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ABSTRACT: B-Cell lymphoma 2 (BCL-2) regulates cell death in
humans. In this study, combined multiscale in silico approaches and
in vitro studies were employed. A small-molecule library that
includes more than 210 000 compounds was used. The predicted
therapeutic activity value (TAV) of the compounds in this library
was computed with the binary cancer quantitative structure−
activity relationships (QSAR) model. The molecules with a high
calculated TAV were used in 26 individual toxicity QSAR models.
As a result of this screening protocol, 288 nontoxic molecules with
high predicted TAV were identified. These selected hits were then
screened against the BCL-2 target protein using hybrid docking
and molecular dynamics (MD) simulations. The interaction
energies of identified compounds were compared with two
known BCL-2 inhibitors. Then, the short MD simulations were carried out by initiating the best docking poses of 288 molecules.
Average MM/GBSA energies were computed, and long MD simulations were employed to selected hits. The same calculations were
also applied for two known BCL-2 inhibitors. Moreover, a five-site (AHRRR) structure-based pharmacophore model was
constructed, and this model was used in the screening of the same database. On the basis of hybrid data-driven ligand identification
study, final hits were selected and used in in vitro studies. Based on results of the time-resolved fluorescence resonance energy
transfer (TR-FRET) analysis, further filtration was carried out for the U87-MG cell line tests. MTT cell proliferation assay analysis
results showed that selected three potent compounds were significantly effective on glioma cells.
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Cancer-related deaths account for about one-eighth of all
deaths worldwide. Cancer is defined by the uncontrolled

growth and the proliferation of unusual cells.1 The risk of
developing cancer has doubled in the last 30 years.2 While
there were more than 17 million new cancer cases in the world
in 2018, the total number of deaths was about 9.6 million.2

Although the rate of cancer-related deaths has fallen
dramatically in recent years, it remains the most important
health problem worldwide.3 In addition to targeted cancer
treatments,4 hyperthermia,5 immunotherapy,6 antidotes/tox-
icity modifiers,7 resistance modulation,8 and alternative
formulations;9 even though they have serious side effects
radiotherapy and surgery are still leading the treatments of this
disease.10 Since a tumor poses a serious threat to human
health, it is important to find effective and specific antitumor
drugs. Although surgery and radiation are used to treat locally
limited cancers, drug therapy is required to kill metastatic
cancer cells.11

B-Cell lymphoma 2 (BCL-2) proteins are vital in controlling
cell death. Overexpression of BCL-2 proteins is usually directly
related to various types of cancer. Excessive expression of BCL-
2 in chronic lymphocytic leukemia (CLL) cells was found to
cause resistance to chemotherapy and tumor cell survival.

It is not clear how BCL-2 proteins affect apoptotic pathways,
but it is estimated that these proteins form important
homodimers and heterodimers by entering various protein−
protein interactions for their biological functions. Whether a
cell is prone to apoptosis depends on the heterodimer or
homodimer form of the BCL-2 family genes. The BCL-2 family
consists of two opposing groups: proapoptotic and anti-
apoptotic members. If proapoptotic proteins are high in the
cell, then the cell is prone to apoptosis.12 Proapoptotic
members are BAD, BAX, BID, BCL-Xs, BAK, BIM, PUMA,
and NOXA. These proteins are located in the cytosolic
domain. Cytochrome c and apoptosis inducing factor (AIF)
induce apoptosis by increasing secretion. Antiapoptotic
members are MCL-1, BCL-XL, and BCL-2. These proteins
are also located in the outer membrane of the mitochondria,
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the endoplasmic reticulum, and the nuclear membrane. They
provide pore formation and regulate ion transport. In
particular, they control the Ca2+ concentration in the cell.
They also inhibit apoptosis by blocking the release of AIF and
cytochrome c with the precursor forms of caspases.12−14

Apoptosis occurs in two ways: the intrinsic (mitochondrial)
pathway and the extrinsic pathway. Caspases are involved in
both signal paths.15−17 Venetoclax (ABT-199), a small,
bioavailable FDA-approved inhibitor, is particularly effective
and safe in the treatment of CLL and is effective at the
beginning of acute myeloid leukemia (AML). Navitoclax
(ABT-263) was discovered as a BCL-2 inhibitor with high
affinity (<1 nM) to BCL-2, BCL-W, and BCL-XL but not to
myeloid cell leukemia-1 (MCL-1) or BCL-2 related protein
A1.18 However, studies showing its activity as a chemo-
therapeutic agent on solid tumors is limited.19 Therefore,
novel, safe and potent BCL-2 inhibitors are needed. The
identification of new scaffolds as potential BCL-2 inhibitors
will be a step closer to finding appropriate effective therapy in
different cancer types. The development of potent inhibitors to
control the level of BCL-2 proteins has received much
attention in recent years. Thus, recently in silico guided
approaches were used to identify new inhibitors of BCL-2.20

