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ABSTRACT

Recent developments in artificial intelligence have generated increasing interest to deploy automated im-
age analysis for diagnostic imaging and large-scale clinical applications. However, inaccuracy from au-
tomated methods could lead to incorrect conclusions, diagnoses or even harm to patients. Manual in-
spection for potential inaccuracies is labor-intensive and time-consuming, hampering progress towards
fast and accurate clinical reporting in high volumes. To promote reliable fully-automated image analysis,
we propose a quality control-driven (QCD) segmentation framework. It is an ensemble of neural net-
works that integrate image analysis and quality control. The novelty of this framework is the selection
of the most optimal segmentation based on predicted segmentation accuracy, on-the-fly. Additionally,
this framework visualizes segmentation agreement to provide traceability of the quality control process.
In this work, we demonstrated the utility of the framework in cardiovascular magnetic resonance T1-
mapping - a quantitative technique for myocardial tissue characterization. The framework achieved near-
perfect agreement with expert image analysts in estimating myocardial T1 value (r = 0.987, p < .0005;
mean absolute error (MAE)=11.3ms), with accurate segmentation quality prediction (Dice coefficient pre-
diction MAE=0.0339) and classification (accuracy=0.99), and a fast average processing time of 0.39 sec-
ond/image. In summary, the QCD framework can generate high-throughput automated image analysis

with speed and accuracy that is highly desirable for large-scale clinical applications.

© 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Cardiovascular diseases (CVDs) are among the leading causes
of death worldwide, killing more than 15 million people in 2016
alone (WHO, 2017). Approximately 10% (7 million) of the UK
population have been diagnosed as having some form of CVD
(British Heart Foundation, 2018). The high risk of mortality signi-
fies the enormous value of tackling these diseases.

Cardiovascular magnetic resonance (CMR) is one of the ma-
jor non-invasive imaging modalities for comprehensive investiga-
tion of the heart in current clinical practice. In particular, quan-
titative T1 mapping is an emerging CMR technique for advanced
myocardial tissue characterization on a pixel-by-pixel level (Moon
et al., 2013; Messroghli et al., 2017), and can detect disease beyond
conventional CMR methods, such as late gadolinium enhancement
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(LGE) imaging. T1 mapping is designated as one of the six most in-
novative imaging methods for evaluating patients with heart fail-
ure by the European Society of Cardiology Heart Failure Associa-
tion (Celutkiene et al., 2018). CMR T1 mapping is increasingly used
in large-scale clinical studies (Petersen et al., 2013; Kramer et al.,
2015) to study various cardiac diseases, including the UK Biobank
imaging component (Petersen et al, 2013), which aims to scan
100,000 participants by 2021 (with > 48,000 datasets acquired al-
ready).

In current practice, extraction of useful clinical parameters, such
as the average myocardial T1 value, from a CMR T1 map requires
manual segmentation of the left ventricular (LV) myocardium,
which is a tedious, time-consuming and subjective process. In the
case of the UK Biobank imaging component (Petersen et al., 2013),
this could potentially require years of manual contouring for a
single analyst. While sharing work between multiple analysts can
speed up the process, it introduces inter-observer variability, re-
ducing consistency, which may increase the sample size required
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to detect primary endpoints. Hence, there is a pressing need for
processing large-scale CMR datasets consistently and efficiently. To
address this need, it is desirable to develop robust, fully-automatic
segmentation algorithms for advanced imaging techniques which
are also reliable in quality on a per-case basis.

However, popularly-used deep learning-based automatic seg-
mentation methods could still fail when analyzing CMR cine im-
ages, despite their overall high accuracies (Bernard et al., 2018). It
is important to detect these segmentation failures automatically to
avoid errors in diagnostic or research conclusions. Manual assess-
ment of automatic segmentation quality requires visual inspection
(Bai et al., 2018), at the least, and quantitative comparisons with
manual contouring. The time spent on such manual quality control
processes can offset the efficiency gained by automated segmenta-
tion.

1.1. Related work

Extensive research has been done on automating segmenta-
tion of CMR short-axis cine images for measuring LV ejection frac-
tion (LVEF), which can potentially be adapted for T1-map process-
ing. More than 70 segmentation algorithms, utilizing different ap-
proaches, various image-based information and statistical shape
models, have been reviewed for computer-aided segmentation of
CMR (Petitjean and Dacher, 2011; Peng et al., 2016). Recent deep
learning approaches require large training datasets, which are in-
creasingly available with large population studies, such as the UK
Biobank (Petersen et al., 2013). (Bai et al,, 2018) published excel-
lent results using a CNN-based cine MR segmentation algorithm,
trained on datasets from over 4000 subjects from the UK Biobank.
(Irving et al., 2017) also used deep learning for automated liver T1
map segmentation.

Ensemble deep learning segmentation models have been ap-
plied to various medical imaging applications. For example,
(Zheng et al., 2019) combined 2D and 3D segmentation models
with a meta-learner to segment 3D cardiac MRI data. (Kang and
Gwak, 2019) combined two ResNet-based models for polyp seg-
mentation in colonoscopy images. (Winzeck et al., 2019) used an
ensemble of 5 CNNs to segment ischemic lesions in brain MRL
These studies showed that ensemble neural networks can improve
segmentation accuracy. Further, the use of ensemble deep neural
networks to estimate uncertainty in image classification has been
proposed in (Lakshminarayanan et al., 2017). Recent research found
that ensemble deep neural networks can make highly diverse pre-
dictions, compared to other state-of-the-art approaches such as
Bayesian neural networks (Fort et al., 2020). Thus, it is a promising
approach to estimate uncertainty. However, the application of en-
semble deep neural networks for predicting segmentation quality
remains unexplored.

For cardiac T1 mapping, there is limited published literature on
automatic segmentation. A non-machine-learning approach was re-
cently proposed for automatic LV segmentation and regional anal-
ysis of myocardial native T1 values (Huang et al., 2018). However,
it was developed and validated only on a small cohort of healthy
controls (10 subjects), which did not capture the wide range of im-
age variability in larger databases of normal and pathological cases
commonly encountered in real-life clinical practice. (Fahmy et al.,
2018) proposed a fully-convolutional neural network method to
segment T1 weighted images to reconstruct myocardial T1 maps.
However, no mechanism of segmentation quality control for T1
mapping has been proposed.

Early research on segmentation quality control in medical imag-
ing focused on addressing interobserver variability by deriving a
reference standard from multiple manual or automatic segmen-
tations. To estimate such reference segmentation, a simple label
voting scheme can be deployed (Li et al., 2011), as well as using
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probabilistic schemes (Warfield et al., 2004; Cardoso et al., 2013),
which maximize expectation to obtain a reference segmentation.
(Li et al., 2011) showed that the label voting scheme achieved
better performance over probabilistic schemes in the empirical
results.

