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Intrachain interaction topology can identify
functionally similar intrinsically disordered proteins
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ABSTRACT Functionally similar IDPs (intrinsically disordered proteins) often have little sequence similarity. This is in stark
contrast to folded proteins and poses a challenge for the inverse problem, functional classification of IDPs using sequence align-
ment. The problem is further compounded because of the lack of structure in IDPs, preventing structural alignment as an alter-
nate tool for classification. Recent advances in heteropolymer theory unveiled a powerful set of sequence-patterning metrics
bridging molecular interaction with chain conformation. Focusing only on charge patterning, these set of metrics yield a
sequence charge decoration matrix (SCDM). SCDMs can potentially identify functionally similar IDPs not apparent from
sequence alignment alone. Here, we illustrate how these information-rich ‘‘molecular blueprints’’ encoded in SCDMs can be
used for functional classification of IDPs with specific application in three protein families—Ste50, PSC, and RAM—in which
electrostatics is known to be important. For both the Ste50 and PSC protein family, the set of metrics appropriately classifies
proteins in functional and nonfunctional groups in agreement with experiment. Furthermore, our algorithm groups synthetic var-
iants of the disordered RAM region of the Notch receptor protein—important in gene expression—in reasonable accordance with
classification based on experimentally measured binding constants of RAM and transcription factor. Taken together, the novel
classification scheme reveals the critical role of a high-dimensional set of metrics—manifest in self-interaction maps and topol-
ogy—in functional annotation of IDPs even when there is low sequence homology, providing the much-needed alternate to a
traditional sequence alignment tool.
SIGNIFICANCE Functional classification of proteins is critical to understand fundamental biology and molecular
evolution. Folded proteins can be functionally grouped based on their sequence and/or structural similarity. However, the
same does not apply for intrinsically disordered proteins (IDPs) that lack unique folded structure. Sequence alignment
often fails to identify functionally similar IDPs because of low sequence similarity. Yet, functional clues must be in the
sequence! How do we unlock the code? Progress in theoretical physics of IDPs yielded novel mathematical formulae
revealing hidden features of sequences. We applied these information-rich metrics to classify IDPs consistent with
experimental data but not possible by sequence alignment. The success of our approach offers a, to our knowledge, new
avenue for IDP classification grounded on physicochemical rules.
INTRODUCTION

Intrinsically disordered proteins and disordered regions
(generally termed IDPs) are ubiquitous and participate in
numerous biological functions (1,2): from signaling, chro-
matin remodeling, and cellular differentiation to the forma-
tion of membraneless organelles. However, functional
classification of IDPs—in contrast to that of folded pro-
teins—is in its infancy because of two primary challenges.
First, IDP sequences of functionally similar proteins have
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very low sequence similarity (3). Consequently, traditional
sequence alignment tools, successful for folded proteins,
cannot be used to detect functionally similar IDPs. Second,
IDPs do not have a definite native structure; instead, they
interconvert among disordered conformations. Thus, func-
tional classification by structure alignment is not possible
either.

Despite low sequence similarity, IDPs across different
species can perform similar function. An intriguing question
emerges: are there hidden molecular blueprints in the appar-
ently diverged set of sequences that are perhaps conserved
for function (4)? Support for this idea comes from recent,
but limited, experimental studies identifying specific met-
rics based on charge amino acids encoded in the sequence.
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IDP classification
Functional similarity of proteins can manifest in metrics as
simple as overall charge composition (4,5) or more abstruse,
such as contiguous stretches of charge (beyond composi-
tion) (6), while sequence alignment fails to detect any sim-
ilarity. The intricate role of charge decoration is further
evidenced when synthetic sequences generated by charge
shuffling while maintaining the same charge composition
exhibit widely different behavior (7). In a recent approach,
it has been noted that conformational fluctuations arising
from an all-atom force field may be used to classify IDP se-
quences (8). A large-scale proteome-wide analysis of IDP
function revealed the importance of a set of molecular fea-
tures extracted from a sequence for functional characteriza-
tion (4). It is now timely to unravel these cryptic features of
the sequence—stemming from specific interaction rules—to
identify functionally similar or dissimilar proteins that are
not apparent from simple sequence alignment alone.