The complexity and quantity of biological information
coupled with the rapidly increasing computational resources
and power, as well as the vision of more efficient therapy and
drug design, have created an increasing interest in computa-
tional biology and molecular simulations. Models created by
integrated molecular modeling and artificial intelligence
approaches using preclinical and clinical data provide new
tools to understand the dynamic and topological profiles of
drug targets, thus allowing us to design new therapeutics and
solutions.
Recently, in our research group, we have searched and

identified new BCL-2 inhibitors with molecular-modeling-
guided approaches and compared the success rates of the
correct identification of the hit compounds using docking-
based and molecular dynamics (MD)-based approaches.20

Therefore, in the current study, which is the continuation of
our effort for the identification of novel hits against BCL-2,
combined hybrid in silico multiscale molecular modeling
approaches and time-resolved fluorescence resonance energy
transfer (TR-FRET)-guided screening of a library of small
molecules was employed. Here, we slightly changed our
previously applied screening algorithm20 for the identification
of new BCL-2 inhibitors. In this study, virtual screening of a
library of molecules (Specs-SC-10 mg-Nov2018) containing
more than 210 000 small compounds identified with text
mining and integrated ligand- and target-based drug screening
methodologies was conducted, and new candidate hit
compounds have been proposed.
The indole fragment is an important biological subunit and

many FDA-approved drugs including anticancer compounds
involve indole or indole derivatives.20,21 An indole ring system
can be applied to other ring systems as well, such as
benzothiazole and benzimidazoles. These compounds are
also reported to have anticancer properties.22,23 Therefore, a
text mining technique was employed in this study, and the
molecules that include indole or its analogs were considered.
These filtered compounds were used in binary quantitative
structure−activity relationships (QSAR) models for the
calculation of their therapeutic activity value (TAV) as well
as their pharmacokinetic profiles. Moreover, a target-based

pharmacophore model (i.e., e-pharmacophore modeling) was
constructed, and this model was also used in the screening of
this database. Identified compounds from both analyses were
then used in molecular docking calculations and MD
simulations, and tightly binding compounds among the large
data set were identified.
Finally, we identified 15 potent hit compounds against BCL-

2 activity from two different approaches using combined
ligand-driven and target-driven based in silico methods.
Selected hits among these compounds were initially tested
by TR-FRET assay, and potent compounds validated by these
methods were used in cell-line-based in vitro tests. Potent,
effective, and safe BCL-2 inhibitors with new scaffolds were
found in the current work by employing hierarchical and
rigorous filtering methods.

■ MATERIALS AND METHODS
Binary QSAR Models. Successful drug design requires a

better understanding of the effect of the drug on the studied
disease at the molecular level. Before the investigation of
protein−ligand interactions, we aimed to filter out compounds
using ligand-based approaches. For this aim, a binary QSAR-
based platform called MetaCore/MetaDrug (MC/MD) from
Clarivate Analytics (https://portal.genego.com) was used.
MC/MD estimates the predicted values of therapeutic activity,
pharmacokinetics, and absorption, distribution, metabolism,
and excretion (ADME)/toxicity results for the investigated
compounds using binary QSAR models. In MC/MD, the
predicted TAVs are normalized to 0 and 1 (i.e., while 0 shows
inactive prediction, 1 indicates active molecules). The details
of MC/MD were explained in our previous papers.20,24 More
than 210 000 ligands used from Specs-SC small-compound
library were prepared in a text file (IUPAC format) by
MarvinSketch.25 This text file was scanned to determine indol-
based structures using an in-house Python-based text-mining
script, and selected compounds were screened in the MC/MD
“cancer QSAR” model. The identified active compounds by
MC/MD were further filtered with 26 toxicity QSAR models.
The cancer QSAR model used has following statistical

results: training set, 886; test set, 167; sensitivity, 0.89;
specificity, 0.83; accuracy, 0.86; MCC, 0.72. Finally, we
identified 288 compounds that show high therapeutic activity
against cancer and without any toxicity prediction.

Ligand Preparation. Identified compounds were prepared
with the OPLS-2005 force field26 using the LigPrep module27

of the Maestro Molecular Modeling Suit. The Epik module28

has been used at the physiological pH for the prediction of
ionization states. In ligand preparation, all possible stereo-
isomers/tautomers for each ligand were also produced.