Recent works of Bayesian deep learning attempted to estimate
segmentation uncertainty in medical imaging. One approach is
to generate multiple segmentation variants to compare variabil-
ity using probabilistic neural networks (Kohl et al., 2018; Baum-
gartner et al, 2019) or random dropout (Roy et al., 2018). An-
other approach is to perform calibration when training a Bayesian
neural network, such that the output probability of the voxel-
wise label matches the expected accuracy (Jena and Awate, 2019).
Among these studies, only (Roy et al., 2018) attempted to predict
commonly-used segmentation evaluation metrics such as Dice sim-
ilarity coefficient (DSC), albeit with high discrepancy. Recent re-
search has found that the current state-of-the-art Bayesian neural
networks are prone to making very similar predictions, whereas
ensemble deep neural networks tend to be more diverse in mak-
ing predictions (Fort et al., 2020). In other words, it is more likely
for Bayesian neural networks to make similarly bad segmentation
samples than for the ensemble approach. These similarly bad sam-
ples can lead to undesired overestimation of segmentation qual-
ity. In contrast, ensemble deep learning can benefit from higher
prediction diversity, to achieve more robust segmentation quality
control. Furthermore, the randomness inherent in the Bayesian ap-
proach with Monte Carlo sampling comes with a tradeoff on re-
peatability, which is an important feature for troubleshooting.

More recent work addressed segmentation quality control by
predicting DSC in the absence of manual segmentation as a refer-
ence standard. As DSC is widely adopted in the image analysis re-
search community to evaluate segmentation, it can serve as a con-
sistent and familiar indicator of segmentation quality. For example,
(Kohlberger et al., 2012) proposed to predict DSC using machine
learning with handcrafted feature engineering. One limitation of
this approach is the scalability of handcrafting a wider spectrum
of descriptive features.

A framework based on Reverse Classification Accuracy (RCA)
(Valindria et al., 2017) was introduced to predict multi-organ seg-
mentation quality, by comparing with a database of multiple atlas-
based reference segmentations. Subsequently, the RCA framework
was validated using random forest-based segmentation on CMR
cine images (Robinson et al., 2017; 2019). Although the RCA frame-
work was also validated on CNN-based segmentation, the quality
prediction for CNN-based segmentation had a higher mean abso-
lute error (MAE), compared with those for random forest-based
and multi-atlas segmentations (Valindria et al., 2017). Furthermore,
the RCA framework was computationally intensive, requiring 11
minutes of processing to assess the quality of a single segmen-
tation (Robinson et al., 2019), which is not suitable for real-time
clinical applications.

To support real-time clinical applications, (Robinson et al., 2018)
proposed a CNN-based regression to directly map random forest-
based segmentation outputs to quality control in the form of pre-
dicted DSC. However, this method was validated for random forest-
based segmentation but not the popular deep learning-based seg-
mentation.

In summary, the majority of the current automated segmen-
tation algorithms in CMR (Bernard et al., 2018; Bai et al., 2018;
Petitjean and Dacher, 2011; Peng et al., 2016; Irving et al., 2017;
Zheng et al., 2019; Kang and Gwak, 2019; Winzeck et al., 2019;
Huang et al., 2018; Fahmy et al., 2018) do not come with seg-
mentation quality control mechanisms suitable for automatic pro-
cessing pipelines in real-life clinical applications. Moreover, quality
prediction algorithms have not progressed to utilize the predicted
scores to further improve segmentation accuracy.



E. Hann, LA. Popescu, Q. Zhang et al.

In a proof-of-principle study, we recently proposed the qual-
ity control-driven (QCD) framework (Hann et al., 2019) to segment
CMR cine images of the aorta in cross-section to estimate aortic
distensibility. The QCD framework exploits the differences among
multiple candidate segmentations of aortic sections, not only al-
lowing prediction of segmentation accuracy in real-time, but also
ultilizing this accuracy prediction to further improve segmentation
on a per-case basis. The framework has only been validated on seg-
mentation of simple circular aortic sections in (Hann et al., 2019)
as a proof of concept. In this work, we demonstrate that the QCD
framework is generalizable by applying it to left ventricular seg-
mentation of T1-mapping images.

1.2. Contribution

In this work, we substantially advanced the QCD framework for
automatic segmentation of CMR T1-mapping for real-time clini-
cal applications with quality control. CMR T1-mapping is an ad-
vanced imaging technique for pixel-wise quantitative myocardial
tissue characterization, and is deemed one of the 6 most inno-
vative imaging methods for assessing patients with heart failure
by the European Society of Cardiology in 2018 (Celutkiene et al.,
2018). The novel contributions of this work include the adaptabil-
ity of the QCD framework to:

1. Segment a substantially different and more complex anatomi-
cal structure (the doughnut-shaped left ventricular myocardium
in short-axis), compared to simple circular cross-sections of the
aorta in (Hann et al,, 2019). This is then generalizable to other
common forms of cardiovascular imaging, such as echocardio-
graphy and cardiac computed tomography, where segmenta-
tion of the left ventricular myocardium is also commonly per-
formed.

2. Tailor to a completely different CMR imaging protocol (quanti-
tative mapping) from traditional cine imaging in (Hann et al.,
2019), in terms of MR methodology, imaging parameters, types
of artefacts, and clinical purposes.

3. Further validate improvement of segmentation accuracy on-the-
fly, by selecting the most optimal LV segmentation from mul-
tiple candidates based on predicted accuracy. This concept is
novel to automatic segmentation and quality control in diag-
nostic imaging, requiring deeper validation for various applica-
tions.

4, Include a visualization tool for segmentation agreement (novel
in this work), to provide visual insights into the traditional
“black-box” nature of deep-learning-based image processing,
with traceability into the segmentation quality control process.

5. Additionally, we highlight a potential flaw of the Pearson cor-
relation, commonly used as a metric for segmentation accu-
racy prediction. The Pearson correlation between predicted and
actual observed DSCs is dependent on the performance of
the segmentation method. It can be paradoxically worse for a
better-performing method, and thus is not always suitable for
evaluating quality prediction.

2. Material and methods

In this section, we first describe the origin of the data used in
the development and testing of the novel quality control-driven
(QCD) framework. Then, we introduce the methodology of the seg-
mentation component of the framework, and the methodology of
the automatic quality control of segmentation, with segmentation
quality visualization. We also present the detailed implementation
and evaluation of the QCD framework.
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2.1. Material

The development and testing data comprised of 2383 CMR
native (pre-contrast) T1 maps using the ShMOLLI T1-mapping
method (Piechnik et al., 2010), zero-padded to 384 x 384 pixels.
All T1 maps were short-axis views of the left ventricular (LV) my-
ocardium, varying from basal to very apical slices. Endo-and epi-
cardial contours were manually segmented as part of our prior
research studies (Dall’Armellina et al., 2012; Ferreira et al., 2012;
Dass et al., 2012; Piechnik et al., 2013; Bull et al., 2013; Karamitsos
et al., 2013; Ferreira et al., 2013; 2014b; Ntusi et al., 2014; Ferreira
et al.,, 2014a; Mahmod et al., 2014; Ntusi et al., 2015; Levelt et al.,
2016; Ferreira et al., 2015; Ntusi et al.,, 2016; Ferreira et al., 2016).
The manual contours served as the ground truth (GT) segmenta-
tions for evaluating automatic segmentations and for deriving the
reference DSCs to train and test the automatic segmentation qual-
ity predictors. The data were randomly split into 80% training data,
9% validation data, and 11% testing data.