So, what are these cryptic features and how do we
decode them? Intuitive features of sequences have been
shown to describe the experimentally measured sizes of
IDPs (9–12). Recent progress in heteropolymer theory un-
veiled several nonintuitive metrics encoded in sequence
that determine IDP conformational ensemble (13–18).
Some of these metrics are a direct outcome of mathematical
averaging over the ensemble (14–16). These closed-form
mathematical expressions are functions of sequence decora-
tion and not just the composition. The same set of decora-
tion metrics also plays a critical role in describing the
phase-separation propensity of IDP chains (19,20), consis-
tent with the finding that single-chain conformation can
dictate multichain physics of phase separation (21,22). At-
tempts are underway to use sequence features to build pre-
dictors of diverse function such as phase separation (23) and
formation of fuzzy complexes involving IDPs (24,25), to
name a few. Gross conformational features such as radius
of gyration and limited proteolysis have been implicated
to detect the functional similarities of POLII between hu-
man and fly, despite having little sequence similarity (26).
Several other studies also hint at a possible role of the
conformational ensemble and the associated disorder to
tune function (27–29). These observations convey two
main messages: 1) novel sequence-decoration metrics ex-
tracted from sequence alone can be used to describe confor-
mational features and 2) conformational features ultimately
dictate function. We notice the emergence of a ‘‘molecular
metric, conformation, function’’ paradigm in IDPs.

With the possibility of identifying and using hidden mo-
lecular metrics to detect functional similarity between two
apparently dissimilar sequences, we also recognize the chal-
lenge. Two functionally similar proteins can happen to be
dissimilar in a given metric. On the other hand, two func-
tionally dissimilar proteins can have the same values of a
given metric, although this is less likely. We need a high-
dimensional yet finite set of metrics to have enough
specificity to detect similarities or dissimilarities between
sequences. At the same time, the metrics should be
representative of the conformational ensemble because
function is expected to depend on conformation. In our
recent work, we discovered such a set that dictates the
inter-residue distance maps holding the keys to IDP
conformations. Specifically, we identified an electrostatic
self-interaction matrix that determines the ensemble average
distance hR2

iji profiles between two residues i, j in a given
chain (30). These information-rich quantities define several
metrics of charge patterning that can be organized as a ma-
trix called sequence charge decoration matrix (SCDM). A
previously discovered metric, defined as sequence charge
decoration or simply SCD (see (14)), is just one element
of this matrix. SCDM provides the much-needed high-
dimensional yet manageable set of numbers—derived
directly from sequence—to quantify IDP similarity or
dissimilarity.

IDPs are low-complexity sequenceswith significant confor-
mational dependence on electrostatics (9–11,13,31–33). In
this work, as a proof of concept, we focus on the set of IDPs
for which electrostatics has been implicated to influence func-
tion.We show that SCDMarising from intrachain electrostatic
interaction can be used to group functionally similar proteins
in two IDP families, Ste50 and PSC, for which experimental
data are available (4–6). Finally, we notice SCDM-based clas-
sification of synthetic variants of RAM proteins also moder-
ately correlates with classification using measured binding
data (7). We emphasize that the elements of the SCDM were
derived within an analytical formalism distinct from molecu-
lar simulation. Moreover, SCDMs provide physical insights
by depicting electrostatic origin to intrachain conformational
profile such as collapse and swelling at different parts of the
chain. Intrachain conformational features, in turn, dictate the
protein’s accessibility and ability to interact with other bio-
molecules, often required for function. Thus, similarity or
dissimilarity in the patterns of these easily computablemolec-
ular features concealed in SCDM is perfectly suited to classify
many IDP sequences across multiple species and designed se-
quences in which electrostatics is critical.
METHODS

We need a high-dimensional set of metrics that are functions of sequence to

identify similarity or dissimilarity between two IDPs. In a recent publica-

tion, we have demonstrated the dependence of inter-residue distance pro-

files on different interactions in a sequence-specific manner (30). For

example, the ensemble average distance hR2
iji between two amino acids i

and j depends on the sequence details by an SCDM whose elements

SCDMij are defined as

SCDMij ¼ 1
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where qm, qn are the charges on the residues at position m and n, respec-

tively, and N is the total number of amino acids in a protein. The origin

of SCDM can be understood by noticing that SCDMij values are propor-

tional to Qel
ij (kl ¼ 0)/(i � j), where Qel

ij (kl) is defined in (14). Note that

kl ¼ 0 denotes zero salt condition. The division by (i � j) ensures consis-

tency with the previously defined one-dimensional patterning metric SCD

(14). Specifically, SCD ¼ SCDMi ¼ N, j ¼ 1. Thus, the SCDM is more

descriptive of IDP conformation than the single-metric SCD defined earlier

(14).