Protein Preparation. The structure of the BCL-2 protein
was retrieved from RCSB Protein Data Bank (PDB ID
4LXD).29 The Prime module30 of Maestro was used in the
determination and fixing of missing side chains or backbones
and loops. Water molecules around the cocrystallized
compound within 5.0 Å were used in simulations, and others
were removed. The PROPKA and OPLS2005 force field were
used for ionization states and structural optimization,
respectively.31

Molecular Docking Calculations. Glide, which is a grid-
based docking program, was used to perform the molecular
docking studies.32 The Glide scoring function33 was used in
the calculations of docking scores of each screened compound
at the BCL-2 target. The binding pocket residues were
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considered by residues within a 10.0 Å vicinity of the
cocrystallized ligand. All compounds were screened at the
active site of the BCL-2 using Glide/SP (standard
precision)34,35 protocol, and 100 docking poses were requested
for each tested compound.36,37

MD Simulations. MD simulations were employed for the
complexes retrieved from the top docking poses, and up to 100
ns of production time was carried out by Desmond version 4.9
to analyze the time-dependent changes of structural and
dynamical properties.38 Protein−ligand complex structures
were placed in periodic orthorhombic boxes including the
TIP3P water model,39 and the box sizes “buffer size” option
was set to 10.0 Å in all three directions.40 To neutralize
systems, Na+/Cl− ions were used, and to mimic the
physiological conditions, 0.15 M NaCl solution was added.
Simulations were conducted in a constant temperature and
pressure environment (NPT ensemble). A 2.0 fs time step was
used in the integration steps. A Nose−Hoover thermostat41

and Martyna−Tobias−Klein methods42 were used for constant
temperature and pressure of the constructed simulations boxes
at 310 K and 1 bar, correspondingly.
Molecular Mechanics/Generalized Born Surface Area

(MM/GBSA). Complexes of protein/ligand trajectories during
the MD simulations were investigated by MM/GBSA to
predict the binding free energies of screened hit compounds.
The MM/GBSA studies were carried out by Schrodinger’s
Prime module.43 The trajectories throughout the MD
simulations were extracted at every 10 ps.30 A VSGB solvation
model44 and OPLS-2005 force field26 were used for the
refinement of poses within 3.0 Å from the ligand.
E-Pharmacophore-Based Database Screening. Ligand-

based and target-based methodologies are important ap-
proaches in in silico drug design and development studies. In
the e-pharmacophore-based database screening approach, the
advantages of ligand-based and target-driven based approaches
were combined for a fast screening of a large database of
compounds.45,46 With the e-pharmacophore approach, phar-
macophore sites can be obtained from available solved
protein−ligand complexes. Pharmacophore groups can be
identified from the bioactive conformer of a cocrystallized
compound preserving a maximum of seven pharmacophore
features as default. In this study, we used a well-known BCL-2
inhibitor Navitoclax analog. Hydrogen-bond acceptor (A),
hydrogen-bond donor (D), aromatic ring (R), positive
ionizable (P), and negative ionizable (N) are the pharmaco-
phore properties in PHASE pharmacophore modeling. The e-
pharmacophore hypothesis can be generated using a potent
compound at the binding pocket of the target protein. Using
the e-pharmacophore approach, pharmacophore sites were
generated based on the conformation of Navitoclax analog in
the BCL-2 active site (i.e., cocrystallized ligand at the 4LXD
PDB file). Pharmacophore hypothesis features were found to
be hydrogen-bond acceptor (A), hydrophobic group (H), and
three aromatic rings (R), (i.e., a five-site AHRRR hypothesis).
Assessment of BCL-2 Inhibition by TR-FRET. The

inhibition of BCL-2 protein was measured in the presence of
its ligands and inhibitory molecules by using the BCL-2 TR-
FRET Assay kit (BPS Biosciences, catalog no. 50222). The
assay protocol contains a sample including a terbium-labeled
donor, dye-labeled acceptor, peptide ligand, and BCL-2
protein, and each inhibitor was incubated for 2 h. All samples
and controls were worked in triplicate; the tested solution

concentrations for the selected hit compounds were 1 × 10−9,
1 × 10−8, 1 × 10−7, 1 × 10−6, 1 × 10−5, and 1 × 10−4 M.
Fluorescence intensity was read at two different wavelengths

(i.e., donor and acceptors emissions at 620 and 665 nm,
respectively), and each fluorescent read was excited at 344 nm.
Data analysis was conducted by the TR-FRET ratio (665 nm
emission/620 nm emission). The percent inhibitory activity of
studied hit compounds was computed by the following
formula:

% Inhibitory Activity
FRET FRET

FRET FRET
100%

s neg

p neg
=

−
−

×

FRETs, FRETneg, and FRETp are sample FRET, negative
control FRET, and positive control FRET, respectively. The
IC50 value of each studied hit molecule was calculated by the
TR-FRET BCL-2 binding inhibition assay. Absorbance and
IC50 values were measured by dose−response−inhibition plots
and nonlinear regression analysis on Graphpad Prism v.8.