2.2. Multiple segmentation models

The QCD framework uses multiple segmentation models, where
each model m e M generates a segmentation S™ of an input T1
map (Fig. 1A). S™ is a binary pixel-classification mask where the
LV myocardium is labeled as 1, and other pixels as 0.

There are two types of segmentation models in the framework:
single models (Fig. 1C) and combined models (Fig. 1D). For an in-
put T1 map, each single model, such as a single convolutional neu-
ral network, can independently generate a segmentation (Fig. 1B).
In this work, a range of fully convolutional neural networks of dif-
ferent depths, such as U-net 7, U-net 11, and so on, are used to
make a diverse set of candidate segmentations. This is analogous
to the spread of expertise in a multidisciplinary clinical team. Fur-
thermore, these single model segmentations can also be combined
via a label voting scheme (Li et al., 2011) to generate additional
segmentation candidates, which we term combined segmentations.
All available single model segmentations, denoted as J, of an input
T1 map are summed up in a pixel-wise fashion, then thresholded
by te{l,2,..., | J |} such that
K (u,v) = {1 b Tyl =t (1)

0 otherwise,
where (u,v) is a pixel coordinate in the T1 map, and K* denotes
a combined segmentation generated with a threshold parameter
t. This generates | J | (the number of neural networks used) addi-
tional segmentation variants for each input image.

2.3. Visualization of segmentation agreement

The agreement of the single neural network model segmen-
tations is visualized by color-coding the pixel-wise summation
map >, J(u,v) in Eq. (1). It highlights the degree and location
of segmentation differences among single neural network models
(Fig. 1E), and unmasks the “black-box” nature of the deep learning-
based segmentation, facilitating transparency of the quality control
process in the framework. In addition, as combined segmentations
are generated similarly by overlaying the single model segmenta-
tions pixel-by-pixel, the visualization also shows the agreement of
the combined segmentations.

2.4. Automatic quality control of segmentation

In addition to fully-automatic segmentation, the framework is
capable of generating an inherent quality score of any segmen-
tation S™ produced by a model m e M, in the absence of the
manual ground truth (GT) segmentation S¢T. M denotes all the
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Fig. 1. Overview of the multiple neural network framework for integrated segmentation and quality control. For simplicity, this illustration shows an example of 3 single
independent neural networks. (A) A T1 map is analyzed by (B) independent segmentation models to output (C) single-model segmentations. Then, the single-model seg-
mentations are passed to a label voting scheme to generate (D) combined-model segmentations. (E) In addition, the agreement of the segmentation can be visualized. (F) A
DSC matrix is generated from both single model and combined-model segmentations for (G) DSC predictions with regression models. (H) The final segmentation is chosen
based on the DSC prediction, and the corresponding predicted DSC is output as (I) the final quality control score.

available single and combined models in the framework. For any
segmentation S™, the framework predicts Dice similarity coeffi-
cient DSC(S™, S6T) as the segmentation quality score (Fig. 1G).

The quality scoring exploits the differences in segmentation
among all available candidate segmentation outputs to generate
the quality score. The quality scoring relies on a negative relation-
ship between the segmentation differences and the segmentation
quality.

In order to establish this relationship, we quantify and compare
the differences in segmentation among the multiple segmentation
models implemented in M. DSC(S™, S") is computed for every pair
of distinct models (m,n) e M x M and m # n. Hence, we obtain an
association matrix of inter-segmentation Dice coefficients DSC(S)
(Fig. 1E), where S = (S™,S",...) represents all the available seg-
mentations in the framework for an input T1 map.

Subsequently, for each segmentation model m e M, a quality
scoring model is needed to predict DSC(S™, ST) of any image. The
Dice coefficient prediction DSCpi (S) is based on multiple linear re-
gression, such that

DSCn(S) =am+ Y. BY-x.
xeDSC(S)

(2)

where oy and B, are the linear regression parameters, trained in-
dividually for each segmentation model m € M using the training
data, where the ground truth manual segmentation S¢7 is available
to compute DSC(S™, S¢T),

2.5. Quality control-driven segmentation

The availability of quality prediction for each candidate seg-
mentation in the framework enables on-the-fly selection of the fi-
nal segmentation from all the available segmentations. For a T1
map, the segmentation S™ generated by a model me M is au-
tomatically assigned a quality score, in the form of a predicted
Dice similarity coefficient DSCin (S). Assuming that the predicted
Dice coefficient (Fig. 1G) is accurate, the segmentation S™ with
a higher DSCi(S) is expected to achieve a higher DSC(S™, SCT).
Hence, we select the segmentation with the highest quality score
mameM(D/\SCm(S)) to be the final, most optimal segmentation S*,
for each T1 map (Fig. 1H). We expect that this novel quality
control-driven (QCD) approach can improve the overall segmenta-
tion accuracy.

Two additional variants of the QCD segmentation are consid-
ered in this work for comparison. The default QCD framework in-
cludes both single models and combined models as candidates.

The final segmentation is selected based on the highest pre-
dicted DSC. The first variant (QCD-Lite) is similar to the default
QCD framework. The only difference is that the combined mod-
els are excluded from the candidates for the QCD-Lite. This cre-
ates a “lighter” version of the default QCD framework. The same
independently-trained single models from the default QCD are
used as candidates in the QCD-Lite. The DSC predictors are re-
trained to accommodate fewer candidate models. This is a prelim-
inary attempt to assess how the choice of candidate models im-
pacts on the segmentation performance. Extending upon the de-
fault QCD framework, the second variant (weighted average QCD)
assigns the corresponding predicted DSC as a weight to each candi-
date segmentation. It then outputs a weighted average segmenta-
tion as the final output, instead of selecting only one optimal seg-
mentation. The DSC prediction for the final segmentation is also a
weighted average. This is to explore the possibility of further im-
proving the QCD framework.

2.6. Implementation

For the specific implementation of the QCD framework, 6 inde-
pendent U-nets (Ronneberger et al., 2015) were included into Nets
to perform automated LV myocardium segmentation. Each of them
varied in hyper-parameters, such as the number of convolutional
layers, pooling layers, and the number of skip connections. The
smallest neural network implemented had only 7 convolutional
and transposed convolutional layers, and 1 skip connection, while
the deepest neural network had 27 layers and 6 skip connections.
We refer to each of the neural networks by the number of con-
volutional and transposed convolutional layers as follows: U-net 7,
U-net 11, and so forth, up to U-net 27. The wide range in capacity
of the networks is intentional to introduce more diverse variation
in segmentation. The neural networks were independently trained,
using the Adam optimizer (Kingma and Ba, 2014) to minimize the
cross-entropy loss in the training data of CMR T1 maps. The frame-
work was trained and validated on a single desktop computer us-
ing a single NVIDIA Titan X GPU, with 12GB onboard memory and
3072 cores. Each convolutional neural network of the ensemble
was independently trained for 60 epochs.

2.7. Evaluation methods

For each model m € M, the segmentation performance was
evaluated by averaging DSC(S™, S¢T) between the automated
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Table 1
Image quality categories for T1 maps described by expert human operators.
Category Description Proportion
Excellent Well-defined borders of the myocardium with good contrast. Typically, mid-ventricular slice. Easy to 5.2%
contour with high consistency.
Good Overall well-defined borders of the myocardium with reasonably good contrast. Requires some caution 23.5%
when contouring. Moderately easy to contour, but prone to higher variability than easy cases.
Acceptable  Ambiguous borders of the myocardium with poor contrast. Requires caution when contouring. Prone to 65.3%
high variability.
Poor Ambiguous borders of the myocardium with poor contrast. Observable pathologies or artefacts. 6.0%
segmentation S™ and the manual segmentation ST of T1 maps in Agreement Manual

the validation data.

