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Abstract
This review describes woodchucks chronically infected with the woodchuck 
hepatitis virus (WHV) as an animal model for hepatocarcinogenesis and treatment 
of primary liver cancer or hepatocellular carcinoma (HCC) induced by the 
hepatitis B virus (HBV). Since laboratory animal models susceptible to HBV 
infection are limited, woodchucks experimentally infected with WHV, a hepatitis 
virus closely related to HBV, are increasingly used to enhance our understanding 
of virus-host interactions, immune response, and liver disease progression. A 
correlation of severe liver pathogenesis with high-level viral replication and 
deficient antiviral immunity has been established, which are present during 
chronic infection after WHV inoculation of neonatal woodchucks for modeling 
vertical HBV transmission in humans. HCC in chronic carrier woodchucks 
develops 17 to 36 mo after neonatal WHV infection and involves liver tumors that 
are comparable in size, morphology, and molecular gene signature to those of 
HBV-infected patients. Accordingly, woodchucks with WHV-induced liver 
tumors have been used for the improvement of imaging and ablation techniques 
of human HCC. In addition, drug efficacy studies in woodchucks with chronic 
WHV infection have revealed that prolonged treatment with nucleos(t)ide 
analogs, alone or in combination with other compounds, minimizes the risk of 
liver disease progression to HCC. More recently, woodchucks have been utilized 
in the delineation of mechanisms involved in innate and adaptive immune 
responses against WHV during acute, self-limited and chronic infections. 
Therapeutic interventions based on modulating the deficient host antiviral 
immunity have been explored in woodchucks for inducing functional cure in 
HBV-infected patients and for reducing or even delaying associated liver disease 
sequelae, including the onset of HCC. Therefore, woodchucks with chronic WHV 
infection constitute a well-characterized, fully immunocompetent animal model 
for HBV-induced liver cancer and for preclinical evaluation of the safety and 
efficacy of new modalities, which are based on chemo, gene, and immune 
therapy, for the prevention and treatment of HCC in patients for which current 
treatment options are dismal.
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Core Tip: Hepatitis B virus-induced liver tumors are hard to treat with currently 
available interventions and the prognosis of hepatocellular carcinoma (HCC) in 
patients remains still poor. Immunocompetent woodchucks are a useful animal model 
for human HCC, because multiple tumors at different stages develop spontaneously 
and secondary to viral infection. This similarity to human hepatocarcinogenesis and the 
animal’s vascular architecture allowing catheterization with human-sized products 
have increased the preclinical use of this model to improve existing imaging 
(ultrasound, magnetic resonance imaging, and positron-emission tomography) and 
ablation techniques (embolization and radiotherapy) and to evaluate interventions 
(chemo, gene, and immune therapy) intended to treat human HCC.

Citation: Suresh M, Menne S. Application of the woodchuck animal model for the treatment of 
hepatitis B virus-induced liver cancer. World J Gastrointest Oncol 2021; 13(6): 509-535
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INTRODUCTION
Infection of adult humans with the hepatitis B virus (HBV) usually leads to self-limited 
liver disease (i.e., acute hepatitis B) and viral resolution, as the virus is controlled via a 
strong antiviral immune response[1,2]. Progression to chronic HBV infection is 
observed infrequently and occurs only in 5% of infected, healthy adults[3]. However, 
HBV infection acquired at birth by mother-to-child transfer or during early childhood 
in unvaccinated infants persists in 95% of individuals[3]. Persistent HBV infection then 
leads to chronic liver disease (i.e., chronic hepatitis B) that is associated with a 
diminished or impaired immune response unable to control the virus[1,2]. The 
immunodeficiencies developed overtime during the persistence of HBV infection are 
further responsible for the progression of liver disease to liver cirrhosis and hepato-
cellular carcinoma (HCC) later in life[1,4]. Estimates indicate that approximately 257 
million people worldwide are chronic carriers of HBV[5]. Without antiviral treatment 
and/or liver transplantation, these individuals will die, because end-stage HCC has a 
low five-year survival rate of about 10%[6]. The therapeutic interventions available for 
the treatment of chronic HBV infection and associated liver disease sequelae are 
suboptimal, as they rarely induce viral clearance or significantly lower the risk of HCC 
development and either require lifelong administration or are associated sometimes 
with severe adverse effects[4,7-10]. HCC has a high mortality rate because it is 
frequently asymptomatic and medical attention is often sought when removal by 
surgery (i.e., hepatectomy) is limited or impossible[11,12]. The poor prognosis of HCC 
at an advanced stage is mainly due to its unresponsiveness to chemotherapy [11,13-
16]. Although tyrosine kinase inhibitors such as sorafenib have demonstrated survival 
benefits among patients with advanced liver cancer, the prognosis of patients with 
HCC remains dismal, with tumor recurrence rates of 50% after three years[17]. Thus, 
chronic HBV infection is a major source of human HCC, which is the fifth most 
common cancer in the world and the third leading cause of cancer deaths[11,18-20]. 
Compared to uninfected individuals, the lifetime risk of developing HCC is 
significantly increased by 15- to 20-fold in patients positive for the HBV surface 
antigen (HBsAg), and can reach 100-fold in individuals with high levels of HBV 
replication and serum positivity for HBV e antigen (HBeAg)[20]. The HCC lifetime 
risk remains increased even after spontaneous clearance of the infection[21]. Therefore, 
the large reservoir of chronic HBV carriers could benefit immensely from the 
development of more effective and safer antiviral and anticancer therapies that cure 
the infection, eliminate the risk of liver disease progression, and/or eradicate 
established HCC.

https://www.wjgnet.com/1948-5204/full/v13/i6/509.htm
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Woodchuck hepatitis virus (WHV) infects naturally the Eastern woodchuck 
(Marmota monax) that habitats large areas within North America, including most 
eastern and midwestern states in the United States, southeastern Alaska, and southern 
Canada[22]. WHV was initially discovered in 1977 at the Philadelphia Zoo in a colony 
of woodchucks where several animals died due to chronic hepatitis B and HCC[23,24]. 
Subsequent studies revealed that WHV is closely related to HBV in regard to the 
nucleic acid sequence and organization of the genome, virion morphology, and 
mechanisms of infection and replication[23,25-28]. Consequently, WHV and HBV were 
classified as members of the genus Orthohepadnavirus within the Hepadnaviridae family
[29]. Comparable to HBV infection in humans, WHV in woodchucks also causes age-
dependent acute, self-limited or chronic outcomes of infection[23,30-33].

Early progress in the development of the woodchuck as an animal model for HBV 
infection involved basic studies on virological response and liver tumor development 
that are associated with experimental WHV infection of neonatal and adult 
woodchucks. Thereafter, neonatal WHV inoculation progressing to chronic viral 
infection during adulthood has been initially applied for the evaluation of conven-
tional vaccines and nucleos(t)ide analogs for safety and efficacy against HBV[30,34-
37]. More recently, the neonatal inoculation model of chronic WHV infection has been 
increasingly used for the development of immunomodulators, including those 
stimulating pathogen recognition receptors (PRRs) or blocking immune checkpoint 
markers[34,38,39]. While some of these studies provided evidence for the prevention 
and treatment of liver disease progression[37,38], evaluation of interventions directly 
targeting liver tumors in woodchucks for the treatment of HCC is limited. Since 
immunopathogenesis and liver disease progression to HCC induced by WHV parallels 
HBV infection in humans more so than in any other animal model currently available 
for HBV research[30,34,38-40], woodchucks with established liver tumors have been 
further applied in the improvement of imaging and ablation techniques and in the 
evaluation of new therapeutic approaches for the treatment of human HCC. The 
purpose of this review is to highlight the woodchuck as an animal model for hepatitis 
virus-induced carcinogenesis and treatment of HCC in patients with chronic HBV 
infection.