Cell Culture Experiments and MTT Analysis. Colori-
metric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide) assay was used to assess in vitro activity of
inhibitory molecules on U87-MG glial tumor cells. U87-MG
glioma cells were chosen to study BCL-2 inhibition due to
their intrinsically high level of BCL-2 gene expression under
normal conditions. Cells were cultured in DMEM medium
(Biosera) supplemented with 10% FBS (Gibco) and 1X
penicillin/streptomycin (Multicell). Since higher plate con-
fluence levels would slow cell proliferation regardless of
molecular therapy, we determined the number of cells is
seeded to ensure that none of the cells reached more than 60%
confluence level during the treatment. Molecules showing 50%
and above inhibitory activity on TR-FRET assay were selected
for cell proliferation experiments. Glial cells were seeded at a
density of 5 × 102 cells into each well of 96-well cell culture
plates and incubated at 37 °C in a humidified atmosphere with
5% of CO2. Molecules were obtained in powder format and
dissolved in 1% DMSO. First, stock solutions of molecules
were prepared at a 4 mM stock solution concentration and
diluted to the studied concentrations by using DMEM cell
media. Each molecule had different IC50 concentrations
specified by TR-FRET inhibitory assay in the range of 1 nM
to 100 μM. For in vitro assays on cell culture experiments, two
concentrations of molecules (i.e., low and high concentrations)
were tested, one log above and one log below the
concentration of IC50 value. Cells were treated with molecules
following 24 h of preincubation. At each 24 h interval, treated
and untreated cells were subjected to 10 μL of 5 mg/mL MTT
in 1X PBS and incubated at 37 °C for 2−4 h. Then, formazan
crystals were solubilized with 100 μL of HCl-SDS solubiliza-
tion buffer, and the absorbance was measured at 570 nm on a
microplate reader (HIDEX Multimode reader). MTT experi-
ments were carried out for 120 h with or without treatment,
and all experiments were replicated at least three times.

■ IDENTIFICATION OF COMPOUNDS USING
HYBRID VIRTUAL SCREENING ALGORITHM

This work aimed to conduct a virtual screening workflow for a
small-molecule database (i.e., Specs-SC small-molecule library)
that includes around 210 000 available ligands targeting the
BCL-2 and to identify new pharmacophore groups. It is well-
known that indoles and indole derivatives are crucial
compounds that have been used as therapeutic compounds
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in many different biological problems, including cancer. Thus,
in this study, to decrease the large database to a manageable
number with specified fragments, a text-mining study was
initially employed. Hence, all molecules used from Specs-SC
library in two-dimensional (2D, .sdf file format) were
converted to a IUPAC text file (.name format) with the
program MarvinSketch.25 Selected compounds containing the
“indol” expression (i.e., indoles, indole derivatives, isoindoles,
indolons, etc.) in the IUPAC names were obtained. A total of
1735 molecules that showed higher predicted therapeutic
activity values than the selected cutoff value (0.5) were
subjected to toxicity tests for 26 different toxicity QSAR
models. Thus, 288 nontoxic compounds with potent activity
against cancer were selected from the database. The 2D
molecular structures of the 288 selected molecules were
prepared and converted to their corresponding low energy 3D
conformers. After this process, the total number of molecules
increased to 472 due to different protonation states, and
stereochemistry.
Molecular Docking. To identify potent ligands against

BCL-2, a grid-based docking program (Glide) was used. Before
the screening of compounds from the library, the docking
program is validated with the known binding pose of
cocrystallized ligand. Thus, the cocrystallized navitoclax analog
(4LXD) was docked with the used docking protocol Glide/SP,
and RMSD of the cocrystallized pose with the docking pose
was calculated as 1.86 Å, although the ligand has quite flexible
fragments (Figure S1). The top docking-scored pose for each
ligand was used in in MD simulations. The screening algorithm
carried out for identifying the novel hits against BCL-2 was
summarized as a flowchart in Figure S2.
MD Simulations. MD simulations were initiated for the

top recorded docking pose for each of the 288 molecules and 2
known BCL-2 inhibitors (venetoclax and navitoclax analog).
Initially, short (1 ns) simulations were employed for a total of
288 hit molecules and 2 approved BCL-2 inhibitors at the
target binding site, and the resulting coordinates were collected
separately in the trajectory files. Table S1 represents the
docking scores of the 288 compounds.
The average binding free energies and Z scores were

