98, P , .001) and between the number 
of manually segmented and predicted metastases (R = 0.95, P , .001). Higher Dice scores were strongly correlated with larger metas-
tasis volumes on a logarithmically transformed scale (r = 0.71). Sensitivity across the whole test sample was 70.0% overall and 96.4% 
for metastases larger than 6 mm. There was an average of 0.46 false-positive results per scan, with the positive predictive value being 
91.5%. In comparison, the median Dice score between two neuroradiologists was 0.85 (interquartile range, 0.80–0.89), with sensitiv-
ity across the test sample being 87.9% overall and 98.4% for metastases larger than 6 mm.

Conclusion: A 3D U-Net–based convolutional neural network was able to segment brain metastases with high accuracy and perform 
detection at the level of human interrater reliability for metastases larger than 6 mm.
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patients with resection cavities for the training (n = 124) and 
validation (n = 463) sample, we excluded patients with resection 
cavities for the final test set (n = 30 from an initial 130 selected) 
to more accurately evaluate the detection of individual intracra-
nial metastases rather than evaluating the postoperative enhance-
ment typically seen along resection cavities.

Imaging Data Acquisition
T1-weighted and T1-weighted postcontrast images (spoiled 
gradient echo sequences) were included for each patient. The 
majority (374 of 563) of studies were acquired with a 1.5-T 
Signa HDxt scanner (GE Healthcare). There were 150 stud-
ies acquired with a 1.5-T Achieva scanner (Philips Healthcare) 
and 39 acquired with a 3.0-T Discovery MR750 scanner (GE 
Healthcare). Although acquisition parameters varied slightly, 
representative values from a 1.5-T Signa HDxt scanner were as 
follows: repetition time, 8.8 msec; echo time, 3.3 msec; inver-
sion time, 450 msec, flip angle, 11°; matrix size, 256 3 256 3 
106; and voxel size, 0.71 3 0.71 3 1.5 mm. Across all acquisi-
tions, the in-plane axial voxel dimension was less than 1 3 1 
mm, and the Z dimension was less than or equal to 1.5 mm in 
72% of all the scans and 100% of test scans.

Brain Metastases Annotations
To provide voxelwise reference-standard segmentations for 
training, all MRI studies were hand-segmented using ITK-
SNAP (16) (https://www.itksnap.org/) by a neuroradiology fel-
low (J.D.R. and B.L.) or attending neuroradiologist (L.P.S. 
and J.E.V., with 5 and 4 years of experience as neuroradiology 
attending physicians) with the final radiology report used as 
a reference. T1-weighted, T1-weighted postcontrast, and sub-
traction images were available to guide the manual segmen-
tations. Only the enhancing portions of the metastases were 
segmented. Areas of central necrosis and areas of T1 intrinsic 
hyperintensity were not included in the segmentation masks. 
In addition, extra-axial calvarial and entirely dural metasta-
ses were not included. To determine interrater reliability of 
segmentations in the test set, all test set scans were indepen-
dently hand-segmented by two radiologists (one neuroradiol-
ogy fellow [J.D.R.] and one of two neuroradiology attending 
physicians [J.E.V. and L.P.S.]) without reference to the final 
radiology report. To generate the final reference-standard seg-
mentations on the test set scans, the two segmentations were 
combined and then refined with reference to the final radiol-
ogy report.

Image Preprocessing
T1-weighted images were registered to the T1-weighted post-
contrast images by rigid registration (six degrees of freedom) 
using the FMRIB Software Library’s Linear Image Registra-
tion Tool (17). Subtraction images were generated by subtract-
ing the registered T1-weighted images from the T1-weighted 
postcontrast images. The input images were then resampled to 
1-mm3 isotropic resolution by linear interpolation. Prior to in-
put into the network, intensity normalization was performed 
to achieve a zero mean and unit standard deviation. The images 

Materials and Methods

Study Design and Patients
As part of an institutional review board–approved Health In-
surance Portability and Accountability Act–compliant study, 
563 brain MRI studies from 413 patients (mean age, 61 years 
6 12 [standard deviation]; 238 women) (Table 1) undergo-
ing stereotactic radiosurgery planning from the University of 
California, San Francisco, Medical Center were included with 
a waiver for written consent in this retrospective study.