WHV infection and liver disease progression
Inoculation of adult woodchucks with WHV almost always results in the acute, self-
limited (i.e., resolved) outcome of infection[33,41-44]. Although virtually 100% of 
hepatocytes in the liver become infected with WHV[45], antiviral control is achieved 
by strong innate and adaptive immune responses. In the liver, innate immune 
response is activated within hours after experimental infection and partially inhibits 
WHV replication[46], although the infection expands further and reaches a peak 
thereafter. After a lack phase of immune response induction probably due to the 
“stealth-like behavior” of hepatitis viruses[38,47], a second, more marked, suppression 
of WHV replication is observed that is mediated by a non-cytolytic mechanism of viral 
clearance involving type I and II interferons (IFNs)[48]. IFN-α and IFN-β are most 
likely produced by activated PRRs after sensing of viral DNA and RNA in the liver, 
while IFN-γ is mainly secreted by natural killer (NK) cells. These antiviral cytokines 
inhibit the transcription of viral pre-genomic RNA from the episomal, covalently-
closed circular (ccc) DNA genome in the nucleus of infected hepatocytes, block its 
packaging into nucleocapsids, prevent viral replication through upregulation of a 
ribonuclease, and/or impede synthesis of viral relaxed-circular (rc) DNA within these 
core particles during maturation, as shown for HBV in cell culture[49-53]and animal 
models[54-56]. However, these antiviral cytokines do not affect the levels of WHV e 
and surface antigens (WHeAg and WHsAg) in the periphery of woodchucks[48,57]. 
This is followed by a cytolytic mechanism of viral clearance leading to a nearly 
complete loss of both serum viremia and antigenemia, as well as of intrahepatic WHV 
cccDNA[48,57]. This mechanism involves killing of infected hepatocytes via mainly 
cytolytic T lymphocytes (CTLs), apoptosis, and regeneration of hepatocytes, resulting 
in transient, moderate to marked hepatic inflammation and liver injury[48,58-60]. In 
addition, virus-neutralizing, protective antibodies against WHsAg, as well as 
antibodies against WHV core antigen (WHcAg) and WHeAg, are elicited by B-cells[48,
61]. The concerted actions of the immune system then lead to an almost complete 
shutdown of viral replication in the liver and clearance of the virus from the 
periphery, although residual amounts of replication-competent WHV and viral 
cccDNA often remain detectable in serum and in liver, spleen, and blood cells after 
resolution[45,61-64]. Truncated and thus replication-incompetent WHV DNA is found 
integrated into the chromosomal DNA of hepatocytes[65-67]. Such viral DNA is 
typically rearranged and targets different sites within the cellular DNA, suggesting 



Suresh M et al. The woodchuck model of HBV-induced HCC

WJGO https://www.wjgnet.com 512 June 15, 2021 Volume 13 Issue 6

that these integration events may contribute to hepatocarcinogenesis. The presence of 
unintegrated and integrated virus appears to correlate with an overall lifetime risk of 
HCC development in 5%-20% of woodchucks after resolution of acute WHV infection
[64,68].

This is in contrast to the inoculation of neonatal woodchucks with WHV (Figure 1), 
which leads to the chronic outcome of infection in approximately 60%-75% of animals 
later in life, and thus models the effect of age on the outcome of HBV infection in 
humans[31,33,41]. Persistent WHV infection in these animals involves an ongoing viral 
replication in liver, minimal to moderate hepatic inflammation and liver injury, and 
high levels of viral DNA and antigens in the periphery. Compared to the virion levels 
in patients with chronic HBV infection that are in the range of 109-1010 particles per mL
[28], WHV virions often reach 10- to 100-fold greater concentrations in woodchucks 
with established chronic infection (i.e., 1010-1011 particles/mL), while subviral particles 
containing WHsAg are produced in large excess. Like in human HBV infection[69], a 
WHV core-related antigen (WHcrAg), including the classical WHcAg and WHeAg, 
and additionally, the WHV precore-related antigen (WPreC), is produced during 
infection in woodchucks, with elevated levels present in chronic WHV carriers[57]. 
The high loads of circulating WHeAg and WHsAg produced during chronic WHV 
infection in woodchucks are thought to be responsible for the immunological tolerance 
to the virus at the T- and B-cell level[30,34,39,40], and are further associated with the 
liver disease progression to chronic hepatitis B and liver cancer[31,70,71]. HCC 
develops in all animals over a median period of 2 to 2½ years after neonatal 
inoculation, and the median life expectancy is approximately 6 mo that is similar to the 
situation in patients with HCC[37,68,72]. More specifically, HCC develops in 50% of 
woodchucks after 29 mo of chronic WHV infection, in 95% of animals after 3 years, 
and in 100% of animals by 5 years[73,74]. Thus, chronicity as an outcome of neonatal 
WHV infection appears to result from a suboptimal or unsuccessful immune response 
relatively early during the acute phase of infection[30,75,76]. During the later stage of 
chronic WHV infection, and comparable to chronic HBV infection in patients [1,2,77,
78], a limited type I but a moderate type II IFN response is present in liver[76,79]. 
Persistent WHV infection is further characterized by the inhibition of antigen 
presentation to immune cells[80], increases in hepatocyte cytotoxicity via perforin-
granzyme B and Fas ligand-Fas death pathways[81,82], induction of molecules linked 
to T-cell exhaustion (i.e., immune checkpoint markers)[79,83], and elevated levels of 
suppressor of cytokine signaling (SOC3)[79]. Since neutrophils accumulate in 
woodchuck liver[79], these cells may be responsible for the intrahepatic recruitment of 
mononuclear inflammatory cells via neutrophil-derived metalloproteinases, as 
observed in a transgenic mouse model of acute hepatitis B and in patients with chronic 
hepatitis B[84,85]. Liver disease then appears to progress to HCC due to the reduced 
immune-mediated clearance of WHV-infected hepatocytes by both non-cytolytic and 
cytolytic mechanisms[30,76], continuing chronic microinflammation [43,86-88], and 
viral integration events[67,72,89-91]. However, as described in more detail below, 
these deficiencies in humoral and cellular immune responses present in chronic WHV 
carrier woodchucks can be altered by different means leading to a functional cure 
(defined as a loss of viral DNA and surface antigen in serum, with or without serocon-
version to virus-neutralizing antibodies[10]) that delays or even prevents HCC onset.