calculated using MM/GBSA method and these values were
compared with positive control compounds. 25 ns MD
simulations were carried out and average MM/GBSA binding
free energies were recalculated for selected 41 hits and two
reference molecules by Prime. Based on calculated average
MM/GBSA scores throughout the MD simulations, 17
selected hit compounds were forwarded to longer (100 ns)
MD simulations. These MD simulations of 100 ns were carried
out for selected 17 hits and 2 positive controls, and on the
basis of their corresponding MM/GBSA scores, 10 molecules
were considered for further analysis (Figure S3).
To get an initial insight into the role of identified putative

inhibitor hits on the BCL2 target, we structurally investigated
each compound at the binding site to predict the impact of the
ligand on the structure and dynamics of the BCL-2. For this
aim, we compared the local interactions of the binding pocket
residues with the ligand. In Figure S4, RMSD plots of 10
selected hits based on GBSA scores were provided. RMSD−
time plots show that most of the studied systems have small
structural changes based on the initial backbone coordinates of
the target protein. Mol6 showed the highest increase in
protein’s backbone RMSD throughout the simulations as
shown in Figure S4. The average Protein RMSD value of the

10 selected hit molecules is about 4.0 Å (except Mol6). All
complex systems structurally stable after 20 ns MD
simulations.
Table 1 shows the molecular docking scores and average

MM/GBSA scores of the studied hit compounds as well as
reference molecules. Ligand RMSDs were also conducted
along with the protein RMSD plots. Figure S5 represents the
LigFitProt (i.e., change of ligand RMSDs based on protein
backbone, thus a translational motion of the ligand during the
simulations) plot of the 10 hits as well as reference known
BCL-2 inhibitors. Table S2 shows the corresponding mean
RMSD values. FDA-approved venetoclax and navitoclax
analog’s LigFitProt average RMSD results were 2.051 and
3.358 Å, respectively. The average LigFitProt RMSD values of
the selected hit compounds (i.e., Mol45, Mol126, Mol136, and
Mol146) were high, indicating that these compounds have
large translational motions at the binding pocket throughout
the simulations. However, other hits have average LigFitProt
RMSD values similar to those of the positive control
compounds.
The internal motions of the ligands throughout the

simulations were also investigated using the LigFitLig RMSD
plots (Figure S6 and Table S2). The average LigFitLig RMSDs
of all of studied the molecules (except for Mol146) were less
than 2.5 Å, indicating that the molecules did not make a
significant internal rotational motion at the binding pocket.
During simulations, to measure the effect of the selected

compounds on the structural/dynamical properties of the
target protein, root-mean-square fluctuations (RMSF) values
were also calculated. To observe the fluctuation regions of the
target structure, RMSF of peptide backbone atoms of each
amino acid residue in the complex analyzes was employed.
High RMSF values indicate highly mobile fluctuating regions
of the target protein examined during MD simulations (i.e.,
loop regions (residue numbers 30−45 region)). The backbone
RMSF plot of protein when complexed with the identified hit
compounds and positive controls throughout the MD
simulations is shown in Figure S7. Residue numbers 30−45
have higher fluctuations in the Mol87 and Mol6.

E-Pharmacophore Approach. Virtual screening (VS) is a
commonly used approach for the identification of novel
therapeutic compounds for different biological problems.
Ripphausen et al.47 have carried out a comprehensive literature
survey of prospective VS applications. In this survey, it is found
that there are around 3 times more target-driven approaches in
VS studies compared to ligand-based approaches (i.e.,
QSAR).47 However, when the success rates are compared it
is found that ligand-based techniques are more successful
approaches for the correct identification of potent com-
pounds.47 Thus, as a significant and successful screening
strategy, in our current VS study strategy, the e-pharmaco-
phore approach was also carried out and considered in the
selection of hit compounds for the in vitro studies.
The crystal structure of target protein (4LXD) in complex

with the well-known BCL-2 inhibitor navitoclax analog was
used to produce the e-pharmacophore hypothesis. Then the e-
pharmacophore was carried out to screen the small-molecule
data set obtained from Specs-SC. Energy-optimized pharma-
cophores were found by mapping the energetic terms from the
scoring feature of Glide’s extra precision (XP) protocol to
atom centers. Next, pharmacophore sites were produced, and
the Glide/XP energies were summarized from the atoms
comprising each pharmacophore site. The putative sites were
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then ranked based on these calculated energies and the most
desired regions were selected for the pharmacophore
hypothesis.48

The initial number for the generation of pharmacophore
sites was set to default (7 sites); however, as shown in Figure 1,

a five-site pharmacophore hypothesis was generated. The final
hypothesis consists of a hydrophobic group (H), three
aromatic rings (R), and hydrogen bond acceptor group (A):
five-site AHRRR hypothesis. The database of Specs-SC
compounds was screened over this developed pharmacophore
hypothesis. On the basis of alignment scores of each
compound with this five-site pharmacophore model, as well
as their corresponding Glide/XP docking scores, five
compounds were selected for future studies. Longer (100 ns)
MD simulations were carried out on the initial poses of the
BCL-2/ligand complexes obtained from the docking calcu-
lations to investigate the structural stability of the identified
hits at the binding pocket of the target protein within the
nanosecond time scale. Table 2 shows docking scores and
average MM/GBSA scores of identified 5 hits from e-
pharmacophore modeling throughout the 100 ns MD
simulations.