The accuracy of the DSC prediction was also evaluated using
the validation data by mean absolute error (MAE) and Pearson cor-
relation coefficient (r) of the prediction DSCS and the prediction
target DSC(S™, S¢T) for each model m € M.

The DSC prediction was further evaluated for binary classi-
fication of good (observed DSC > 0.7) and poor (observed DSC
< 0.7) segmentation. The threshold of 0.7 was chosen based on
(Robinson et al., 2019). The binary classification was evaluated ac-
cording to the accuracy (TP+TN)/(TP+FP+ TN + FN), the true
positive rate TP/(TP +FN), and the false positive rate FP/(FP +
TN), where TP, FP, TN, and FN respectively denote the number of
true positive cases (observed DSC > 0.7 and predicted DSC > 0.7),
false positive cases (observed DSC < 0.7 and predicted DSC > 0.7),
true negative cases (observed DSC < 0.7 and predicted DSC < 0.7),
and false negative cases (observed DSC > 0.7 and predicted DSC
< 0.7). The binary classification can further demonstrate the prac-
tical usage of the DSC prediction in the QCD framework.

The estimated myocardial T1 value, calculated by averaging the
T1 values of all pixels in the myocardium, was identified by the au-
tomated method, for each T1 map in the testing data. Similarly, we
established the ground truth T1 value using the manual segmenta-
tion. The T1 estimation was evaluated using mean error, mean ab-
solute error (MAE), and Pearson correlation (r) between the esti-
mated values and the ground truth. In addition, the relative errors
of T1 were categorized by manual image quality assessments by a
consultant cardiologist (AB), who classified the T1 maps into 4 lev-
els of quality: ‘excellent’, ‘good’, ‘acceptable’, and ‘poor’ (Table 1).

To demonstrate generalizability, the QCD segmentation frame-
work was trained and tested on the Sunnybrook cardiac dataset
(Radau et al., 2009), for a seperate application. The evaluation re-
sults are presented in Appendix D.

3. Results

The neural networks and the DSC predictors were trained on
1906 CMR T1 maps, and were subsequently evaluated on previ-
ously unseen validation data of 220 T1 maps. With a single GPU,
the framework took 15 minutes and 21 seconds (including data 1/O
time) to segment the entire dataset of 2383 T1-maps and produce
the quality control scores. On average, one image took 0.39 second
to process.

3.1. Accuracy of segmentation

Among the 12 individual segmentation models investigated for
the QCD framework, Combined Model 3 had the highest mean
observed DSC of 0.8371 (Table 2), followed closely by Combined
Model 2 (DSC=0.8368), both outperforming the deepest single
neural network U-net 27 (DSC=0.8313).

Pictorial examples of the T1 maps and their corresponding seg-
mentations can be seen in Fig. 2. Specifically, Fig. 2M-P shows an
example that Combined Model 3 generated more robust segmen-
tation than U-net 27. In this case, U-net 27 misclassified the breast

QCD-Seg

Visualization Segmentation

Combined
Model 3

Q |

Fig. 2. Examples of T1 maps, agreement visualizations, and segmentations. (A-D)
The top row is an example in which there was high agreement among segmentation
models, as shown in (B) the agreement visualization. Hence, the predicted DSC of
the QCD output (C) was high (0.8933), which was consistent with the DSC (0.8996).
(E-H) The second row is an example in which there was some disagreement among
the segmentation models, as shown in (F) the agreement visualization. Hence, the
predicted DSC of the QCD output (G) was low (0.6550), which was consistent with
the DSC (0.6425). (I-L) The third row is an example in which the agreement visu-
alization (J) showed high disagreement among the segmentation models, possibly
due to the heavy wraparound artefact. The predicted DSC was low (0.5404) due to
the disagreement despite that the DSC was much higher (0.7912). In clinical prac-
tice, this T1 map (I) should be treated with caution. Thus, a lower predicted DSC
can serve as a useful alert. (M-P) The last row shows an example in which (P) the
deepest single neural network (U-net 27) falsely classified the breast implant (red
arrow in M) as part of the myocardium. On the other hand, (O) Combined Model 3
produced more robust segmentation. (Q) is a color bar which indicates the degree
of agreement in the visualizations, with 1 being the lowest agreement to 6 being
the highest agreement. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

implant (indicated by a red arrow in Fig. 2M) as the myocardium.
This case demonstrated the advantage of the on-the-fly selection of
the final segmentation combined with the label voting approach,
instead of using a fixed segmentation model or a fixed weighted-
average segmentation.

The QCD framework and the QCD-Lite variant further outper-
formed any individual segmentation models and demonstrated the
best performance in the LV myocardium segmentation on the val-
idation data, with a DSC value of 0.8508 and 0.8503, respec-
tively (Table 2). The QCD framework and the QCD-Lite also out-
performed the weighted average QCD variant, which obtained a
DSC of 0.8225. This demonstrated the effectiveness of the optimal
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Segmentation performance evaluated in mean Dice similarity coefficient (DSC) and standard devi-
ation (SD) with manual segmentation as the ground truth, and DSC prediction performance evalu-

ated in mean absolute error (MAE) and Pearson correlation (r). All r had p < 0.0005.

Segmentation Model Mean DSC (SD) MAE r

U-net 7 0.6688 (0.1715) 0.0312 0.95
U-net 11 0.8091 (0.0738) 0.0368 0.73
U-net 15 0.8301 (0.0678) 0.0380 0.66
U-net 19 0.8264 (0.0547) 0.0384 0.43
U-net 23 0.8309 (0.0556) 0.0382 0.57
U-net 27 0.8313 (0.0578) 0.0399 0.42
Combined Model 1 0.7896 (0.0769) 0.0463 0.60
Combined Model 2 0.8368 (0.0598) 0.0405 0.47
Combined Model 3 0.8371 (0.0565) 0.0382 0.52
Combined Model 4 0.8288 (0.0576) 0.0354 0.73
Combined Model 5 0.8087 (0.0725) 0.0333 0.88
Combined Model 6 0.6883 (0.1779) 0.0335 0.96
QCD 0.8508 (0.0541) 0.0339 0.53
QCD-Lite 0.8503 (0.0562) 0.0344 0.58
Weighted Average QCD 0.8225 (0.0590) 0.0315 0.71

Frequencies of Segmentation Models Selected for

Table 3

QCD-Seg Agreement of the estimated T1 values using the automated QCD seg-
mentation compared with manual segmentation in the testing data.
model
3.6%0.9%5 o9 BWU-net 11 € Pearson Correlation 0.987 (p <.0005)
I
16.8% | 14.1% U-net 15 Mean Error (SD) -4.6ms (16.7)
=3‘nei ;g Mean Absolute Error (SD) 11.3ms (13.0)
/ -ne
‘ /2'7% MU-net 27

Combined Model 1
Combined Model 2
B Combined Model 3
B Combined Model 4
B Combined Model 5

15.5%

Fig. 3. Pie chart of frequencies of the segmentation models selected for the final
segmentation in the QCD framework. It shows that outputs generated by Combined
Models 2, 3, 4 were most frequently selected as the optimal segmentations, ac-
counting for more than half of the cases in the validation data. No segmentation
generated by U-net 7 or Combined Model 6 was selected by the QCD framework.

segmentation model selection with the highest predicted quality
obtained on-the-fly. This is similar to our clinical experience that
averaging may fall short when multiple human analysts have dif-
ferent training and experiences. The segmentations produced may
not form linear relationships. Combined Models 2, 3 and 4 con-
tributed the most to the QCD segmentation, accounting for more
than half of the final segmentation outputs (Fig. 3).