WHV-induced hepatocarcinogenesis
Virus-induced hepatocarcinogenesis in chronic WHV carrier woodchucks is a 
multistage process (Figure 2). Chronic hepatitis B in these animals is characterized by 
the mild infiltration of mononuclear cells into portal tracts, sometimes extending 
beyond the limiting plate[31]. Liver cells with cytoplasmic inclusions are present, 
which correspond to the ground glass hepatocytes found in the liver of patients with 
chronic HBV infection and that contain HBV surface antigen (HBsAg)[92]. In HBV 
transgenic mice, these HBsAg-containing ground glass hepatocytes cluster and form 
nodules and are seen as preneoplastic lesions[93]. In addition, scattered parenchymal 
hepatocellular necrosis with neutrophils and macrophages, as well as bile duct prolif-
eration, are usually observed in woodchucks, and in some cases early fibrosis was 
noted but hepatic cirrhosis and ascites is essentially absent[32,86,87,94,95]. Clinical 
manifestation of cirrhosis, however, is also absent in a minority of human HCCs due to 
chronic HBV infection and approximately 20% of HCCs involve non-cirrhotic livers
[96,97]. Neoplasia in woodchuck liver then progresses from foci of altered hepatocytes 
(FAHs) to neoplastic nodules and HCCs[88,98-100]. These altered hepatocytes often 
harbor viral DNA integrations[65], as also noted in HBV-infected patients[101,102]. 
They further have a selective regeneration or survival advantage[65] and may be able 
to escape immune surveillance due to limited intracellular WHV replication and/or 
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Figure 1 Schematic presentation of woodchuck hepatitis virus-induced liver disease progression and detection of tumors within 
woodchuck liver. A: Neonatal woodchucks are experimentally infected with woodchuck hepatitis virus (WHV) to model vertical hepatitis B virus transmission in 
humans; B: WHV infection progresses to chronic hepatitis B in adult woodchucks after approximately 1 year; C: Chronic WHV carrier woodchucks develop liver 
tumors during the next 1-1½ years. A focus of altered hepatocytes (FAH) in liver (top) and an undifferentiated liver tumor (bottom) are shown; D: Localization of liver 
tumors by ultrasonography (top) and computed tomography (middle). The liver of a woodchuck with two larger hepatocellular neoplasms (HCC) is shown (bottom). 
With permission from Elsevier, pictures shown in C were reprinted from: Tennant BC, Toshkov IA, Peek SF, Jacob JR, Menne S, Hornbuckle WE, Schinazi RD, Korba 
BE, Cote PJ, Gerin JL. Hepatocellular carcinoma in the woodchuck model of hepatitis B virus infection. Gastroenterology 2004; 127(5): S283-S293. Copyright 
©American Gastroenterological Association 2004. Published by Elsevier[37]. WHV: Woodchuck hepatitis virus.

presentation of viral epitopes to immune cells. FAHs are detected as early as 6 mo 
after neonatal WHV inoculation, while small liver tumors occur as early as 3 mo 
thereafter[68]. Metastasis of HCC outside of the liver is essentially absent in 
woodchucks[32,87,94,103], except for rare cases of pulmonary metastasis in a few 
animals[86,94]. The hepatic neoplasms present in woodchucks are typically well-
differentiated, trabecular HCCs, although various histologic types are found in 
different animals or in different tumors in the same animal[32,94,104]. A comparison 
of intratumoral transcriptional profiles in woodchucks and HBV-infected patients 
established that WHV-induced HCC shares molecular characteristics with two 
subtypes of human HCC[79]. One HCC signature present in woodchucks correlated 
well with the human HCC subclass of poor prognosis (‘‘poor survival subclass’’) that 
is characterized by low-level cluster of differentiation (CD) 8+ T-cell and NK-cell infilt-
ration[105]. The second HCC signature in woodchucks was associated with the S2 
subclass, a well-defined human HCC subtype[106], which is characterized by the 
activation of the MYC protooncogene, expression of alpha-fetoprotein (AFP) and 
epithelial cell adhesion molecule (EpCAM), and a relative suppression of IFN-
responsive genes. The observation that HCC develops in all chronic WHV carrier 
woodchucks provides direct experimental evidence for the oncogenicity of WHV, and 
by analogy of HBV, as well as other hepatitis viruses naturally infecting several 
ground squirrel species[24,68]. However, infection with California ground squirrel 
hepatitis virus (GSHV) leads to less frequent liver cancer development and the HCC 
onset is much later seen than in chronic WHV infection[107]. This lower oncogenic 
potential of GSHV was further demonstrated in a comparative study of woodchucks 
infected as neonates with both WHV and GSHV, as GSHV-induced HCC developed at 
an later age than WHV-induced HCC in the same host[71]. Since immune cell infilt-
ration into the liver is present during chronic WHV infection, as described above, this 
continuing chronic inflammatory response likely plays a role in the development of 
WHV-induced HCC, in addition to viral integration events and proteins, as also 
observed for HBV-induced HCC[108-111].

Important features of hepatitis virus-induced hepatocarcinogenesis have been 
investigated in woodchucks and are described here in more detail. Since replication-
incompetent WHV DNA is integrated into the chromosomal DNA of woodchuck liver 
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Figure 2 Woodchuck hepatitis virus-induced hepatocarcinogenesis in woodchucks. After infection of normal hepatocytes, woodchuck hepatitis virus 
(WHV) replicates via cccDNA and produces high loads of intracellular and circulating viral proteins (WHsAg, WHeAg and WPreC) that interfere with the antiviral 
immunity. The deficient immune response is unable to clear WHV from infected liver cells but causes inflammation. WHsAg accumulates in hepatocytes and gives 
rise to ground glass hepatocytes. WHV also integrates into the chromosomal DNA of hepatocytes via double-stranded linear (dsl) DNA leading to oxidative stress, 
oxidation-dependent cellular DNA breakages, insertional mutagenesis, chromosomal alterations, and protooncogene activation. WHsAg and WHV X antigen 
(WHxAg) are produced from viral DNA integrants. Integrant- and replication-derived viral proteins activate cellular proteins, such as transcription factors, that support 
the oncogenic process. The continued liver inflammation leads to cell degeneration and regeneration and facilities accumulation of genetic and epigenetic defects in 
hepatocytes. Individual hepatocytes with critical mutations and low WHV replication and/or antigen presentation escape immune surveillance and their clonal 
outgrowth results in FAHs that further develop into liver tumors and HCC. CccDNA: Covalently-closed circular DNA; Dsl DNA: Double-stranded linear DNA; FAH: 
Focus of altered hepatocytes; HCC: Hepatocellular carcinoma; WHV: Woodchuck hepatitis virus.

tumor cells, which is comparable to the HBV DNA integration in human HCCs[112-
115], a direct molecular role of hepatitis viruses in hepatocarcinogenesis is conceivable. 
The main substrate for integration is viral double-stranded linear (dsl) DNA, which is 
sometimes produced by the viral polymerase instead of rcDNA within the nucleo-
capsid[114]. Integration occurs after recycling of nucleocapsids to the nucleus for 
replenishment of the cccDNA pool[28]. Initial integration in hepatocytes, at least in 
vitro, is mediated by virus-induced oxidative stress resulting in oxidation-dependent 
cellular DNA breakages[116]. The integrated viral DNA cannot serve as the source of 
the progeny virus, but the produced RNA transcripts for the surface and X antigens 
can become abundantly or even predominantly present, when compared to the viral 
RNAs transcribed from the cccDNA genome[117]. Thus, integration-derived RNA 
transcripts may serve as a considerable source for viral antigens with similar function 
as replication-derived viral proteins and may influence the course of chronic infection 
and liver disease progression by interfering with the antiviral immunity[117,118].