The training and validation sample (463 MRI studies) rep-
resented 313 distinct patients (mean age, 61 years 6 11; 186 
women) identified through a search of institutional radiology 
archives (mPower; Nuance Communications) of stereotactic 
radiosurgery studies performed between January 1, 2017, and 
March 30, 2019. The validation sample consisted of 50 ran-
domly selected MRI studies from the total 463 MRI studies, 
with the remaining 413 MRI studies reflecting the training da-
taset. The final test set (n = 100) represented 100 discrete pa-
tients (mean age, 62 years 6 12; 52 women), who were distinct 
from the patients in the training and validation group and sub-
sequently underwent imaging at the same institution between 
April 1, 2019, and February 29, 2020.

Exclusion criteria for all datasets included patients without 
definitive enhancing intracranial metastases (n = 26), patients 
who presented with only dura-based or leptomeningeal metas-
tases (n = 9), and examinations that had missing sequences or 
yielded corrupted data (n = 8). Although we did not exclude 

Abbreviations
CNN = convolutional neural network, FD = false discovery, FN 
= false negative, FP = false positive, 3D = three dimensional, TP = 
true positive

Summary
A three-dimensional U-Net convolutional network was developed 
and evaluated for detection and segmentation of intracranial me-
tastases on brain MRI studies obtained for radiosurgery planning; 
the network was able to segment metastases with high accuracy and 
detect metastases larger than 6 mm with a reliability similar to neuro-
radiologist interrater reliability.

Key Points
 n A three-dimensional U-Net developed on 463 brain MRI studies 

of patients with 4494 brain metastases undergoing radiosurgery 
achieved a median Dice score of 0.75 in a held-out test set of 100 
patients (708 metastases) and had an overall sensitivity of 70% 
and a positive predictive value of 91.5%.

 n There were strong correlations between manually segmented and 
predicted metastasis volumes (r = 0.98, P , .001) and the number 
of metastases (r = 0.95, P , .001).

 n Performance was highly dependent on metastasis size, with sensi-
tivity for metastases larger or smaller than 6 mm being 96.4% and 
59.1%, respectively.

Keywords
 n MR Imaging, Neuro-Oncology, Neural Networks, CNS, Brain/

Brain Stem, Segmentation/Feature Detection/Quantification 
(Vision and Application Domain)
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was used for all experiments. Patches with and without lesions 
were equivalently sampled during training. The networks were 
trained until validation loss stabilized, which was at approxi-
mately 10 epochs over the course of approximately 24 hours. 
During testing, the brain volume was densely sampled using 
a step size of 32 in each direction, and overlapping segmenta-
tion predictions were averaged. The network was implemented 
with TensorFlow (20) (CUDA version 9.2.148) on a Titan Xp 
graphics processing unit (NVIDIA; 12-GB memory).

Experiments within the Validation Sample
We trained networks using either the T1-weighted postcontrast 
images or the subtraction images and also tested four different 
loss functions for these two different inputs. The four different 
loss functions included cross-entropy, balanced cross-entropy, 

were then augmented three times using elastic transformations 
(18), including rotate, flip, and skew, with small random af-
fine transformations stacked on top of small random freeform 
deformations. The augmented images, either the T1-weighted 
postcontrast images or the subtraction images, were then split 
into 96-mm3 cubes (“3D patches”) and used as input for the 
CNN.