For classification purposes, SCDMij values were calculated for each i, j

pair of amino acids yielding a large set of metrics. Furthermore, they were

assigned þ1 if the elements were positive (repulsive) or �1 when negative

(attractive). Thus, the SCDM was binarized. For the sake of brevity, binary

SCDM will be referred to as bSCDM (binarized SCDM) for the rest of this

manuscript. To address the issue of different chain lengths, each bSCDM

was resized to the dimensions of the longest protein chain using the image

rescaling package in OpenCV with an interpolation algorithm. The ele-

ments of bSCDM bridge electrostatic interaction with distance maps

(hR2
iji) describing the chain conformation for different residue pairs (i,

j). Thus, the NX(N � 1)/2 dimensional bSCDM provides the map of attrac-

tive and repulsive regions within the chain holding the blueprint of IDPs.

Next, bSCDM was converted to a one-dimensional array describing

NX(N � 1)/2 features for a given IDP. However, the topology of the matrix

information was preserved by properly ordering the elements keeping track

of their indices based on i, j. A consolidated protein data matrix was created

in which each row contained the one-dimensional ordered array of NX(N �
1)/2 features specific to a protein. If n proteins are to be classified, the pro-

tein data matrix will have n rows for each protein. To eliminate possible

redundancy, principal component analysis was carried out on this high-

dimensional protein data matrix using the SciKitLearn module PCA. The

number of principal components were determined to ensure that at least

90% of the variance in the data can be explained. For Ste50, we used the

top three components accounting for 92% of the variance; for PSC, we

used the top five components with 94.1% of the variance; and for RAM,

we used eight components accounting for 91.7% of the variance. Finally,

clustering of the proteins in this principal component space was performed

using the SciPy hierarchical clustering package with the centroid algorithm.

Euclidean distance matrices have been included in the Supporting material

to further highlight the insights gained from the clusters presented in den-

drograms. Sequences used for all three protein families can be found in Ta-

bles S5–S7 for Ste50, RAM, and PSC, respectively.
FIGURE 1 Sequence charge decoration matrices (SCDMs) reveal protein sp

LKCharge, PEX5, SCCharge, SC5A, and RAD26 (from left to right). The colo

to be repulsive (red) or attractive (blue). A clear visual pattern of three repul

(LKCharge, PEX5, and SCCharge) that is not present in the nonfunctional link
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RESULTS AND DISCUSSION

Ste50

The first group of proteins chosen were the Ste50 proteins
studied by Moses and colleagues (4,5). Ste50 is an intrinsi-
cally disordered region (IDR) between two highly
conserved folded domains regulating MAPK pathways.
We consider the active Ste50 IDR from Lachancea kluyveri
with phosphorylations at positions 17 and 81, referred to as
LKCharge. For Saccharomyces cerevisiae, we consider two
forms of Ste50 IDR: SC5A and SCCharge. SC5A is
nonfunctional with alanine-replacing phosphorylatable po-
sitions 13, 54, 60, 102, and 106 (in the truncated sequence).
The functional form (SCCharge) is phosphorylated at posi-
tions 102 and 106 (in the truncated sequence). Phosphoryla-
tion is modeled by adding two glutamic acids to mimic the
charge of the phosphate group. SCCharge is functionally
comparable to the maximally phosphorylated sequence
(5), justifying the double phosphorylation in SCCharge. In
addition to LKCharge, SC5A, and SCCharge, we included
two IDRs, PEX5 and RAD26, that have negligible sequence
similarity to Ste50. When wild-type Ste50 was replaced by
RAD26, the function was lost, whereas PEX5 retained wild-
type function (4). The functional classification of these pro-
teins was determined by measuring cell morphology,
viability, MAPK signaling, and/or response to pheromone
(4,5).

Fig. 1 reveals a visual trend in the topology of the
SCDMs. All the functional proteins (LKCharge, PEX5,
and SCCharge) have three distinct repulsive regions (red)
near the diagonal and rest of the interaction maps are pri-
marily attractive (blue). This is in stark contrast to the
nonfunctional proteins (RAD26 and SC5A). Thus, the to-
pology of the intrachain interaction maps quantified by
SCDM clearly separates functional and nonfunctional pro-
teins. Electrostatic interaction is expected to induce collapse
in the blue regions and swelling in the red regions. The abil-
ity to distinguish functional and nonfunctional proteins us-
ing these maps highlight important role of single-chain
conformational ensemble, including local features, that
dictate function.