WHV DNA integrates into the woodchuck genome at multiple sites within hours 
after experimental infection[67]. Although it does not appear that there is a prefer-
ential integration site for hepatitis viruses[101,113], WHV integrates often into or near 
the MYC family of protooncogenes in most woodchuck HCCs[68]. Integration close to 
the N-MYC2 gene or in the b3n and win downstream loci then leads to activated N-
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MYC genes and overexpression of their transcripts in malignant hepatocytes[89,119-
122]. In coordination with N-MYC, the insulin-like growth factor-2 (IGF2) is also 
overexpressed in woodchuck FAHs and HCCs[123,124]. IGF2 blocks apoptosis of 
malignant liver cells, and thus may allow hepatocytes which otherwise might die to 
survive, to form FAHs, and to progress to liver tumors[123]. WHV DNA integration 
further causes N-MYC2 rearrangements, especially in large but less differentiated liver 
tumors, suggesting that these genetic alterations provide initially a proliferative 
stimulus or growth advantage for transformed hepatocytes[104]. However, compared 
with woodchucks that naturally acquired WHV infection, animals experimentally 
infected with WHV as neonates have more WHV DNA integrations near the N-MYC2 
Locus[121]. Although the exact role of N-MYC2 rearrangements and transcripts 
remains to be elucidated, it was shown that transgenic mice carrying the N-MYC2 
gene under the control of WHV regulatory sequences develop liver cancer, including 
hepatocellular adenomas and HCCs[125].

Like in human HCCs[126], woodchuck liver tumors express small non-protein-
coding RNAs or microRNAs at elevated levels, such as miR-17-92 polycistron and 
miR-21[127]. Knockdown of these microRNAs in human- and woodchuck-derived 
hepatoma cell lines resulted in a 55% reduction of cell proliferation and anchorage-
independent growth, as well as in a suppression of cellular antiapoptotic function. 
This suggests that onco-microRNAs are involved in the maintenance of malignant 
hepatocyte transformation during hepatitis virus-induced hepatocarcinogenesis.

Among all viral proteins, the X antigen, a multifunctional transactivator of viral and 
cellular genes and essential for the establishment of WHV infection in woodchucks
[128], has been implicated as a cofactor in the malignant transformation of hepatocytes
[129]. HBV replication and liver cell transformation by the HBV X antigen (HBxAg) are 
associated with the induction of the mitotic polo-like kinase 1 (PLK1) and a parallel 
downregulation of chromatin remodeling components, including polycomb repressive 
complex 2 subunit (SUZ12) and zinc finger MYM-type protein 2 (ZMYM2 or ZNF198)
[130]. This inverse relationship of PLK1 and SUZ12 was also identified in woodchuck 
liver tumors[131]. SUZ12 targets many hepatic cancer stem cell markers and prolif-
eration genes. Since expression of these genes is reduced in normal hepatocytes, they 
are also named “SUZ12 repressed” genes. During WHV-induced hepatocarcino-
genesis, the SUZ12 repressed genes encoding BMP, activin membrane-bound inhibitor 
homolog (BAMBI), and EpCAM, as well as the proliferation gene PLK1, are selectively 
upregulated in woodchuck tumor cells. Furthermore, metastatic tumor antigen 1 
(MTA1), a component of the nucleosome remodeling histone deacetylase complex 
involved in regulating transcription and chromatin remodeling, is associated with 
tumor invasiveness and poor prognosis in HBV-induced HCC[132]. Comparable to 
human HCC, the presence of MTA1 is increased in woodchuck liver tumors, its 
expression is regulated by the WHV X antigen (WHxAg), and the protein is essential 
for nuclear factor-kappa B (NF-κB) signaling and tumor progression induced by WHV
[133].

Altered expression of vascular endothelial growth factor (VEGF) in the liver is used 
as a prognostic marker for human HCC[134] and therapeutic interventions targeting 
this protein or its receptors (VEGFR1/R2) can improve the clinical outcome of HCC in 
patients[135]. In woodchucks, WHV-induced hepatocarcinogenesis is associated with 
elevated VEGFR2 expression and increased ligation of VEGF to VEGFR2[136]. This 
VEGF-driven angiogenesis is accompanied by changes in the liver vasculature, 
extracellular matrix, and basement membrane, as the number of vessels positive for 
laminin and platelet endothelial cell adhesion molecule (PECAM1) increased while the 
number of collagen IV-positive blood vessels declined. This suggests that woodchucks 
with liver tumors can be utilized in the preclinical evaluation of VEGF-directed 
therapies for human HCC.

Matrix metalloproteinases (MMPs) play a central role in tumor invasion and 
metastasis during HBV-induced hepatocarcinogenesis[137]. For obtaining insight in 
the mechanisms involved in extracellular matrix remodeling in human HCCs, the 
expression of MMPs was investigated in woodchuck liver tumors[138]. High levels of 
several MMP transcripts were detected, and especially the transcript and protein levels 
of MMP-9 correlated with liver disease progression and tumor differentiation in 
woodchucks, while the protein’s gelatinase activity increased during hepatocarcino-
genesis. These results are comparable to findings in human liver tumors where the 
MMP-9 protein level was used for characterizing a more invasive and metastatic type 
of HCC with poor prognosis[139,140]. Since the gelatinase activities of woodchuck 
MMP-2 and MMP-9 could be inhibited by a commercially available drug, the use of 
MMP inhibitors for treatment of human HCC may be a possible treatment option and 
could be evaluated in woodchucks.
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Hepatitis delta virus (HDV), a natural subviral agent of HBV, is known to contribute 
to HBV-induced hepatocarcinogenesis and to increase the overall risk of HCC in 
patients during concomitant infection[141-143]. Since HDV only needs the HBsAg for 
virion envelopment[143], persistence of HDV infection may be independent of HBV 
replication if integration-derived viral surface antigen can be used, as demonstrated in 
cell culture[118]. The contribution of HDV to HCC induction and development 
remains to be elucidated; however, one possible mechanism was revealed in 
woodchucks[144]. Intravenous inoculation of woodchucks with liver tumors using 
WHsAg-enveloped HDV demonstrated that malignant hepatocytes are susceptible to 
HDV infection. Thus, it appears likely that HDV may influence the fate of HCCs by 
actively replicating in tumor cells and changing the expression of host genes.

Overall, these studies demonstrated that WHV-induced hepatocarcinogenesis in 
woodchucks has strong similarity to HBV-induced liver carcinogenesis in humans. 
The features of HCC that are associated with chronic hepatitis virus infection make the 
woodchuck animal model unique. It further distinguishes woodchucks from other 
animal models, in which HCC is induced by either a chemical carcinogen, a transgene, 
or by transplantation of established tumor cell lines into immune-deficient or immune-
compatible hosts. Additional advantages of the woodchuck model are the outbred 
nature of the animals and the heterogeneity of liver tumors that resemble the situation 
of HBV-infected patients with HCC. These studies further indicated an important role 
of viral DNA integration, activation of protooncogenes, microRNAs, and the viral X 
antigen in the malignant transformation of hepatocytes.

Development of woodchucks as an animal model for HCC
As described above, liver tumors develop in woodchucks with chronic WHV infection 
and HCC is fatal in 100% of cases. Tumor progression is usually monitored by serial 
ultrasonography (US)[86,145,146] and to a lesser degree by repeated magnetic 
resonance imaging (MRI)[147,148]. Changes in liver enzymes are also used for 
determining the degree of liver injury due to tumor development[104]. Especially, 
gamma-glutamyl transferase was validated as an oncogenic biomarker in woodchucks, 
as increases in this liver enzyme correlate with the onset of HCC[149]. In addition, 
elevated levels of AFP were linked with WHV-induced hepatocarcinogenesis in 
woodchucks[150].