Ligand-Based and Structure-Based Virtual Screening.
Some studies in the literature directly compare the success-rate
results between pharmacophore-based virtual screening
(PBVS) and docking-based virtual screening (DBVS). Steindl
et al.49 compared the success rates of ligand-based and
structure-based approaches for the identification of human
Rhinovirus (HRV) coat protein inhibitors. They concluded
that both screening procedures are valuable for the target of
the HRV coat protein, which shows that the assets in the
resulting hit list are enriched. In another study, Chen et al.50

compared the efficiency of the two VS approaches, namely, the
PBVS and the DBVS approaches,51,52 and concluded that the
PBVS method in the correct identification of actives from a set
of compounds at the library is a more powerful technique
compared to DBVS.50−58 The PBVS method is also used for
postfiltering compounds selected through docking ap-
proaches.59 The work of Muthas et al.60 has shown that the
final filtration with pharmacophores in their investigated

Table 1. 2D Structures, MM/GBSA Average Scores,
MetaCore/MetaDrug-Predicted Therapeutic Activity (Th.
Act.) Values and Docking Scores in Glide/SP of Selected 10
Hits from Target-Driven Based Approach and FDA-
Approved Drugs Venetoclax and Navitoclax Analog

Figure 1. Hypothesis generated by e-pharmacophore method.
Pharmacophore sites generated from crystal Protein Data Bank
structure (4LXD) and well-known BCL-2 inhibitor navitoclax
analogue preserving a maximum of seven pharmacophore features
as default. A five-pharmacophore site hypothesis was generated.
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targets improves enrichment rates compared to the docking-
based approach alone. The pharmacophore-based screening
technique is among the most effective tools that match the
similarity of the 3D interaction pattern or pharmacophore
model of druglike compounds in complexes with known
ligands.61−65 Aboalhaija and Taha66 used a combination of
pharmacophore modeling and QSAR studies to search the
structural features required for potent BCL-2 inhibitors. They
virtually screened the NCI chemical database and identified
seven hit compounds against BCL-2. The in vitro results of
these seven compounds leading to IC50 values between 2.6 and
38.7 μM.66 Wen et al.67 carried out QSAR-based virtual
screening to identify potent BCL-2 specific ligands from the
Specs-SC. They employed Random Forest (RF) classification
and regression models for the identification of hit compounds
and selected 12 compounds.67 The interactions of the selected
compounds with BCL-2 were examined by surface plasmon
resonance (SPR) binding assay, and 8 out of 12 compounds
could directly bind to the BCL-2. However, only one
compound showed significant cytotoxic effects on breast
cancer cells (IC50, 5 μM).67 Yoou et al.66 used the protein
chip method for the identification of fragment hits against
BCL-2. They employed docking calculations for the 12
identified fragment hits.68 Using the molecular-docking-guided
protein chip screening system, they derived a virtual
compound with an important scaffold feature for the
interaction of crucial residues at the BCL-2. Then, they tested
the anticancer activity of 26 compounds that have similar
structural scaffold features. Biological test results showed that
three of these compounds have desired IC50 values ranging
from 4.38 to 5.74 μM.68 Ramos et al.69 employed a high-
throughput virtual screening study for the ZINC database that
includes 642759 drug-like compounds. They screened these

compounds against BCL-2 by docking calculations using
AutoDock, and the top 1000 compounds were further
screened at CDRUG which is a molecular fingerprint server
for the prediction of potent anticancer compounds. Finally,
they proposed five hit compounds.69

TR-FRET Analysis Confirms the BCL-2 Inhibition of
Identified Compounds. Because of the advantages and
highlighted high success rates of structure-based e-pharmaco-
phore modeling, selected hit compounds by using this
approach were used for their biological activities on cancer
cells. TR-FRET analysis results showed inhibitory activity
against the cancer cells for the following selected hits which
showed at least 50% and above inhibitions at various molecule
concentrations: AG-205/11944207, AM-879/14774006, AK-
918/41759663, and AH-487/40936997. The performed TR-
FRET assay represents a high success rate (i.e., 80%) of the
selected hits which are obtained by the virtual screening of
small molecule ligand database on the constructed e-
pharmacophore model. IC50 values for tested molecules were
listed in Table 3. The inhibitory concentrations ranged
between 153.3 μM to 19 nM. Corresponding enzyme activity
inhibition percentage values were changing between 55.61 and