To automate such classification without using visual in-
spection, we developed a quantitative platform to classify
and cluster based on the bSCDMs. As reported in the
ecific patterns facilitating functional classification. SCDMs are shown for

r coding above depicts where the contribution of electrostatics is predicted

sive clusters near the diagonal is seen to emerge in the functional linkers

ers (SC5A and RAD26). To see this figure in color, go online.



IDP classification
Methods, the matrix was transformed in binary with attrac-
tive interactions assigned a value of�1 and the repulsive in-
teractions a value of þ1. This generated sequence-specific
patterns in the interaction maps similar to Fig. 1, which
we also term bSCDM. We resized these interaction maps
to that of the largest protein. Next, we performed principal
component analysis to include only dimensions capturing
at least 90% of the variance. Once the coordinates along
these new dimensions were determined for each protein,
they were clustered by their coordinates using a hierarchical
agglomerative algorithm. The results of this clustering for
Ste50 are shown in Fig. 2.

PEX5, SCCharge, and LKCharge are all classified
together on the right (see blue cluster). RAD26 and SC5A
are distinct from this initial cluster, shown in red. This is
consistent with the experimental readout that identifies
PEX5, SCCharge, and LKCharge as functional and
RAD26 and SC5A as nonfunctional. The order and prox-
imity of the proteins within the cluster determined by the
distance map (see Table S1) provide further insights. The
closest two proteins are SCCharge and LKCharge, which
are the two functional orthologs of Ste50 linker sequences.
PEX5 is the next addition to the cluster, which is not orthol-
ogous to Ste50 linker yet retains the normal function (4).
Notably, the next addition is SC5A, the nonfunctional
form of the Ste50 sequence from S. cerevisiae, which is
clustered outside of the functional group but closer to the
functional group compared to RAD26. Finally, RAD26 is
the furthest from all the other proteins, consistent with the
observation that RAD26 is nonfunctional and is not a mem-
ber of the orthologous set.

As a control, we used three additional classification
schemes. First, we performed clustering by using charge
content only (see Fig. S4). We notice SC5A, a nonfunctional
protein, is clustered closely to PEX5, a functional protein,
contradicting experimental observation. This highlights
the importance of the sequence specificity captured by
bSCDM to classify function and not just composition met-
rics. We carried out further control by shuffling the elements
of bSCDM in random order to test whether the exact topol-
ogy of the matrix (i.e., the order in which the elements in the
matrix appear) is critical for proper classification (see Sup-
FIGURE 2 Clustering Ste50 using bSCDMmatches with functional clas-

sification. Clustering using bSCDM groups functional proteins PEX5,

SCCharge, and LKCharge (blue) in one cluster and places the two proteins

SC5A and RAD26, found nonfunctional in experiments, outside of that

cluster (red, left). To see this figure in color, go online.
porting materials and methods). Classification using ran-
domized bSCDM clusters nonfunctional SC5A and
functional SCCharge together, in disagreement with exper-
iment (see Fig. S6). The third control scheme uses the
charge-product metric, in which each i, j element of the ma-
trix is calculated simply by qiqj (see Supporting materials
and methods). Fig. S9 shows that clustering using the
charge-product method does not agree with the functional
classification. The failure of the charge-product metric
shows that the important contribution of the neighboring
charges and their conformation—both embedded in
SCDM—is critical to correctly classify ‘‘functional’’ and
‘‘nonfunctional’’ proteins. Ultimately, all three control
studies reveal a more nuanced role of sequence charge deco-
ration in grouping functionally similar proteins. Addition-
ally, clustering these proteins by their SCD (one element
of SCDM, specifically SCDMN, 1) does not distinguish be-
tween functional and nonfunctional proteins. However, our
method cannot a priori determine which of the two groups
is functional.
PSC-CTR