3.2. Visualization of segmentation agreement

The agreement visualization of segmentation shows a spatial
map of agreement among the multiple single neural networks. Ad-
ditional examples of the agreement visualization can be seen in
Fig. 2. Fig. 2Q is the color bar of scale from 1 to 6, indicating
the number of single neural networks which identify a particular
pixel as the myocardium, hence showing the extent of agreement
among the neural networks. Fig. 2B shows an agreement visualiza-
tion with generally high degree of segmentation agreement across
the myocardium segmentation. Thus, the automated segmentation
(Fig. 2C) was also expected to highly agree with the manual seg-
mentation (Fig. 2D). Fig. 2F shows that the neural networks dis-
agreed with each other mostly at the apical anterior wall. This is
the same region where the automated segmentation (Fig. 2G) dif-
fered from the manual segmentation (Fig. 2H). Fig. 2] shows gener-
ally high disagreement among the neural networks across the my-
ocardium, possibly due to the heavy wraparound artefact in the
T1 map (Fig. 21). Thus, a low predicted DSC was expected. Fig. 2N
shows a high disagreement at the breast implant (purple-colored

pixels). These examples show that the agreement visualization can
highlight the regions where disagreements happen and provide in-
sights into the quality control of the segmentation process.

3.3. Accuracy of segmentation quality control

The MAEs for the DSC prediction ranged from 0.0312 to 0.0463,
for all implemented models (Table 2), indicating overall good pre-
diction of quality control for all the candidate segmentations, sub-
stantiating the validity of the QCD framework. The MAE in predict-
ing the DSCs for the QCD framework was 0.0339 (Table 2). Multiple
linear regression coefficients for the DSC prediction of each candi-
date segmentation model are provided in Table A.1.

The Pearson correlation of the predicted DSCs and the observed
DSCs was calculated for each model (Table 2), and is often used
to assess the performance of segmentation quality control meth-
ods. Fig. 4A shows high correlation (r = 0.92, p < .0005) for the
DSC prediction of all the candidate segmentations. This indicates
that the DSC prediction can estimate a wide range of segmenta-
tion quality for all the candidate segmentations. Interestingly, the
correlations measured individually for the segmentation models
(Table 2) show that the Pearson correlation tended to be stronger
if the segmentation model performed worse in terms of mean DSC,
and, conversely, weaker if the segmentation model performed bet-
ter. Fig. 4B and C explain the relation using the scatter plots of
the predicted DSCs and the observed DSCs for U-net 7 and the
QCD final segmentations, respectively. For the shallowest U-net
7, a strong linear correlation (r = 0.95, p <.0005) can be clearly
observed as the data points spread along the identity line from
0.19 to 0.90 (Fig. 4B). However, for the QCD final segmentations,
the Pearson correlation (r = 0.53, p < .0005) of quality control was
weak (Table 2) despite the high mean DSC and the low MAE in the
DSC prediction, as the data points in the scatter plot cluster around
0.59 to 0.95 (Fig. 4C). Therefore, the Pearson correlation is not nec-
essarily a good metric for evaluating the quality control component
in this work, and may be misleading when the accuracy of the seg-
mentation models is very high.
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Predicted DSC vs Observed DSC for All Candidate Models
(Pearson r=0.92, p<0.0005)
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Fig. 4. The Pearson correlation coefficient is not necessarily an accurate indicator of quality prediction performance. Scatter plots of the predicted vs the observed
DSCs are shown for: (A) all the candidate segmentations in the QCD framework, (B) U-net 7, and (C) the final segmentations selected by the QCD framework. The highest
classification accuracy (ACC) of good (observed DSC > 0.7) and bad (observed DSC < 0.7) segmentations is seen in (C) the final segmentations selected by the QCD framework
(ACC=0.99), compared to (A) all the candidate segmentations (ACC=0.96) and (B) U-net 7 (ACC=0.94). Although high correlations were observed for (A) all the candidate
segmentations (r = 0.92) and (B) U-net 7 (r = 0.94), a much weaker correlation was obtained for (C) the final QCD segmentations (r = 0.53), which had a better segmentation
performance (observed DSC between 0.59-0.95) and despite having the highest accuracy (ACC=0.99).

The DSC prediction in the QCD framework was further eval-
uated for binary classification of good (observed DSC > 0.7) and
bad (observed DSC < 0.7) segmentations. The evaluation showed
high classification accuracy (ACC) for all the candidate segmenta-
tions (ACC=0.96, Fig. 4A), U-net 7 (ACC=0.94, Fig. 4B), and the final
segmentations selected by the QCD framework (ACC=0.99, Fig. 4C).
High true positive rates (TPR) were also achieved: 0.99 for all the
candidate segmentations, 0.94 for U-net 7, and 1.00 for the QCD fi-
nal segmentations. In addition, the false positive rates (FPR) were
reported: 0.25 for all the candidate segmentations, and 0.04 for U-
net 7. Only 3 false positive cases, with high predicted DSCs (> 0.7)
but low observed DSCs (< 0.7), were found for the 220 QCD final
segmentations. These results demonstrated that the DSC prediction
can differentiate good and poor segmentations for quality control
purpose.

The 3 false positive cases for the QCD segmentations were
identified (Fig. C.1). The automatic segmentations (Fig. C.1A-C) for
these cases appeared acceptable after review for practical use de-
spite having low observed DSCs. The manual segmentation masks
(Fig. C.1D-F) were excessively thin, potentially due to attempts by
the human operator to avoid partial volume when myocardial cov-
erage was not considered critical (Piechnik et al., 2013; ?). This

contributed to the low observed DSCs due to little overlap be-
tween the automatic segmentations and the thin manual masks.
Despite the low DSCs, the myocardial T1 values estimated by the
QCD agreed with the manual estimation to within +6.5%.

3.4. T1 value estimation

The QCD achieved the highest mean DSC (Table 2), and thus
was chosen for estimating the LV myocardium T1 values in the
testing data. The result showed a high degree of agreement for
the estimated T1 values between manual and automatic segmenta-
tions, with a mean error of -4.6ms, a mean absolute error (MAE) of
11.3ms, and a Pearson correlation r = 0.987 (p < .0005, Fig. 3). The
Bland-Altman plot (Fig. 5) showed consistent estimation of the T1
values, with a 95% confidence interval (CI) from -3.58% to 2.72% for
the differences between the automatic and the manual segmenta-
tions. There was no apparent correlation between the T1 estima-
tion error and the average T1, indicating that the error was not
dependent on the T1 value.