Table 2. Specs ID, Molecule Number, 2D Structure, Docking Scores and MM/GBSA Average Scores of Identified 5
Compounds with E-Pharmacophore Hypothesis

Table 3. IC50 and Percent Inhibition Values of Tested
Compounds Obtained from In Silico Guided Virtual
Screening Approaches

specs ID IC50 value (μM) percent inhibition (%) at 100 μM

AK-918/41759663 153.30 95.57
AG-205/11944207 0.019 55.61
AM-879/14774006 54.90 77.49
AH-487/40936997 6.27 78.94
AH-487/41490431 NA 36.11
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Figure 2. TR-FRET analysis confirms the inhibitory activity of identified hit molecules on BCL-2. The X-axis shows tested concentrations ranging
1 nM to 100 μM; the Y-axis shows the % inhibitory activity relative to samples without inhibitory molecules.

Figure 3. MTT cell proliferation assay. Molecules having inhibition activity on U87-MG glioma cells were shown. Tested concentrations for each
molecule were different (low and high concentrations) as determined in TR-FRET assay. Graphs were determined by comparing each treatment
group with untreated control (without molecules), and error bars show the standard deviation.
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95.57% at 100 μM (Table 3). Percent inhibitions of the
selected active compounds were shown in Figure 2.
Inhibitory Molecules Restricted the Proliferation of

U87-MG Glioma Cells. Selected hit molecules were evaluated
in the U87-MG cell line following the determination of
inhibitory concentration via TR-FRET analysis. On the basis of
IC50 values, the acceptable inhibitory range was determined as
high and low concentrations for each selected compound as
detailed in the “Materials and Methods” section. High and low
concentrations were 200 and 100 μM, 100 and 10 μM, 100
and 10 μM, and 10 and 1 μM for compounds AK-918/

41759663, AG-205/11944207, AM-879/14774006, and AH-
487/40936997, respectively.
Four selected active compounds were shown to be

significantly effective on glioma cells by inhibiting and/or
reducing cell proliferation. AK-918/41759663 and AG-205/
11944207 showed the maximum inhibition effect by reducing
the cell viability to less than 10% within 5 days. AM-879/
14774006 also showed a significant reduction in cell viability.
However, other selected inhibitory compound (AH-487/
40936997) did not significantly reduce cell viability in less
than 50% of cells. Only AK-918/41759663 showed effective

Figure 4. Microscopic evaluation of U87-MG cells for compounds AK-918/41759663, AG-205/11944207, AM-879/14774006, and AH-487/
40936997. Cells were photographed and observed under microscope for 96 h. The DMSO group showed neat proliferation of cells as did the
untreated group. Compound AK-918/41759663 showed a clear decrease starting from the first day at both concentrations (100 and 200 μM),
while the effects of AG-205/11944207 and AM-879/14774006 on cell population are visible only at high concentrations above IC50 values (100
μM).
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cell proliferation reduction at both high (200 μM) and low
(100 μM) concentrations. AG-205/11944207 and AM-879/

14774006 have high efficacy at a high concentration (100 μM)
but not at a low (10 μM) concentration, as expected. The cell

Figure 5. (A) Representation of the binding mode of Mol-4 (Specs-SC ID AK-918/41759663) on the BCL-2 surface. (B) Ligand interaction
diagram of Mol-4 throughout 100 ns molecular dynamics simulations. (C) Binding mode of Mol-4 in the active pocket of BCL-2. The protein is
depicted as ribbons, and the compound is shown as sticks. (D) 2D ligand interactions with BCL-2 protein amino acid residues after MD
simulations.

Figure 6. (A) Representation of the binding mode of Mol-1 (Specs-SC ID AG-205/11944207) on the BCL-2 surface. (B) Ligand interaction
diagram of Mol-1 throughout 100 ns molecular dynamics simulations. (C) Binding mode of Mol-1 in the active pocket of BCL-2. The protein is
depicted as ribbons, and the compound is shown in sticks. (D) 2D ligand interactions with BCL-2 protein amino acid residues after MD
simulations.
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viability of tested concentrations was shown in Figure 3. The
promising active compound AH-487/40936997 (Mol2) based
on their inhibitory potential shown by TR-FRET analysis, did
not stably reduce cell proliferation. We suppose that inhibitor
activity is correlated with a solubility of the compounds since
inactive ligands were found to be partially soluble molecules in
DMSO.
Additionally, morphological changes within 4 days after