Next, we considered polycomb repressive complex 1 PSC, a
set of highly charged and highly disordered proteins (6).
PSC binds to DNA with nanomolar affinity to inhibit chro-
matin formation and is essential for viability in Drosophila
melanogaster. Moreover, it has been found that the C-termi-
nal disordered region of PSC (termed as PSC-CTR) is
necessary and sufficient for the function of PSC inhibiting
chromatin structure. Beh et al. (6) identified and studied
sets of PSC-CTR from different metazoan species and clas-
sified them as ‘‘inhibitory’’ or ‘‘noninhibitory’’ based on the
50% inhibition point for the respective protein. Two of the
identified PSC-CTR proteins, Daphnia pulex PSC2 (also
termed D. pulex2) and D. pulex PSC1 (also termed
D. pulex1), inhibit chromatin formation less well (‘‘noninhi-
bitory’’) than all the other members of the set. The sequence
feature discriminating these two proteins from the rest of the
proteins are contiguous stretches of negative charges (6).
The scrambled versions (D. pulex PSC1 Act1 and D. pulex
PSC1 Act2) of the wild-type sequence D. pulex PSC1
were generated by reducing the contiguous negative charges
and increasing the binding affinity to DNA, classifying them
as ‘‘inhibitory’’ (6).

We tested the discriminatory power of our theoretical ma-
chinery using bSCDM to cluster PSC-CTR sequences
(Fig. 3, left panel). We excluded Helobdella sp. and Lottia
gigantea from the original list because of less than 75% dis-
order in these sequences predicted by the IUPRED server.
Theoretical classification compares well with grouping
based on dissociation constant (Kd) and 50% inhibition
point (denoted as I for this manuscript) measured experi-
mentally (see right panel in Fig. 3). First, we note that
D. pulex PSC2 clusters on its own in both the theoretical
Biophysical Journal 120, 1860–1868, May 18, 2021 1863



FIGURE 3 Clustering using bSCDM for PSC proteins closely resembles clustering using experimentally measured Kd and I. The left panel shows the

clustering using bSCDM for the PSC proteins, and the right panel shows clustering using Kd (x axis) and the 50% inhibition point I (y axis). With the excep-

tion of very few outliers, it can be seen that clustering by bSCDMs is in agreement with clustering using experimental data. To see this figure in color, go

online.
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method and clustering using experimental data (top right in
Fig. 3, right panel). Next, our theoretical scheme classifies
D. pulex PSC1 separately from all the other wild-type se-
quences, consistent with the observation that Kd and I of
D. pulex PSC1 are much greater than all the ‘‘inhibitory
or repressive’’ proteins. A significant difference in Kd and
I between D. pulex PSC1 and D. pulex PSC2 is also consis-
tent with our modeling that separates the two proteins. Apart
from success in broad grouping, bSCDM captures finer dif-
ferences among ‘‘inhibitory’’ PSC-CTRs. For example,
Drosophila virilis, Ciona intestinalis, D. willistoni,
D. pseudoobscura, and D. melanogaster all form their
own subcluster in the theoretical method. The same set of
proteins can also be grouped together by defining a
‘‘strongly repressive’’ group characterized by Kd less than
2 nM and I between 1 and 2 nM (right panel in Fig. 3).
Next, we note that Bombyx mori, Brugia malayi, and Ixodes
scapularis are members of their own subcluster using a
bSCDM-based classification scheme. The same proteins
can also be classified as ‘‘moderately repressive’’ with
boundary defined as 2.1 nM < Kd < 3.5 nM and
4.5 nM < I < 7 nM. It is important to discuss Anopheles
gambiae within the repressive class; it has unusually high
Kd ¼ 5 but low I ¼ 2, in contrast to all the other proteins,
which tend to have high (low) Kd associated with high
(low) I-values. Thus, A. gambiae is expected to be subclas-
sified on its own among the repressive proteins; theoretical
classification, however, fails to capture this finer
classification.