Further investigation found 11 outlier cases outside the 95% CI
range in the Bland-Altman plot (Fig. 5), where 7 cases were classi-
fied as ‘poor’ image quality, and 4 were ‘acceptable’.
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Fig. 5. Bland-Altman plot of agreement between T1 values estimated using auto-
mated and manual segmentations. Different colors indicate the image quality as
perceived by the expert human operator. Most of the points were in the range of
-3.58% to 2.72% difference. Cases outside of this range were “poor-quality” (7 cases)
and “acceptable” (4 cases).

4. Discussion

The novel real-time quality control-driven (QCD) approach was
successfully applied to CMR T1 mapping automated image seg-
mentation, with speed, accuracy, reliability, and visualization for
the purposes of real-world diagnostic medical imaging. This is
demonstrated by the use of the per-case DSC prediction to select
the most optimal segmentation on-the-fly from multiple interme-
diate candidates. This QCD framework achieved high agreement in
myocardial T1 values between the automated and the manual seg-
mentations. Furthermore, the fast processing speed of 0.39s/image
enables real-time clinical applications. In addition, the analysis of
the Pearson correlation and the segmentation performance ex-
posed an undesirable dependence between the two, showing that
the Pearson correlation may not always be a suitable evaluation
metric for quality prediction.

4.1. Comparisons with related work

The QCD framework demonstrated high accuracy in estimat-
ing LV myocardial mean T1 value in CMR images. This framework
showed high consistency with the manual estimation of the my-
ocardial T1 value, compared to the inter-observer variability be-
tween two human operators using the same T1-mapping method
in (Dass et al, 2012), which reported a Pearson correlation of
0.92 with the 95% CI of relative errors ranging from -4.7% to
3.3%. The QCD framework also showed a higher Pearson correla-
tion of T1 estimation than that reported by (Fahmy et al., 2018)
(r=0.72, p <.0001). (Huang et al., 2018) reported a small error
in estimating T1 values, with the mean relative absolute error
of 4.6%. However, only 10 healthy subjects were studied in their
work, which may not reflect the adaptability of their method to
the real-world clinical setting where a wide range of pathologies
exist.

The QCD framework demonstrated high accuracy in quality con-
trol by predicting the DSC of the segmentation, regardless of the
availability of manual segmentation as the ground truth. We iden-
tified existing CMR image segmentation quality control frame-
works for comparison, though it is important to note that the
training and testing data used were different. We achieved low
MAE (0.0339) compared with the RCA quality control frameworks
(Valindria et al., 2017; Robinson et al., 2017; 2019), in which the
reported prediction MAE was at least 0.044. A CNN-regression ap-
proach (Robinson et al., 2018) also reported a higher MAE (0.055)
in predicting the segmentation of the LV myocardium. The low
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MAE of the DSC prediction achieved by the QCD framework also
compares favorably with the dropout-based quality control method
(Roy et al., 2018), which appeared to have a high discrepancy in
predicting DSC. Unlike the QCD framework, the dropout-based ap-
proach does not have the advantage to utilize regression for more
accurate DSC prediction, due to the randomness inherent to this
approach.

The binary classification of good (observed DSC > 0.7) and poor
(observed DSC < 0.7) segmentations demonstrated high classifica-
tion accuracy of 0.96 for all the candidate segmentations and 0.99
for the final segmentations in the QCD framework. This is on par
with the results (classification accuracy of over 0.95) reported by
(Robinson et al., 2019).

The whole framework (both the segmentation and the quality
control) is faster (0.39 s/image) than the RCA framework, which
required 11 minutes to process a single image (Robinson et al.,
2019). Expectedly, the QCD framework, which utilized 6 fully con-
volutional neural networks, was slower than the single CNN used
in (Robinson et al., 2018), but only by a small fraction of a sec-
ond. This demonstrates that the fast processing speed of the QCD
framework permits real-time clinical applications.

4.2. Limitations and future work

The single final segmentation selection mechanism in the QCD
framework is flexible to include different segmentation methods,
and techniques to combine segmentations. Further research can be
done to assess potential benefits of incorporating a more diverse
variety of segmentation methods such as active contour mod-
els (Kass et al., 1988), or multi-atlas segmentation (Iglesias and
Sabuncu, 2015). The use of different segmentation algorithms can
potentially further strengthen the reliability of the segmentation
and the quality control of the framework by imposing anatomical
constraints used in active contour models or multi-atlas segmenta-
tion. Furthermore, future research can investigate the inclusion of
different techniques to combine single model segmentations, such
as by weighted averaging, as candidates to be chosen as the fi-
nal output in the QCD framework. With ever-advancing research in
medical image analysis, one of the strongest points of this frame-
work is that it can incorporate any prior and future classification
models as intermediate solutions, which may further improve both
accuracy and reliability of the overall classification process. In ad-
dition, research on better selection and choice of candidate seg-
mentation algorithms can be beneficial in further optimization of
the QCD framework.

In this work, we focused on the quality control of automated
segmentation, as a first step towards clinical translation of au-
tomated image post-processing. In the future, we aim to adapt
the presented quality control-driven framework to ensure relia-
bility of the extraction of clinical parameters from multimodal
data.

The performance comparisons of the segmentation and the
quality control methods between various publications need to
be treated with care due to potentially significant differences of
the datasets. The work presented is a proof-of-principle of the
QCD framework, derived using internal datasets; further training
and validation, including head-to-head comparisons of segmen-
tation and quality control performance, using large-scale exter-
nal datasets, such as the UK Biobank (Petersen et al., 2013), will
be beneficial for wider generalizability, and is future work in the
pipeline.

Further work is required to address in detail any potential chal-
lenges, i.e. data shift, or validating the QCD framework on a variety
of imaging modalities using large-scale external datasets, such as
the UK Biobank (Petersen et al., 2013). This will confirm the wider
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applicability of the QCD framework, to promote its utilization by
others in the medical imaging research community.

4.3. Clinical impact

Assuming equal variation in the automatic and the human es-
timates, the reported 95% CI range here in the Bland-Altman plot
translates to a small standard deviation of 1.3% for the mean per-
centage error, and 0.9% for the mean absolute percentage error.
Such high agreement in estimated T1 values between the au-
tomated and the manual segmentations implies that the auto-
mated segmentation can minimize the burden of manual process-
ing and improve time efficiency in both real-time clinical practice
and large-scale research, to consistently extract T1-related clin-
ical parameters at the level of human operators. For real-time
clinical application, the framework could be integrated into MRI
scanners to generate an immediate segmentation after an image
is acquired for instant availability for interpretation. For large-
scale clinical research and trials, the automation of segmentation
can reliably process tens of thousands of datasets, saving labor-
intensive processing and costs for processing large-scale imaging
databases.

Across all these applications, there is an added benefit from the
highly accurate quality prediction, which can reduce the effort to
manually screen the data for any suboptimal results. Future work
is pending to establish relevant quality thresholds, to further im-
prove reliability of the automated segmentation to identify error-
prone datasets in large-scale clinical data. This will help improve
robustness to detect and interpret outlier data without excessive
workload on human observers to manually score data quality. With
improved quality of clinical parameters and reduction in errors, it
may reduce sample sizes required for expensive clinical studies or
trials, saving resources.