treatment supported the quantitative results by massive cell
detachments and the formation of apoptotic bodies under the
microscope (Figure 4). To determine the dying cells, changes
in the formation of tubular-shaped glial cells turning into a
circular structure were observed.
Although AH-487/40936997 showed a decreased effect on

cell proliferation when compared with untreated cells, it
exhibited no preventive impact on the U87-MG cell line.
Hence, experimental results altogether suggest that three of the
tested BCL-2 inhibitor compounds that showed an ability to
bind to BCL-2 decreased cell proliferation and induced
apoptotic cell death.
2D and 3D ligand interaction plots of the identified novel

compounds at the catalytic site of BCL-2 are investigated in
detail. Representative structures from MD simulations were
used in 2D and 3D ligand interaction diagrams. Figure 5
displays the binding mode of Mol4 (AK-918/41759663) at the
BCL-2 target protein. The important nonbonded chemical
interactions between ligand and protein such as the hydrogen
bond constructed with the GLY142 backbone (also observed
in venetoclax) are conserved in the identified hit molecule
Mol4. The conserved critical amino acids of BCL2 in the drug
binding between Mol4 and venetoclax are also observed in
PHE101, TYR105, and TYR199 which form hydrophobic
interactions.
The statistical analysis for the protein−ligand contacts was

conducted for the collected trajectories during each simulation,
and it is found that the crucial amino acids (i.e., ARG143 and
ASP108) which are needed for effective BCL2 inhibitors are
mostly conserved throughout the MD simulations (Figure 5).
Identified hit compound Mol1 (Specs-SC ID: AG-205/
11944207) has mainly hydrophobic and hydrogen-bonding
interactions with binding pocket residues. The interacting
residues include PHE101, TYR105, TYR199, and ALA97
which form hydrophobic interactions (Figure 6). These
residues have been also known to interact with BCL-2 for
the FDA-approved drug venetoclax. Another crucial interaction
was the hydrogen bond constructed with GLY142, which was
also observed in venetoclax. The interaction of binding pocket
residues ARG143 (forming hydrophobic and water bridge
interactions), ASN140 (forming a hydrogen bond) and
ARG104 (forming hydrophobic and water bridge interactions)
were conserved during the MD simulations with Mol1. The
ligand interaction diagrams of Mol2 (Specs-SC ID AH-487/
40936997) and Mol5 (Specs-SC ID AM-879/14774006)
which have high activity were also shown in Figures S8 and S9.
We used the latest state-of-the-art computational molecular

modeling and dynamics approaches, which include advanced
integrated text mining, virtual screening, and hybrid molecular
modeling techniques, combined with in vitro binding and cell
culture studies to identify the small-molecule inhibitors
targeted to the BCL-2 binding site. On the basis of docking
scores and interaction diagrams throughout the 100 ns MD
simulations, 15 hit compounds (with high therapeutic activity
and no toxicity) were identified. TR-FRET experiment results

represented that hit compounds identified by the e-
pharmacophore modeling has a high power for the correct
identification of bioactive ligands from a large ligand database.
The selected ligands were further evaluated in the U87-MG
cell line, and among them three compounds were shown to be
significantly effective on glioma cells by inhibiting and/or
reducing cell proliferation.
While 5 compounds identified by the e-pharmacophore

model screening were considered for the TR-FRET analysis, 4
of them were found active and among them 3 hits gave
promising inhibitory activity results on glioma cells. Altogether,
the success rate of the e-pharmacophore based method was
60%. This interesting result shows that although screening
speed is much higher compared to the docking/MD-initiated
method, since the success rate of e-pharmacophore-based
screening is high; this method can be considered for the virtual
screening of libraries in different biological problems.
MTT cell proliferation results showed that Mol4 (AK-918/

41759663) and Mol1 (AG-205/11944207) showed the
maximum inhibition effect. These compounds have IC50
values of 153.3 μM and 19 nM, respectively. AM-879/
14774006 (Mol-5) also showed significant inhibition.
Results showed that the following residues are crucial for

ligand binding: PHE101, TYR105, TYR199, and GLY142.
Several hydrophobic interactions dominate the interactions.
These crucial interactions are also observed in the FDA-
approved drug venetoclax. When the scaffolds of active
compounds were investigated it can be seen that they include
following fragments: isoindolinecarboxylate, benzothiazole,
and benzimidazole groups.
Consideration of these fingerprints together with indole

analogs within the scaffolds of the designing of new
compounds may improve activity against BCL-2. The
identification of potent and safe small molecules as potential
inhibitors of BCL-2 is a step closer to finding appropriate
effective therapies for cancer. Our lead ligands identified from
in silico guided screening can be used as a scaffold for further
structural optimization and development, enabling further
research in this promising field.
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