Improvements in imaging techniques for human HCC
The woodchuck model of HCC has been utilized in the development of new imaging 
agents for enhancing the detection of hepatic neoplasms by different imaging 
techniques (Table 1). In the beginning, several contrast agents were evaluated for both 
gray scale and color Doppler US, including those that use microbubble technology, 
alone and in combination with hypobaric activation, a vascular imaging agent, or an 
agent taken up by the reticuloendothelial (RE) system. These agents facilitated tumor 
localization in the liver and improved measurements of tumor growth and regression 
in untreated versus treated woodchucks by increasing the sensitivity of US. 
Furthermore, iron oxide as a contrast agent for the detection of HCC by MRI was 
tested in woodchucks, either following parenteral administration for uptake by the RE 
system or intravenous injection as an arabinogalactan conjugate for targeting the 
asialoglycoprotein receptor that is highly upregulated on normal hepatocytes but not 
on liver tumor cells. Hepatic imaging with 99mTc-sulfur colloid also detected HCCs 
after uptake by the RE system and concentration in woodchuck liver. More recently, 
woodchucks were applied in the improvement of positron-emission tomography 
(PET) techniques for the early detection of human HCC by comparing radiotracers for 
uptake into liver tumors and surrounding hepatic tissues. HCC localization and 
response to radiotherapy was also assessed with MRI by applying contrast agents 
typically used in patients for visualizing lesions with abnormal vascularity. HCC 
detection and response to anticancer treatment was further tested by computed 
tomography (CT) with contrast agents for human use. MRI and/or CT techniques 
were also applied for generating a virtual three-dimensional (3D) model of the 
woodchuck hepatic vascular tree[151], as well as for producing virtual and printable 
3D models of the woodchuck liver containing tumors that allowed accurate co-
localization of imaging with histopathology[152].

Improvements in techniques for accessing human HCC and treatment by 
embolization
The woodchuck model was further applied in the evaluation of new techniques 
developed for gaining less-invasive access to liver tumors for the treatment of HCC in 
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Table 1 Imaging techniques and contrast agents applied for the detection of woodchuck hepatocellular carcinoma

Imaging technique Contrast agent Brand name Ref.

Ultrasonography Air-filled albumin microspheres [195]

Cyanacrylate polymer microparticles SHU563A [196]

Dodecafluoropentane emulsion EchoGen [197,198]

Galactose microparticles/palmitic acid Levovist [199-201]

Perflexane-filled lipid microspheres Imagent [202]

Perfluoropropane-filled albumin microspheres Optison/FS069 [95,200,201,203,
204]

Scintigraphy 99mTc-sulfur colloid [205]

Positron-emission 
tomography

[1-11C]acetate [206-208]

[1-14C]acetate [207]

[N-methyl-11C]choline [206,209,210]

[18F]clofarabine [211]

[18F]fluoro-ethylcholine [210]

Anti-1-amino-3-[18F]fluoro-cyclobutyl-1-carboxylic acid [212]

2-deoxy-2-[18F]fluoro-D-glucose [208,209,213]

6-deoxy-6[18F]fluoro-D-glucose [206,209,210]

L-[S-methyl-11C]methionine [212]

3-deoxy-3-[18F]fluoro-thymidine [214]

Magnetic resonance 
imaging

Gadolinium Gadavist or Omniscan [157,179,185]

Gadopentetate dimeglumine Magnevist [158,189]

Iron oxide [215,216]

Computed tomography Biodegradable radiopaque fiducial markers based on polymers 
and iodine

Ioversol, Isovue-370, Optiray300, or 
Optiray350

[152,153,159,186,
206]

Diatrizoic acid Angiografin [190]

Meglumine iotroxate Biliscopin [151]

Iohexol Omnipaque or Omnipaque350 [157,188]

patients. For improving percutaneous liver biopsy techniques, needle-based diffuse 
optical spectroscopy (DOS) was tested in woodchucks[153]. This established that tissue 
blood and lipid content and oxygenation level declined, while tissue density increased, 
when the needle crossed the margin from healthy hepatic parenchyma to liver tumors, 
indicating that these measurements could be used in real-time as a primary discrim-
inator of normal liver and HCC.

For the treatment of human HCC, chemoembolization and radioembolization via 
intra-arterial therapies (IAT), alone and in combination with immunotherapy, hold 
great promise. For the testing of IAT, rather diverse animal species, including mice, 
rats, rabbits, and pigs, are commonly used as preclinical models of HCC[154-156]. 
Translation of IAT from these animal models into patients, however, is limited due to 
the dissimilarity in liver disease development and the size of the vascular system that 
make arterial access either impossible or challenging, and often requires a surgical cut 
down for the use of human-size products[155]. This situation is different in 
woodchucks, because the size of the animals greatly facilitates IAT and other experi-
mental approaches of intratumoral injection. Woodchucks also possess a hepatic 
arterial anatomy that can be accessed via the femoral artery and allows catheterization 
with clinically used microcatheters[151]. Accordingly, three studies explored IAT in 
woodchucks with or without liver tumors[157-159]. In these studies, arterial access via 
the femoral artery with human standard catheters allowed delivery of contrast agents 
for the localization of HCCs by CT or MRI. Catheterization further permitted delivery 
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of embolic particles routinely used in patients into liver tumors by angiography. Lobar 
embolization with 355–500 µm polyvinyl alcohol (PVA) particles (Boston Scientific) 
was successful in woodchucks without liver tumors[158]. In addition, liver tumor 
embolization for the targeted delivery of 100-300 µm PVA microspheres (LC- Bead; 
BTG, London, United Kingdom) produced a heterogeneous distribution of embolic 
particles in the hepatic neoplasms[157]. Moreover, chemoembolization with drug-
eluting embolic 70-150 µm radiopaque PVA microspheres (LC Bead LUMI; BGT) 
loaded with doxorubicin resulted in a targeted drug delivery into liver tumors[159]. 
Doxorubicin is an anticancer drug that stops the growth of tumor cells by blocking 
topoisomerase II and that generates reactive oxygen species for the induction of 
apoptosis[160].

There is also interest in assessing the biomedical utility of nanomaterials in 
immunocompetent animal models for the treatment of human HCC. In particular, 
tumor-associated macrophages within the environment of solid tumors are a preferred 
target of nanoparticle-based applications, as the balance of inflammatory (tumoricidal) 
and immunoregulatory (tumor promoting) macrophages controls tumor development, 
progression, and metastasis[161]. One study evaluated the distribution and clearance 
of 60 nanometer gold particles into woodchuck liver and tumors after a single 
intravenous injection at a dose of 14 mg/kg[162]. Although these nanoparticles 
accumulated to some degree in the spleen after systemic administration, they were 
mainly found in the lysosome of immunoregulatory macrophages within the liver, as 
well as in liver resident macrophages. Nanoparticles were further detected in liver 
tumors and their accumulation in immunoregulatory macrophages was significantly 
greater in the periphery than in the tumor core. The study concluded that nanoparti-
cle-based delivery of immunomodulators into tumors for treatment of HCC is feasible, 
especially by targeting tumor-associated macrophages and repolarizing these cells into 
a more inflammatory phenotype to promote anticancer immunity.

Overall, these studies established that woodchucks with liver tumors are a useful 
preclinical animal model for the evaluation of transarterial embolotherapies for the 
treatment of human HCC. They further demonstrated the feasibility of nanoparticle-
based delivery of chemotherapeutics or immunomodulators into tumors and 
assessment of anticancer effects by CT, MRI, or PET imaging.

HCC treatment approaches in woodchucks
Woodchucks have been utilized in the evaluation of anticancer effects mediated 
indirectly by treatment with antiviral drugs or immunomodulators and directly by 
radiotherapy, tumor excision and ablation, gene therapy, or anticancer drugs 
(Figure 3).