U-Net CNN
We used a previously detailed 3D U-Net CNN (13), which 
consisted of four consecutive downsampled blocks, followed 
by four consecutive upsampled blocks with residual (skip) con-
nections (Fig 1). Batch normalization was used for regulariza-
tion with a batch size of six and the rectified linear unit for non-
linearity. The Adam optimizer (19) and a learning rate of 10−4 

Table 1: Patient Demographics and Characteristics

Parameter All Patients Training and Validation Testing P Value
Demographics
 No. of patients 413 313 100 NA
 No. of MRI studies 563 463 100 NA
 Average age (y) 61 6 12 61 6 11 62 6 12 .92
 No. of women 238 (57.6) 186 (59.4) 52 (52) .21
Primary cancer types
 Lung 173 (41.9) 128 (40.9) 45 (45) .54
 Breast 96 (23.2) 73 (23.3) 23 (23) .94
 Melanoma 52 (12.6) 46 (14.7) 6 (6) .02
 Renal 22 (5.3) 16 (5.1) 6 (6) .73
 Head and neck 11 (2.7) 8 (2.6) 3 (3) .81
 Other genitourinary 10 (2.4) 9 (2.9) 1 (1) .29
 Other gastrointestinal 9 (2.2) 8 (2.6) 1 (1) .35
 Rectal 8 (1.9) 5 (1.6) 3 (3) .38
 Neuroendocrine 5 (1.2) 5 (1.6) 0 (0) NA
 Colon 6 (1.5) 4 (1.3) 2 (2) .60
 Prostate 10 (2.4) 4 (1.3) 6 (6) .01
 Thyroid 4 (1.0) 2 (0.6) 2 (2) .23
 Other or unknown 7 (1.7) 5 (1.6) 2 (2) .79
Metastasis information
 Total no. of metastases 5202 4494 708 NA
 No. of metastases
  Average 6 SD 9.32 6 12.9 9.7 6 13.5 7.1 6 9.7 .07
  Median (IQR) 5 (2–10) 5 (2–11) 3 (2–8)
 Total metastasis volume (cm3)
  Average 6 SD 5.3 6 6.9 5.6 6 7.2 3.6 6 4.9 .01
  Median (IQR) 2.7 (0.6–6.8) 3.0 (0.6–7.5) 1.8 (0.5–4.8)
 Individual metastasis volume (cm3)
  Average 6 SD 0.56 6 2.0 0.57 6 2.0 0.50 6 1.7 .36
  Median (IQR) 0.05 (0.02–0.18) 0.04 (0.02–0.18) 0.05 (0.02–0.19)

Note.—Continuous variables are shown as the average 6 SD or the median and interquartile range (in parentheses). Categorical vari-
ables are shown as the number and percentage (in parentheses). P values are for comparisons between the training and validation data-
set compared with the test dataset using t tests or x2 tests. NA = not applicable. IQR = interquartile range, SD = standard deviation. 
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Statistical Analyses in the Test Sample
We applied the highest-performing model (or ensemble) at the 
peak probabilistic threshold from the validation set to the final 
test set. To further interrogate the performance of the U-Net 
on the test set, we performed Pearson correlations between the 
manually segmented and predicted volume and the number of 
brain metastases. Given the known relationship between lesion 
volume and Dice scores (13,23), we evaluated the correlation 
between the Dice score and the total metastasis volume per case 
as well as the individual metastasis Dice score and volume on 
a log10-transformed scale. In addition, we evaluated detection 
sensitivity across a range of different metastasis sizes.

We evaluated radiologist interrater reliability by comput-
ing Dice scores between the two initial manual annotations of 
the test set and then compared them with Dice scores for the 
U-Net relative to the final reference-standard segmentations 
by using bootstrapping. We then evaluated the sensitivity for 
metastasis detection of the two initial manual annotations rela-
tive to the combined final reference-standard annotations and 
compared detection sensitivity between the U-Net relative to 
the reference-standard segmentations and different metastasis 
sizes by using x2 tests. We further evaluated sensitivity for de-
tection across different metastasis sizes as well as the relation-
ship between the metastasis volume and Dice score between 
the two manual segmentations.