4.4. Conclusion

The QCD framework for automated quality prediction improves
the accuracy and the robustness of the segmentation. The quality
control exploits differences among models to predict each segmen-
tation quality, without the need for manual contour ground truth.
The predicted quality score can also be used for binary classifi-
cation of segmentation quality. The selection of the most optimal
segmentation is performed on-the-fly using the quality prediction,
and significantly improves the accuracy above any individual net-
work or their combinations. The proposed segmentation agreement
visualization provides a simple tool to monitor the quality control
process. The validation on the cardiac magnetic resonance T1 map-
ping data shows wider adaptability of the framework. The auto-
mated estimates of T1 relaxation times showed near-perfect agree-
ment (r = 0.987, p < .0005; mean absolute error (MAE) of 11.3ms)
with the manual estimation used in clinical research, with a fast
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processing speed of 0.39s/image. The use of the QCD framework
could lead to real-time parameter extraction in clinical practice
and automation of labor-intensive tasks in large-scale clinical re-
search and trials. This can enable clinicians and healthcare person-
nel to spend more time with patients rather than performing te-
dious segmentation and quality control tasks.
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Appendix A. multiple linear regression coefficients for DSC
prediction
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Table A1

Multiple linear regression coefficients for the DSC predictors are shown. Each row represents a specific prediction target DSC (manual ground truth, target segmentation) with coefficients for the corresponding DSCs and an

intercept. Comb. denotes "Combined Model”.

DSC(target, DSC(target, DSC(target, DSC(target, DSC(target, DSC(target, DSC(target, DSC(target, DSC(target, DSC(target, DSC(target, DSC(target,
Prediction Target U-net 7) U-net 11) U-net 15) U-net 19) U-net 23) U-net 27) Comb. 1) Comb. 2) Comb. 3) Comb. 4) Comb. 5) Comb. 6) Intercept
DSC(Manual, 0.00 0.04 0.11 0.00 0.26 0.06 0.00 0.00 0.25 0.20 0.00 0.01 0.00
U-net 7)
DSC(Manual, 0.00 0.00 0.26 0.00 0.19 0.07 0.00 0.00 0.29 0.10 0.00 0.01 0.00
U-net 11)
DSC(Manual, 0.00 0.18 0.00 0.00 0.04 0.03 0.06 0.02 0.28 0.30 0.01 0.00 0.00
U-net 15)
DSC(Manual, 0.01 0.10 0.12 0.00 0.21 0.06 0.05 0.00 0.26 0.10 0.00 0.01 0.00
U-net 19)
DSC(Manual, 0.01 0.12 0.00 0.34 0.00 0.00 0.07 0.00 0.14 0.20 0.03 0.01 0.00
U-net 23)
DSC(Manual, 0.00 0.12 0.01 0.28 0.01 0.00 0.11 0.00 0.10 0.00 0.25 0.01 0.04
U-net 27)
DSC(Manual, 0.00 0.00 0.06 0.31 0.02 0.00 0.00 0.00 0.33 0.06 0.13 0.01 0.00
Comb. 1)
DSC(Manual, 0.01 0.00 0.00 0.53 0.07 0.01 0.11 0.00 0.00 0.01 0.17 0.01 0.00
Comb. 2)
DSC(Manual, 0.01 0.02 0.00 0.56 0.05 0.00 0.11 0.00 0.00 0.00 0.16 0.02 0.00
Comb. 3)
DSC(Manual, 0.00 0.06 0.01 0.29 0.01 0.00 0.11 0.31 0.00 0.00 0.14 0.00 0.00
Comb. 4)
DSC(Manual, 0.01 0.00 0.01 0.00 0.17 0.00 0.02 0.36 0.36 0.00 0.00 0.00 0.00
Comb. 5)
DSC(Manual, 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.27 0.32 0.20 0.03 0.00 0.00
Comb. 6)
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Appendix B. Examples of candidate segmentations for good quality and bad quality T1 maps

Two sets of example candidate segmentations are shown for an easy, good-quality T1 map (Fig. B.1) and a difficult T1 map affected by
an extracardiac structure (breast implant) (Fig. B.2). These examples illustrate the agreement among the candidate segmentations under
2 different scenarios. With a good quality T1 map, Fig. B.1 shows high agreement among the candidates with high DSCs of > 0.83. In
contrast, Fig. B.2 shows high disagreement, as some of the candidate segmentations failed differently, including falsely identifying the
breast implant as the myocardium, and failures to segment the whole myocardium. These demonstrate that segmentation differences from
a diverse set of candidates can be exploited to estimate segmentation quality.

Manual Visualization

O

DSC=0.84 DSC=0.89 DSC=0.89 DSC=0.89 DSC=0.90 DSC=0.90
Pred=0.83 Pred=0.87 Pred=0.88 Pred=0.88 Pred=0.88 Pred=0.88

Combined Combined Combined Combined Combined Combined
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

010100

DSC=0.90 DSC=0.90 DSC=0.90 DSC=0.89 DSC=0.89 DSC=0.83
Pred=0.86 Pred=0.88 Pred=0.89 Pred=0.88 Pred=0.88 Pred=0.84

Fig. B.1. Extended example of Fig. 2A-D showing high agreement among candidate segmentations for a good quality T1 map. The top left image shows the manual seg-
mentation and the top right image shows the visualization of the candidate segmentations. The rest shows the candidate segmentations from U-net 7 to U-net 27, and
the combined segmentations (Model 1 - Model 6). All the candidate segmentations consistently obtained high DSCs of > 0.83, as the good quality T1 map was easy to
segment. Combined Model 3 (in the red box) achieved the highest predicted DSC (0.89), thus its segmentation was selected as the final output by the QCD framework. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1
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Manual Visualization

O

DSC=0.59 DSC=0.69 DSC=0.77 DSC=0.80 DSC=0.54 DSC=0.49
Pred=0.57 Pred=0.69 Pred=0.76 Pred=0.74 Pred=0.58 Pred=0.57

Combined Combined Combined Combined Combined Combined
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

O Q

DSC=0.44 DSC=0.54 DSC=0.80 DSC=0.80 DSC=0.79 DSC=0.62
Pred=0.50 Pred=0.64 Pred=0.80 Pred=0.72 Pred=0.63 Pred=0.58

Fig. B.2. Extended example of Fig. 2M-P showing poor agreement in the candidate segmentation failures of a T1-map affected by an extracardiac structure (breast implant).
The top left image shows the manual segmentation and the top right image shows the visualization of the candidate segmentations. The rest shows the candidate segmenta-
tions from U-net 7 to U-net 27, and the combined segmentations (Model 1 - Model 6). When the candidate U-nets failed, they appeared to fail differently, as demonstrated
by U-net 7, 11, 23, and 27, obtaining a DSC of 0.59, 0.68, 0.54, and 0.49, respectively. U-nets 7 and 11 failed to form an annulus-like myocardial mask, whereas U-nets 23
and 27 falsely identified the breast implant as part of the myocardium. Despite the difficulty, U-nets 15 and 19, and Combined Models 3 and 4 successfully segmented the
myocardium, with DSCs > 0.77. This illustrates the importance of including a diverse set of candidate models. Combined Model 3 (in the red box) achieved the highest
predicted DSC (0.80), thus its segmentation was selected as the final output by the QCD framework. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Appendix C. Examples of false positive cases for binary classification of the QCD final segmentation quality