Indirect treatment by antiviral drugs or immunomodulators
Woodchucks with chronic WHV infection were applied in the preclinical evaluation of 
antiviral drugs being developed for the treatment of HBV-infected patients [30,35,37,
68,163]. Among these drugs, nucleos(t)ide analogs that suppress viral replication in the 
liver, and thus reduce viremia levels in the periphery, were assessed in woodchucks 
mainly as a single agent but also in combination (Table 2). Many of these nucleos(t)ide 
analogs are now approved by national regulatory agencies for administration to 
patients. While most woodchuck studies were focused on testing nucleos(t)ide analogs 
for safety and antiviral efficacy during short-term treatment, some studies were 
extended for the additional evaluation of effects against liver disease progression.

Lifelong, oral treatment of woodchucks with lamivudine, starting at an age of 8 mo 
and by applying two separate drug doses (i.e., 5 mg/kg/d for approximately 10 mo 
and then 15 mg/kg/d for up to 50 mo in surviving animals), produced a 4-5 Log10 
reduction in viremia and the antiviral effect was sustained for 1⅔ years while 
treatment continued[164]. Woodchucks experienced a significant delay in the onset of 
HCC and death due to severe liver cancer. In particular, lamivudine treatment delayed 
the development of liver tumors by 24 mo (until an animal age of 32 mo) and extended 
HCC-free survival by 12 mo (until an animal age of 44 mo). However, when oral 
lamivudine treatment was initiated in older woodchucks at an age of 13-19 mo and 
with relatively high doses (i.e., 40 mg/kg/d for 3 mo and/or 200 mg/kg/d for up to 
15 mo), the shorter treatment duration and the less pronounced antiviral effect (~2.5 
Log10 decline in viremia) failed to delay hepatocarcinogenesis[165]. Almost all 
woodchucks developed liver tumors while receiving lamivudine and needed to be 
euthanized between 12 and 19 mo of treatment due to end-stage HCC (at an animal 
age of 26-38 mo). Complicating in both studies was the selection of lamivudine-
resistant WHV mutants during treatment. These mutations occurred frequently in the 
B domain of the WHV polymerase gene[166,167] and were identical to those reported 
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Table 2 Nucleos(t)ide analogs evaluated in woodchucks for safety and antiviral efficacy against hepatitis B virus

Antiviral drug Abbreviation Brand name Ref.

Adefovir dipivoxil ADV Hepsera [217-219]

Clevudine1 CLV or L-FMAU Levovir and Revovir [172,220-222]

Emtricitabine FTC Coviracil [219,221,223,224]

Entecavir1 ETV Baraclude [171,225-228]

Lamivudine1 LAM or 3TC Epivir [164,165,194,219,229]

Telbivudine LdT Tyzeka [230-232]

Tenofovir alafenamide TAF Vemlidy [233]

Tenofovir disoproxil fumarate TDF Viread [219]

Valtorcitabine LdC [230-232]

1Long-term treatment with these drugs delayed hepatocellular carcinoma (HCC) onset and extended HCC-free survival in woodchucks. See text for more 
details.

Figure 3 Overview of therapeutic interventions assessed in woodchucks with liver tumors for the treatment of human hepatocellular 
carcinoma. Indirect treatment of chronic WHV carrier woodchucks with nucleos(t)ide analogs or immunomodulators reduces viremia or activates antiviral and 
anticancer immune responses, respectively, that delay or prevent HCC onset. Direct treatment of hepatic neoplasms by radiotherapy, excision and ablation, gene 
therapy, or chemotherapy induce apoptosis or necrosis of tumor cells and/or activate an intratumoral, anticancer immune response that result in partial tumor 
remission. Chemoembolization-mediated anticancer effects have not been evaluated in woodchucks so far. See text for more details. B7.1/CD80: Costimulatory 
molecule; CLV: Clevudine; ETV: Entecavir; GCV: Ganciclovir; GM-CSF: Granulocyte-macrophage colony-stimulating factor; GS-9620: Toll-like receptor 7 agonist; 
HAI: Hepatic artery infusion; IL-12: Interleukin 12; JVRS-100: Complex of non-coding plasmid DNA and cationic liposomes; LAM: Lamivudine; PEDF: Pigment 
epithelium-derived factor; RFA: Radiofrequency ablation; TK: Thymidine kinase.

in lamivudine-treated patients, in addition to mutations in the C domain of the HBV 
polymerase gene[168-170].

Long-term, oral treatment of woodchucks with entecavir for 14 or 36 mo, starting at 
an animal age of 8 mo and then continuing with a lower dosing frequency from 10 mo 
of age onward (i.e., 0.5 mg/kg/d for two months and then 0.5 mg/kg/wk for 12 or 34 
mo), resulted in a 5-8 Log10 reduction in serum WHV DNA in 60% or 80% of animals, 
respectively[171]. The levels of serum WHsAg and intrahepatic WHV cccDNA 
declined alongside and in parallel with the marked reductions in viremia. An 
emergence of entecavir-resistant mutants was not observed during the study. Since 
woodchucks with a sustained antiviral effect stayed negative for signs of liver tumors 
for up to 2⅓ years after drug withdrawal, entecavir treatment prevented the 
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development of liver cancer in a majority of animals (i.e., up to 80% HCC-free 
survival).

Delayed HCC onset and prolonged survival was also achieved during long-term, 
oral treatment of woodchucks with clevudine for 32 wk at a dose of 10 mg/kg/d, 
starting at an animal age of 1-2 years[37,172]. Thereafter, half of the placebo- or 
clevudine-treated woodchucks received intramuscularly four doses of a conventional, 
alum-adsorbed WHsAg vaccine that was administered monthly after drug 
withdrawal. Combination treatment with clevudine and vaccine reduced viremia by 
up to 9 Log10, with undetectable serum WHV DNA in many animals. The antiviral 
effect was sustained for more than 1 year after treatment cessation in 75% of 
woodchucks and prevented HCC onset in 38% of animals. However, once HCC was 
established, the growth rates (i.e., volume doubling times) of liver tumors were similar 
to those of control animals. Importantly, initiation of clevudine treatment at an animal 
age of 1 year, and independent of vaccination, produced a more pronounced 
anticancer effect than a treatment begin at an animal age of 2 years. The development 
of liver tumors in the younger cohort of woodchucks was further delayed and HCC-
free survival increased after 3 (50% vs 0%) and 4 years (25% vs 0%). Moreover, 
vaccination of these animals without initial clevudine treatment improved the B- and 
T-cell responses to WHsAg, the protein on which the vaccine was based, but had no 
effect on viral replication or liver enzyme levels. In combination with clevudine, 
however, vaccination enhanced these B- and T-cell responses based on the higher titers 
of virus-neutralizing antibodies and the greater proliferation capability to stimulation 
with WHsAg. In addition, combination treatment broadened the antiviral immunity to 
include T-cell responses to other viral antigens, such as WHcAg, WHeAg, and 
WHxAg, while liver enzyme levels normalized.

Woodchucks were further applied in the preclinical evaluation of immunomodu-
lating compounds being developed for the treatment of HBV-infected patients. The 
immunomodulators tested so far in woodchucks suppressed WHV replication in the 
liver and reduced viremia and antigenemia in the periphery at varying degrees. In 
some instances, the antiviral effect was sustained after the end of treatment, and 
seroconversion to antibodies against WHsAg and/or WHeAg was achieved in a subset 
of animals, indicating that a functional cure was induced. Immunomodulators were 
administered as single agents but more often in combination with nucleos(t)ide 
analogs and/or inhibitors of viral gene expression and immune checkpoint markers 
(Table 3). Comparable to the chemotherapy studies, only two immunotherapy studies 
were designed or extended to include the assessment of anticancer effects.