Results

Size and Distribution of Brain Metastases
A total of 4494 brain metastases were segmented in the train-
ing and validation dataset, and 708 metastases were segmented 
in the test dataset. The average number of metastases per pa-
tient was similar between the two datasets (9.7 6 13.5 vs 7.1 6 
9.7; P = .07). The most common types of primary cancers were 
lung cancer, breast cancer, and melanoma. Table 1 provides an 
overview of patient and metastasis characteristics.

The average total volume of metastases was higher in the 
training and validation datasets than in the test dataset (5.6 cm3 

soft Dice loss (21), and focal loss (13,14) (with alpha = 0.25 
and gamma = 2). We also bag ensembled the T1 postcontrast 
and subtraction models by averaging their predictions for each 
of the loss functions, across the different loss functions, and 
across all eight models. Predictions were evaluated across dif-
ferent probability thresholds (final softmax layer) ranging from 
0.2 through 0.8 in 0.1 increments, given that the U-Net gener-
ates a probabilistic prediction map.

Performance Metrics
We evaluated segmentation performance in the validation 
and test sets by using voxelwise Dice coefficient (22): 2 3 
TP/(2 3 TP 1 FP 1 FN), where TP is true positive, FP is 
false positive, and FN is false negative. This calculation was 
performed for each scan and for individual metastases. We 
evaluated the performance for detection of metastases in each 
scan by calculating the metastasis FN rate (FN/TP 1 FN) 
and false discovery (FD) rate (FP/TP 1 FN). Additionally, 
we evaluated the overall metastasis sensitivity (1 – FN/(TP 
1 FN) and positive predictive value (TP/TP 1 FP) across all 
100 patients in the test sample. A TP metastasis was defined 
as a connected component of the manual segmentation that 
had any overlap with the predicted segmentation. Finally, to 
measure the shape fidelity of the predicted segmentations for 
detected metastases in the test set, we calculated Hausdorff 
distances as the 95th percentile of minimum distances from 
all points in the predicted segmentations to the reference-
standard set of voxels.

Statistical Analyses in the Validation Sample
For statistical comparison of different models evaluated in 
the validation sample, we computed P values for the differ-
ences between the mean Dice scores, FD rates, and FN rates 
by using bootstrapping with paired sampling and 10 000 
replicates with custom Python scripts. Significance was de-
fined by a P value less than .05, and all reported P values 
represent the proportion of tests in which the difference of 
means was less than 0.

Figure 1:  Three-dimensional (3D) convolutional neural network U-Net schematic. The U-Net has four encoding layers and four decoding layers. Input consisted of 3D 
96-mm3 patches of either T1 postcontrast (T1-post) images or subtraction images (T1-post images − T1-weighted images), and the output consisted of predicted segmenta-
tion maps of brain metastases.
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and subtraction models are shown in Figure 3. The ensembled 
model with a probabilistic threshold of 0.4 was chosen for the 
test set.

Test Set Performance
Example predicted segmentations of the distinct test set pa-
tients using the bagged ensemble of the eight different indi-
vidual models are shown in Figure 4. The median Dice score in 
the test set was 0.75 (interquartile range, 0.67–0.83), and the 
average score was 0.73 6 0.14. There were three test cases in 
which Dice scores were 2 standard deviations below the aver-
age, all of which were cases in which metastases were missed 
or undersegmented. The average FD and FN rates across cases 
were 17.5% 6 41.5 and 17.7% 6 22.5, respectively, corre-
sponding to an average case sensitivity of 82.5% and a positive 
predictive value of 91.5%. Across the entire test sample, the 
sensitivity was 70.0% (496 of 708 metastases detected).