False Positive Cases (Predicted DSC 2 0.7 and Observed DSC < 0.7 )
for Binary Classification of QCD Segmentation Quality

Pred=076 /& _ | Pred=0.88

Qcb

Manual

Fig. C.1. False positive cases (high predicted DSC but low observed DSC) for binary classification of the QCD final segmentation quality. The segmentations in the top row
(A, B, C) were output by the QCD framework. These contours appeared acceptable and had high predicted DSCs (> 0.7). The bottom row (D, E, F) shows the corresponding
manual contours, which appeared excessively eroded by the human operator, a valid approach in some studies aiming to limit partial volume effects. In these cases, the
observed DSC values were “unfairly” low due to the low overlap between the narrow manual myocardial segmentations and the corresponding QCD outputs. Despite the low
DSCs, the myocardial T1 values estimated by the QCD segmentations agreed with the manual estimations to within +6.5%.
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Appendix D. Additional results: sunnybrook cardiac dataset

The Sunnybrook cardiac MRI short-axis SSPF cine dataset of 45 subjects was split into 38 training subjects and 7 testing subjects, with
one to two subjects chosen from each pathology or healthy group to be the testing data (Radau et al., 2009). Since both the endocardium
and the epicardium were contoured only at end-diastole (no epicardial contours at the end-systole), only the end-diastolic images were
used for training (355 images) and testing (65 images). In addition, the ground truth myocardial segmentation masks were derived by
subtracting the endocardial masks from the epicardial masks.

As the Sunnybrook dataset was relatively small in the context of deep learning applications, data augmentation was performed for the
training data by randomly rotating the images and masks within +10 degrees. 6 U-nets were independently trained on the augmented data
for up to 240 epochs to perform endocardial and myocardial segmentation. The epicardial masks were calculated post-hoc by adding the
endocardial masks and the myocardial masks. 6 combined segmentations were generated in addition to 6 candidate segmentations gener-
ated by the U-nets. Linear regression models were trained to exploit segmentation agreement among candidates to predict segmentation
quality. The final segmentation was selected based on the best predicted myocardial segmentation DSC.

Table D.1
Segmentation performance for candidate models and the QCD in mean Dice similarity coefficient (DSC). Comb.
denotes "Combined Model”.

Mean DSC (SD)

Model Myocardium Endocardium Epicardium

U-net 7 0.5900 (0.2302) 0.5028 (0.2406) 0.5908 (0.2420)
U-net 11 0.7533 (0.1697) 0.8731 (0.1582) 0.8914 (0.1579)
U-net 15 0.7952 (0.1341) 0.9165 (0.1267) 0.9389 (0.1215)
U-net 19 0.7795 (0.1578) 0.8895 (0.1695) 0.9291 (0.1408)
U-net 23 0.7943 (0.1370) 0.9122 (0.1337) 0.9371 (0.1233)
U-net 27 0.7838 (0.1375) 0.9051 (0.1357) 0.9254 (0.1300)
Comb. 1 0.7510 (0.1264) 0.8495 (0.1464) 0.8732 (0.1273)
Comb. 2 0.8033 (0.1333) 0.9137 (0.1293) 0.9362 (0.1223)
Comb. 3 0.8026 (0.1362) 0.9126 (0.1380) 0.9377 (0.1278)
Comb. 4 0.7899 (0.1439) 0.9029 (0.1583) 0.9323 (0.1372)
Comb. 5 0.7364 (0.1883) 0.8804 (0.1743) 0.9023 (0.1672)
Comb. 6 0.5888 (0.2544) 0.5131 (0.2566) 0.6116 (0.2616)
QCD 0.8039 (0.1355) 0.9162 (0.1303) 0.9403 (0.1194)

All the candidate segmentation models and the QCD were evaluated for the segmentation performance. Table D.1 shows the mean Dice
similarity coefficients (DSC) for segmentation of the myocardium, the endocardium, and the epicardium. The QCD framework obtained
the highest mean DSC for the myocardium at 0.8039 and for the epicardium at 0.9403, outperforming all the candidate segmentation
models. U-net 15 obtained the highest mean DSC for the endocardium at 0.9165, closely followed by the QCD at 0.9162. Although similar
segmentation performance has been reported by the prior art (Huang et al., 2009; Wijnhout et al., 2009; Jolly, 2009; Lu et al., 2009), the
QCD framework achieved the best segmentation performance with an added layer of the automated quality assurance.

For evaluation of the quality control component, mean absolute errors (MAE) and Pearson correlation coefficients (r) between the
predicted DSCs and the observed DSCs are reported in Table D.2. All of the DSC predictions achieved low MAEs within 0.0620, and high
Pearson r above 0.80. These results demonstrate the high accuracy for the DSC prediction.

Table D.2

DSC prediction performance in mean absolute error (MAE) and Pearson correlation coefficient (r). All r had

p < .0005.

Myocardium Endocardium Epicardium

Model MAE r MAE r MAE r
U-net 7 0.0354 0.98 0.0175 0.99 0.0119 0.99
U-net 11 0.0469 0.93 0.0252 0.98 0.0181 0.99
U-net 15 0.0538 0.86 0.0323 0.81 0.0249 0.92
U-net 19 0.0601 0.88 0.0296 0.97 0.0215 0.95
U-net 23 0.0539 0.86 0.0289 0.94 0.0158 0.98
U-net 27 0.0563 0.87 0.0273 0.94 0.0211 0.97
Comb. 1 0.0547 0.81 0.0365 0.92 0.0197 0.98
Comb. 2 0.0579 0.86 0.0286 0.92 0.0218 0.98
Comb. 3 0.0534 0.85 0.0247 0.96 0.0187 0.97
Comb. 4 0.0519 0.87 0.0280 0.97 0.0189 0.96
Comb. 5 0.0478 0.95 0.0277 0.98 0.0184 0.99
Comb. 6 0.0375 0.98 0.0231 0.99 0.0146 0.99
QCD 0.0620 0.87 0.0298 0.92 0.0191 0.98
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Fig. D.1. Scatter plots for predicted DSC (x-axis) versus observed DSC (y-axis) for the myocardium (A), the endocardium (B), and the epicardium (C).

Fig. D.1 shows 3 scatter plots of the predicted DSC versus the
observed DSC for the myocardium (Fig. D.1A), the endocardium
(Fig. D.1B), and the epicardium (Fig. D.1C), where most of the data
points cluster along the identity line, indicating high agreement
between the ground truth and the prediction. Furthermore, the
DSC prediction was extended to classify ‘good’ and ‘bad’ segmen-
tation with a threshold of 0.7. All the candidate models together
achieved a classification accuracy of 89%, 99%, and 99% for the
myocardium, the endocardium, and the epicardium, respectively.
For the QCD framework, high accuracies were also achieved for
the myocardium (92%), the endocardium (98%), and the epicardium
(100%). These results show that the quality prediction can be ex-
tended to achieve accurate classification of segmentation quality
also in cardiac cine applications.
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