Short-term, oral administration of the small molecule GS-9620 targeting toll-like 
receptor (TLR) 7 induced durable antiviral efficacy in woodchucks treated with 
different doses and dosing frequencies[173]. In the group with the greatest antiviral 
effect, animals at an age of 12-14 mo received the agonist every other day for approx-
imately 4 wk, initially at 5 mg/kg and then at 2.5 mg/kg after a treatment interruption 
for 9-10 d due to liver enzyme increase and thrombocytopenia that both reversed 
during the dose holiday. Treatment in this group induced a rapid reduction in serum 
WHV DNA of 6.2 Log10 that was accompanied by declines in intrahepatic WHV 
cccDNA and undetectable serum WHsAg. Suppressed WHV replication was sustained 
in all woodchucks during the 31-week follow-up period, and a subset of animals also 
seroconverted to antibodies against WHsAg during this time. At the end of the study 
in week 35, all animals were found to be HCC-free during postmortem examination. 
When combining all woodchucks enrolled in the various treatment groups of this 
study, and by including only animals that completed treatment and experienced 
sustained viral suppression, TLR7 agonism reduced the HCC incidence from 71% in 
placebo-treated control woodchucks to 8% in GS-9620-treated animals. The antiviral 
and anticancer effects were attributed to the activation of an immune response based 
on the induction CD8+ T-cells, NK-cells and B-cells, and the production of type I and II 
interferons in the liver. A follow-up study further indicated that GS-9620 not only 
targets TLR7 but also TLR8 when administered at high doses[174], possibly explaining 
the most superior antiviral effect observed so far in the woodchuck animal model with 
a single agent during short duration treatment.

Intravenous administration of JVRS-100, a complex of non-coding plasmid DNA 
and cationic liposomes, every second week for 12 wk at two separate doses to 
woodchucks with liver tumors at an age of 2 years resulted in antiviral and anticancer 
effects[175]. Since the high serum loads of viral DNA and antigens typically present 
during chronic WHV infection mediated immune suppression, and thus resistance to 
treatment, only animals with rather low levels of viremia and antigenemia were 
enrolled in the study. Serum WHV DNA declined by 0.9 Log10 during JVRS-100 
treatment and during the 12-week follow-up period, especially in animals that 



Suresh M et al. The woodchuck model of HBV-induced HCC

WJGO https://www.wjgnet.com 521 June 15, 2021 Volume 13 Issue 6

Table 3 Immunomodulators evaluated in woodchucks for safety and antiviral efficacy against hepatitis B virus

Immunomodulator Compound name Brand name Ref.

IFN-α [192,226,228,229]

RIG-I/NOD2 agonist SB 9200 Inarigivir [227]

TLR7 agonist GS-96201 Vesatolimod [173]

APR002 [225]

RG7854 [38]

TLR8 agonist GS-9688 Selgantolimod [174]

TLR9 agonist CpG-ODN [234]

TLR9-dependent and -independent pathways AIC649 [235]

JVRS-1002 [175]

Viral gene expression inhibitor RG7834 [226]

Immune checkpoint inhibitor Anti-PD-L1 [236]

1Treatment delayed hepatocellular carcinoma onset in woodchucks.
2Treatment inhibited formation of new liver tumors in woodchucks.
See text for more details. Anti-PD-L1: Antibody against programmed death-ligand 1; CpG-ODN: CpG oligodeoxynucleotide, a short single-stranded 
synthetic DNA molecule containing unmethylated deoxycytosine-deoxyguanosine (CpG) motifs; IFN-α: Interferon alpha; JVRS-100: Complex of non-
coding plasmid DNA and cationic liposomes; NOD2: Nucleotide-binding oligomerization domain-containing protein 2; RIG-I: Retinoic acid-inducible gene 
I; TLR: Toll-like receptor.

received the higher dose, but the antiviral effect was transient and less pronounced for 
WHsAg. Although treatment did not induce a regression of preexisting liver tumors, 
the higher dose prevented the formation of new tumors for 6 mo. These effects were 
associated with the activation of immune responses that involved CD4+ and CD8+ T-
cells and T helper cell type I (Th1) cytokines, such as IFN-α, tumor necrosis factor-α 
(TNF-α), and interleukin (IL) 2 and 12 in liver and blood, and that apparently blocked 
the conversion of virus-induced chronic liver disease into HCC.

Overall, these studies demonstrated that long-term treatment with nucleos(t)ide 
analogs primarily delays but sometimes prevents liver tumor development in 
woodchucks. Since these studies established a correlation between suppressed viral 
replication and reduced liver disease progression, early initiation and prolonged 
duration of conventional antiviral treatment appear most critical for the prevention of 
hepatitis virus-induced HCC. Since the applied treatment regimens resulted in less 
cellular damage and liver injury, they most likely deferred the transformation of 
altered hepatocytes into liver tumors. Short-term immunomodulation, either rather 
broad or more targeted, mediated lasting protection against formation of new liver 
tumors or HCC onset. In two studies, immunomodulation was associated with 
improved or newly elicited humoral and cellular immune responses to viral antigens 
that were reduced by treatment, and thus could no longer act as endogenous 
tolerogens.

Direct treatment by chemotherapy, radiotherapy, or gene therapy
Since liver tumors obtain their nutrient blood supply from the hepatic artery[176], 
hepatic artery infusion- (HAI) supported chemotherapy has been applied for the 
treatment of both primary and metastatic liver cancers in patients and shown to be an 
effective treatment for unresectable advanced HCC[177]. Effectiveness of this 
intervention relates to the concentration of chemotherapeutics in HCCs by direct 
delivery to the tumors, with limited systemic exposure in the liver[178]. In one 
woodchuck study, HAI ports were placed in the gastroduodenal artery and infused 
with a curaxin-based experimental anticancer drug, once per week for 3 wk at a dose 
of 17 mg/kg[179]. Curaxin targets a histone chaperon expressed at high levels in 
cancer[180] and activates the p53 tumor suppressor gene, while it simultaneously 
suppresses inhibition of NF-κB[181]. Tumor growth in woodchucks was suppressed 
after repeated treatment and the anticancer effect was associated with increases in 
intratumoral T-cell infiltration and tumor cell apoptosis.
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Woodchucks were also applied for testing the preventive effect of long-term, oral 
treatment with sorafenib[182]. Sorafenib, a small molecule receptor inhibitor of several 
surface tyrosine kinases, is a standard first-line therapy approved for the treatment of 
human HCC. Although this drug has both proapoptotic and antiangiogenic properties, 
the treatment benefit of sorafenib is modest, as only a 3-mo improvement in the overall 
survival is achieved and its indication is restricted to patients with well-preserved 
liver function[183]. The underlying mechanism of sorafenib-mediated anticancer 
activity has not been fully elucidated. Sorafenib was administered daily to 
woodchucks at two separate doses (i.e., 2.5 mg/kg and 5 mg/kg) using a 5-d-on and 2-
d-off schedule until tumor development was observed. Although all animals 
presented with liver tumors independent of the sorafenib dose applied, the lower dose 
was associated with smaller initial tumor volumes and delayed tumor growth that was 
associated with an increase in intratumoral CD3+ T-cell infiltration. An effect of 
sorafenib on chronic WHV infection was not noted. Interestingly, short-term, oral, 
daily sorafenib administration for 90 d was unable to reciprocate the anticancer effect 
obtained during long-term treatment. The study concluded that sorafenib has 
immunomodulatory activity that is dependent on the dose and treatment duration. 
Caution, however, is warranted when applying higher doses of sorafenib, because of 
its immunosuppressive function that relates to an increased activity of nuclear factor 
of activated T-cells 1 (NFAT1) and results in the in vitro inhibition of T-cell prolif-
eration and in an increase in programmed cell death protein 1 (PD-1) expression of 
CD8+ T-cells, as demonstrated in woodchucks.