Overall sensitivity varied as a function of metastasis size: it 
was 84.3% (482 of 572) for metastases larger than 0.014 cm3 
(3 mm in diameter), 94.5% (308 of 326) for those larger 
than 0.065 cm3 (5 mm in diameter), and 96.4% (217 of 
225) for those larger than 0.113 cm3 (6 mm in diameter). 
The sensitivity for detection of metastases between 3 and 6 
mm was 76.7% (266 of 347). Sensitivities for metastases 
smaller than 3 mm, 5 mm, or 6 mm were 14.7% (20 of 136), 
50.9% (195 of 383), and 59.1% (286 of 484), respectively. 

6 7.2 vs 3.6 cm3 6 4.9; P = .01); however, the average individ-
ual metastasis sizes were similar (0.57 cm3 6 2.0 vs 0.50 cm3 6 
1.7; P = .36). Metastasis size distributions are shown in Figure 2.

Performance in Validation Dataset
The median Dice scores and average FD and FN rates for T1 
postcontrast and subtraction models across the four differ-
ent loss functions and averaged across the loss functions for 
the validation sample are shown in Table 2. The median Dice 
scores across the four different loss functions for the T1 post-
contrast and subtraction images ranged from 0.71 to 0.77. 
The ensemble model predictions across all T1 postcontrast 
and subtraction models were best at a probabilistic threshold 
of 0.4 with a median Dice score of 0.78 (interquartile range, 
0.65–0.86), which was significantly higher than those of all 14 
other models.

The average FD and FN rates ranged from 15% to 121% 
and 14% to 34%, respectively. The FD rates for the ensemble 
model (17% 6 40) were significantly lower for six of the other 
14 models. The FN rates for the ensemble model (22% 6 25) 
were significantly lower for 11 of the other 14 models.

Although a lower probabilistic threshold of 0.3 did improve 
the average FN rate from 22% to 19%, it increased the aver-
age FD rate from 17% to 53%. Charts displaying median Dice 
scores, average FD rates, and average FN rates as a function of 
the probabilistic threshold for the average of the T1 postcontrast 

Figure 2: Distribution of number and size of brain metastases in the training and validation sample and test sample. Counts of 
number of manually segmented brain metastases per case for the A, training and validation and B, test cases. Average brain metas-
tasis volume for the, C, training and validation and, D, test cases.

http://radiology-ai.rsna.org
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The average and median sizes of FN metastases were 0.03 
cm3 and 0.0013 cm3 (approximately 4.0 mm and 1.4 mm in 
diameter), respectively. Although most FN metastases were 
smaller than 3 mm, larger FN metastases included those with 
subtle and/or minimal enhancement or metastases adjacent 
to dura and veins and venous sinuses (Fig 5). For the 496 
detected metastases in the test set, the average 6 standard de-
viation and median 95th percentile Hausdorff distances were 
1.9 mm 6 1.6 and 1.5 mm.

There was a total of 46 FP findings in the test set with a 
total FD rate of 6.5% (46 of 708) and a positive predictive 
value of 91.5% (496 of 542). The average and median sizes 
of FP metastases were 0.05 cm3 and 0.01 cm3. FP findings 
included osseous metastases and benign extra-axial schwan-
nomas, noting that skull stripping was not performed and 
that calvarial or purely extra-axial metastases or benign 
enhancing lesions were not included in reference-standard 
segmentations. FP findings also consisted of prominent ves-
sels, including benign vascular lesions, such as capillary tel-
angiectasias and developmental venous anomalies (Fig 5). 
Given the presence of calvarial and extra-axial FP findings, 
we performed skull stripping as a post hoc step, and the over-
all number of FP findings decreased to 35 (4.9% FD rate 
and positive predictive value of 93.4%) without affecting 
sensitivity.

Correlation between Manual and Predicted Volume and 
Dice Score
There was a strong correlation between manually segmented and 
predicted metastasis volume in the test set (Pearson r = 0.98, P 
, .001; Fig 6, A). There was also a strong correlation between 
the manually segmented number of metastases and the predicted 
number of metastases (Pearson r = 0.95, P , .001; Fig 6, B).

There was a moderately strong positive correlation between 
manually segmented log10-transformed volumes and Dice 
scores for total volumes of metastases (Pearson r = 0.63, P , 
0.001; Fig 6, C) and individual metastases (Pearson r = 0.71, 
P , .001; Fig 6, D), such that 51% of the variance (R2) in 
individual metastasis Dice scores was explained by log10-trans-
formed metastasis volumes.

Interrater Reliability
The average Dice score between the two manual annotations 
for the test set was 0.83 6 0.09 (median, 0.85; interquartile 
range, 0.80–0.89), which was higher than the average U-
Net Dice score (0.75 6 0.14; P , .001 by bootstrapping). 
The average per-scan sensitivity and total sensitivity of the 
neuroradiology fellow and attending physician segmenta-
tions versus the final reference standard segmentations were 
similar: 88% 6 52 and 88.4% (626 of 708) and 87% 6 48 
and 87.4% (619 of 708), respectively (P = .57, x2 = 0.32). 

Table 2: Validation Set Performance Metrics of Models with Different Inputs and Loss Functions

Loss Function Dice FD Rate (%) FN Rate (%)

T1 postcontrast
 Cross-entropy 0.75 (0.54–0.85)* 35 6 67† 28 6 28‡

 Balanced cross-entropy 0.77 (0.60–0.84)* 47 6 70† 24 6 25‡

 Soft Dice loss 0.73 (0.48–0.85)* 17 6 32 16 6 22
 Focal loss 0.72 (0.54–0.82)* 39 6 69† 34 6 28‡

 Ensemble of all loss functions 0.79 (0.58–0.85)* 27 6 59 27 6 28‡

Subtraction
 Cross-entropy 0.71 (0.57–0.83)* 35 6 57† 28 6 28‡

 Balanced cross-entropy 0.73 (0.53–0.83)* 31 6 59† 31 6 28‡

 Soft Dice loss 0.71 (0.53–0.83)* 15 6 31 14 6 19
 Focal loss 0.72 (0.56–0.83)* 121 6 194† 28 6 30‡

 Ensemble of all loss functions 0.77 (0.63–0.86)* 23 6 58 26 6 28‡

T1 postcontrast and subtraction model ensemble
 Cross-entropy 0.75 (0.62–0.85)* 13 6 36 29 6 30‡

 Balanced cross-entropy 0.75 (0.63–0.86)* 16 6 43 28 6 28‡

 Soft Dice loss 0.77 (0.61–0.86)* 67 6 107 24 6 26
 Focal loss 0.76 (0.54–0.85)* 21 6 40 33 6 30‡

 Ensemble of all loss functions 0.78 (0.65–0.86) 17 6 40 22 6 25

Note.—Dice scores are the median and interquartile range (25th to 75th percentile in parentheses), and FD and FN rates are 
the average 6 standard deviation. FD = false discovery, FN = false-negative.
* Ensemble of all models resulted in a higher Dice score than all 14 of the 14 other models (P = .01 for T1 postcontrast bal-
anced cross-entropy, P = .003 for T1 postcontrast ensemble and subtraction ensemble, and P , .001 for all others).
† Ensemble of all models resulted in a lower FD rate in six of the 14 other models (P = .04 for T1 postcontrast cross-entropy, P 
= .005 for T1 postcontrast focal loss, P = .01 for subtraction cross-entropy, and P , .001 for all others).
‡ Ensemble of all models resulted in a lower FN rate in 11 of the 14 other models (P = .04 for T1 postcontrast balanced cross-
entropy, P = .008 for T1 postcontrast and subtraction model ensemble balanced cross-entropy, and P , .001 for all others).

http://radiology-ai.rsna.org
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Across both the neuroradiology fellow and attending physi-
cian segmentations, sensitivities for metastases smaller than 
3 mm, metastases between 3 and 6 mm, metastases larger 
than 6 mm, and all metastases were 63.2% (172 of 272), 
90.8% (630 of 694), 98.4% (443 of 450), and 87.9% (1245 
of 1416), respectively. Although the sensitivity for detection 
was higher for human annotators than for the U-Net for 
metastases smaller than 3 mm (63.2% vs 14.7%, P , .001, 

x2 = 83.7) and metastases between 3 and 6 mm (90.8% vs 
76.7%, P , .001, x2 = 37.3), there was no significant dif-
ference in the detection of metastases greater than 6 mm 
(98.4% vs 96.4%, P = .09, x2 = 2.76).