Woodchucks with liver tumors were further used to evaluate different ablation 
techniques for human HCC. One study demonstrated the feasibility of tumor excision, 
percutaneous alcohol ablation followed by tumorectomy, and laser photocoagulation 
in this animal model[86]. Extended survival for up to 16-18 mo was achieved with the 
first two modalities, but multiple tumor recurrence distant from the resection area 
occurred ultimately in all animals. A second study investigated the effect of a saline-
linked dissecting sealer on the remaining tumor beds (i.e., in situ margins) after initial 
removal of neoplasms by tumorectomy[184]. Surface application of this device 
induced a heat zone area of up to 5 mm in depth, inside which residual tumor cells, if 
present, were efficiently destroyed, suggesting that this approach could be beneficial 
in reducing marginal recurrence after tumor resection. A third study tested radiofre-
quency ablation (RFA) using a low energy protocol and a 1.0 cm probe that produced a 
consistent burn area within liver tumors, as determined by necrosis of tumor cells, but 
was unable to fully ablate larger lesions[185]. A final study assessed the effectiveness 
of passive scattering proton beams with high dose fractionation[186]. Three fraction-
ations were applied every other day within one week to the hepatic neoplasm. A 
partial regression of the treated liver tumor was noticed at week 3 post-treatment, 
which continued until the nodule disappeared at week 9, as also confirmed during 
postmortem evaluation one week later. The study concluded that a delayed but 
complete imaging response to proton beam treatment of HCC was achieved in 
woodchucks without visible gastrointestinal toxicity.

Gene therapeutic strategies based on the induction of apoptosis, antiangiogenesis, 
or anticancer immune response were assessed in woodchucks for the treatment of 
human HCC. In one study, an adenoviral vector encoding for the thymidine kinase 
(TK) of herpes simplex virus under the control of the ubiquitous cytomegalovirus 
promoter for conferring sensitivity to ganciclovir (GCV) treatment was administered 
to liver tumors either directly or indirectly via the hepatic artery[187]. Transduction of 
tumor cells and subsequent drug administration resulted in an anticancer effect in two 
woodchucks that was mediated by GCV-induced apoptosis; however, a third animal 
died due to acute liver failure that was attributed to the transduction of adjacent, 
nonneoplastic hepatocytes. Although tumor regression was not achieved, necrotic 
areas were present in tumors one week after treatment. The study emphasized the 
need to make vector transduction more specific to liver tumor cells by controlling TK 
expression with HCC-specific promoters, such as the AFP promoter.

Two other studies tested the anticancer activity mediated by the cytokine IL-12. In 
the first study, murine IL-12 was expressed from a replication-competent Semliki 
Forest virus (SFV) vector[188]. Use of this vector has the advantage that the antitumor 
effect mediated by the cytokine is enhanced via the induction of apoptosis in tumor 
cells that replicate SFV. A single, intratumoral injection of the vector at increasing 
doses during laparotomy produced a dose-dependent tumor regression that was 80% 
with the highest dose. Correlating with the temporary IL-12 expression, partial tumor 
remission was transient and neoplasms began to regrow between 6 and 14 wk after 
treatment. In addition, all animals experienced a temporary reduction in serum 
viremia and/or antigenemia. The anticancer and antiviral effects were associated with 
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augmented T-cell responses to tumor and viral antigens, as well as increased 
expression of CD4 and CD8 markers and IFN-γ and TNF-α in peripheral blood 
mononuclear cells. In the second study, a single dose of an adenoviral vector encoding 
for murine IL-12 and the costimulatory B7.1/CD80 molecule for activating T-cells was 
injected into liver tumors during laparotomy or under MRI guidance[189]. 
Transduction of tumor cells resulted in a tumor regression of 80% on average, with 
one animal experiencing an almost complete tumor elimination within 7 wk. 
Regression was associated with the induction of an anticancer immune response, as 
demonstrated by a massive infiltration of CD4+ and CD8+ T-cells into tumors and an 
increase in intratumoral IFN-γ production. The long-term anticancer effect could not 
be evaluated, as almost all animals were euthanized two weeks after treatment.

A final study investigated the anticancer effect mediated by antiangiogenic proteins 
and cytokines in woodchucks[190]. Single dose treatment via the hepatic artery with an 
adenoviral vector encoding for human pigment epithelium-derived factor (PEDF) and 
endostatin in combination with an adenoviral vector for the expression of woodchuck 
granulocyte-macrophage colony-stimulating factor (GM-CSF) and murine IL-12 
induced a tumor regression of 90%. The partial tumor remission obtained by 
combination treatment was superior to the 56% and 76% reduction in tumor volume 
that was achieved by treatment with antiangiogenic proteins or cytokines alone, 
respectively. An antiviral effect was not noted during the study and serum viremia 
and antigenemia remained unchanged in all animals. The tumor regression induced 
by combination treatment was attributed to several factors, including increased infilt-
ration of CD3+ T-cells into tumors, high intratumoral levels of NK-cells, apoptosis of 
tumor cells, reductions in tumor vasculature (i.e., reduced microvessel density), and 
declines in immune checkpoint markers [i.e., PD-1 and cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4)] most likely present on regulatory or immunotolerant T-
cells within tumors. Since animals were only followed for two weeks after treatment, 
the durability of the anticancer effect could not be evaluated.

Overall, these studies established that chemotherapy, radiotherapy, and gene 
therapy of liver tumors are effective means for the treatment of hepatitis virus-induced 
HCC in woodchucks. Since some studies established a correlation between anticancer 
immune response and partial tumor remission, approaches which are based on 
immunomodulation or checkpoint inhibition for inducing functional cure of chronic 
HBV infection, appear promising and should further be evaluated in woodchucks for 
treatment of human HCC.

CONCLUSION
WHV-infected, immunocompetent woodchucks are used to model chronic HBV 
infection and HCC in humans. Over the past four decades, woodchucks have been 
applied in the investigation of mechanisms involved in viral immunopathogenesis and 
hepatocarcinogenesis, in the development of new contrast agents to enhance the 
detection of hepatic neoplasms by various imaging techniques, in the improvement of 
tumor ablation strategies based on transarterial embolization and radiotherapy, and in 
the evaluation of therapeutic interventions directed against the severe outcome of 
hepatitis virus-induced liver disease. Although the latter was only assessed in a 
limited number of studies, in which liver tumors were targeted by indirect and direct 
means, the continued application of woodchucks will support not only the many 
efforts to cure chronic HBV infection by new antivirals and immunomodulators, but 
also to treat the associated disease sequelae. Future studies can take advantage of the 
recently identified woodchuck transcriptome[79,191,192] and genome[193] for 
generating all needed protein-based markers and assays, as well as of the translational 
value of woodchucks in predicting therapeutic efficacy against chronic HBV infection 
in patients[174,192,194]. Thus, chronic WHV carrier woodchucks progressing to HCC 
within a reasonable time will greatly aid the development and evaluation of the safety 
and efficacy of new anticancer prophylaxis or therapy in a relevant animal model. 
Increased testing of anticancer approaches in the woodchuck animal model will 
ultimately improve the chances for prevention and therapy of HBV-induced HCC.
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