Similar to the U-Net, the two manual annotations demon-
strated a strong positive correlation between the reference stan-
dard manually segmented log10-transformed volumes and the 
Dice scores (Pearson r = 0.50, P , .001).

Figure 3: Performance across different probabilistic thresholds. The median Dice score, average false discovery rate (FDR), and average false-
negative rate (FNR) are plotted as function of the probabilistic threshold chosen for the models averaged across the, A, T1 postcontrast (T1-post) 
models and, B, subtraction models. neg = negative, pos = positive.

Figure 4: Example U-Net–predicted segmentations. Eight example MRI studies with axial T1 precontrast (T1-pre), T1 postcontrast (T1-post), and subtraction images, 
with example segmentations overlaid on the T1-post images (U-Net prediction).
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Manual Segmentation and U-Net Inference Times
Manual segmentation of test cases took approximately 15–20 
minutes per scan. The average inference time of the U-Net for 
test patient studies was 20 seconds for preprocessing (interpo-
lation and patch construction) and 25 seconds for inference 
with a single model.

Discussion
Artificial intelligence methods are poised to improve diagnos-
tic and treatment options for patients diagnosed with central 
nervous system neoplasms (24). In particular, the assessment of 
brain metastases represents an ideal use case for the translation 
of artificial intelligence methods into clinical practice. Here, 
we evaluated a 3D U-Net CNN for the detection and segmen-
tation of brain metastases in a large sample of brain MRI stud-
ies acquired for stereotactic radiosurgery of brain metastases. 
The network performed well at detecting and segmenting me-
tastases, with sensitivity equivalent to the interrater reliability 
of neuroradiologists for metastases larger than 6 mm.

This 3D U-Net architecture was previously shown to perform 
well across a large variety of lesions on T2 fluid-attenuated in-
version recovery MRI (13). There were minimal differences be-
tween different loss functions or between using T1 postcontrast 
images and using subtraction images. Interestingly, the focal loss 
function, which has been shown to improve robustness against 
class imbalance, did not improve performance for detection of 

small metastases, which is consistent with another recent study 
for the detection of brain metastases using a two-dimensional 
single shot detector deep learning–based algorithm with bound-
ing boxes (10).

Although directly comparing the performance of this algo-
rithm with algorithm performance in other recent studies is not 
entirely possible, given the variation in the data used and the 
metrics reported, this network appeared to achieve performance 
similar to that of networks in other more recently published 
studies (9–12). Although our reported Dice scores were simi-
lar to those reported in prior studies (most ranging from 0.6 to 
0.8), the average FD rate of 17% and the total positive predictive 
value of 91.5% in our study appear to be better than those from 
multiple prior studies (7–10) that have reported more than four 
FP findings per patient, including the study by Zhou et al (10), 
which reported a positive predictive value of 36%; our results 
appear to be more similar to the findings of Bousabarah et al 
(12), who also used a U-Net architecture with an average FP 
rate of 8%–35%. As expected, lowering the model’s probabilistic 
threshold for detection slightly improved sensitivity, but this was 
at the cost of many more FP findings.

Consistent with prior studies showing the important 
impact of lesion size on the Dice score (13,23), we found a 
strong relationship between Dice scores and metastasis size, 
such that metastasis size transformed to a log10 scale explained 
51% of the variance in the Dice scores. Likewise, sensitivity 

Figure 5: Example false-negative and false-positive findings. False-negative metastases (top row) were typically smaller than 3 mm or had other 
challenging characteristics, such as a subtle enhancement pattern or close proximity to the dura or prominent vessels. False-positive findings included 
calvarial metastases, as well as benign lesions, such as schwannomas or vascular lesions, including capillary telangiectasias and developmental 
venous anomalies.
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for metastases smaller than 3 mm was only 14.6%, whereas 
sensitivity for metastases greater than 3 mm was 84.3%. 
Lower Dice scores and lower sensitivity for smaller lesions 
were also found when comparing the two sets of manual an-
notations. The relatively lower overall sensitivity reported in 
our study (70%) compared with some other recent studies 
is likely a function of many small metastases in our sample. 
The average number of metastases and the median metastasis 
size in our sample were 9.3 and 0.05 cm3, compared with 
an average of four metastases and a size of 2.2 cm3 (44 times 
larger) in a study by Xue et al (11) and an average of 2.4 me-
tastases and a size of 0.47 cm3 (9.4 times larger) in a study by 
Bousabarah et al (12), which respectively reported metastasis 
sensitivities of 100% and 83%. Nevertheless, we found that 
performance for metastases smaller than 0.113 cm3 (approx-
imately 6 mm in diameter) and particularly for metastases 
smaller than 0.014 cm3 (approximately 3 mm in diameter) 
was inferior to the interrater reliability of neuroradiologists. 
It should also be noted that the interrater reliability is likely 
even higher in clinical practice, in which multiple readers (a 
radiologist, trainee radiologist if at a training institution, and 
radiation oncologist) typically review the images on a picture 
archiving and communication system and have the clinical 
history and prior imaging studies available for review.

In addition to poor sensitivity for very small metastases, limi-
tations of the current study include a lack of an external test set 
to evaluate the generalization of the model across more heteroge-
neous or multisite data. Overall, these limitations point toward 
the importance of data-sharing initiatives and public competi-
tions, such as those sponsored by the Radiological Society of 
North America (25) or the Multimodal Brain Tumor Segmenta-
tion Challenge (26). Larger sample sizes with more heteroge-
neous data should allow for improved algorithm performance 
and generalizability, particularly for difficult-to-detect small me-
tastases, as well as a clearer comparison of different algorithms.

Ideally, detection of metastases smaller than 6 mm should 
be improved prior to clinical implementation, and it is unlikely 
that the current level of performance could substantially improve 
radiologist metastasis detection. However, even an imperfect sys-
tem that missed smaller metastases, when integrated into clinical 
systems, has the potential to improve workflow efficiency for ra-
diologists and radiation oncologists by automatically generating 
preliminary radiology reports and treatment plans and contours 
for radiation treatment-planning software for metastases larger 
than 6 mm. This is supported by the time savings of the U-Net 
segmentations as compared with manual segmentations, which 
are required for radiation treatment plans. However, this would 
need to be assessed in a prospective fashion as part of future 

Figure 6: Relationship between manually segmented metastasis volume or number and U-Net–predicted volume or number 
and Dice scores. A, Scatterplot and Pearson correlation between manually segmented tumor volume and U-Net–predicted tumor 
volume. B, Scatterplot and Pearson correlation between manually segmented number of metastases per case and predicted number 
of metastases per case. Scatterplot and Pearson correlation between log10-transformed volumes and Dice scores for, C, individual 
patients and, D, individual brain metastases.
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study. Notably, a system that also performs longitudinal assess-
ment of lesions would also be ideal for clinical practice in which 
most studies are done in comparison with a prior study.

As artificial intelligence tools begin to integrate with clinical 
workflows for more precise quantitative assessments of disease 
burdens, it will be necessary to distinguish, quantify, and longi-
tudinally assess a variety of disease processes to assist with more 
accurate and efficient clinical decision making. The evaluation 
and treatment of brain metastases represents an excellent use 
case, and the results of the current study support its potential 
clinical value.
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