Next, we consider the two synthetic sequences D. pulex1
Act1 (also called D. pulex PSC1 Act1) and D. pulex1 Act2
(also called D. pulex PSC1 Act2)—both in magenta—that
are clustered together but separate from the parent sequence
D. pulex PSC1 using our theoretical algorithm. The separa-
tion is consistent with experimental classification of
D. pulex1 Act1 and D. pulex1 Act2 as ‘‘repressive’’
compared to ‘‘nonrepressive’’ D. pulex PSC1. At a finer res-
1864 Biophysical Journal 120, 1860–1868, May 18, 2021
olution, our algorithm, however, differs from the experi-
mental data (see magenta points in Fig. 3, right panel)
that show D. pulex1 Act2 is closer to the subgroup
D. virilis, C. intestinalis, D. willistoni, D. pseudoobscura,
and D. melanogaster. Closer inspection at the Kd and I
data somewhat alleviates this concern. We note that
although D. pulex1 Act2 has low Kd ¼ 0.97, similar to the
proteins in the ‘‘strongly repressive’’ group defined above,
the value of I ¼ 3 nM falls just outside the range of 1 <
I < 2 nM loosely associated with the ‘‘strongly repressive’’
group. Furthermore, the distance matrix from the theoretical
classification scheme (see Table S2) places D. pulex1 Act2
closer to the wild-type ‘‘repressive’’ sequences compared
to D. pulex1 Act1. This relative ordering between
D. pulex1 Act2 and D. pulex1 Act1 is in agreement with
the observation that D. pulex1 Act2 has a lower Kd and I
compared to D. pulex1 Act1 and hence is considered more
‘‘repressive.’’ Fig. S1 shows theoretical clustering using
only the first two principal components (PC1 and PC2)
capturing 74% of the total variance. Using only two PCs
as two axes provides an easy visual interpretation similar
to experimental data shown in Fig. 3 (right panel). The
repressive PSCs (in red) cluster together and are far from
nonrepressive proteins D. pulex PSC2 and D. pulex PSC1.
In agreement with experiment, D. pulex1 Act2 appears to
be closer to the wild-type repressive group compared to
D. pulex1 Act1. Subclustering between repressive groups,
in major agreement with the data, is also visible in the
PC1-PC2 space.

In addition to the quantitative analysis provided above,
the topology maps using SCDMs (Fig. S2) provide impor-
tant insights. We note that proteins with the strongest bind-
ing (low Kd) have an entirely repulsive (red) contribution
from electrostatics to IDP conformation. Marginal increases
in dissociation (i.e., higher Kd seen in A. gambiae, B. mori,
and B. malayi) visually correspond to increasing regions of
attractive electrostatics (blue regions). The weakest-binding



FIGURE 4 Clustering of RAM sequences using bSCDM majorly agrees

with experimental data. The dendrogram showing clustering of RAM IDR

using bSCDMs shows three major groupings, in good agreement with the

experimental data using Kd. RAM 3 and 10 are two outliers (see text). To

see this figure in color, go online.

IDP classification
proteins, D. pulex PSC2 and D. pulex PSC1, in contrast,
have significant regions of attractive (blue regions) electro-
statics contribution to intrachain conformation. Interest-
ingly, the two synthetic sequences D. pulex1 Act1 and
D. pulex1 Act2 have a more central region of repulsion
(red), facilitating binding to DNA. The wild-type sequence
D. pulex PSC1 has a region where repulsive electrostatics
causes local swelling (small red in the top left) that favor-
ably interacts with distal parts of the chain reflected in
blue islands. These blue islands create favorable nonlocal
intrachain contacts that compete with DNA binding, ex-
plaining the lower binding to DNA in D. pulex PSC2 and
D. pulex PSC1. The removal of long stretches of negative
charges in the two synthetic sequences (D. pulex1 Act1,
and D. pulex1 Act2) relieves the small-scale local repulsion
(red corners) that, in turn, disrupts distal contacts (blue).
This is reflected in the reduction of blue patches and appear-
ance of large red regions in the synthetic sequences. These
changes in electrostatics contribution to chain conformation
prevent the formation of nonlocal contacts (self-collapse),
promoting binding to DNA. Thus, the topography of the
interaction maps can provide valuable insights to local and
nonlocal interactions that can repress or promote DNA
binding.

Despite minor deviations in subclasses noted above, it is
encouraging that our algorithm similarly classifies ‘‘repres-
sive’’ proteins identified by Beh et al. (6). Moreover, our
method delineates subtle differences within subgroups of
‘‘repressive’’ proteins subclassified as 1) ‘‘strongly repres-
sive’’ and 2) ‘‘moderately repressive.’’ Minor deviations
noted for the wild-type A. gambiae and synthetic sequences
D. pulex1 Act1 and D. pulex1 Act2 could potentially be due
to nonelectrostatic effects on the binding of the PSC-CTR to
DNA. These differences may also arise from nondisordered
structure forming in regions critical to binding, neglected in
our formalism.

As before, we carried out a control study to classify pro-
teins using sequence composition. Fig. S5 shows that when
clustering is done based on charge composition only,
D. melanogaster, D. pseudoobscura, D. virilis, and
D. wilistoni are clustered together, consistent with data.
However, major outliers are evident; for example
C. intestinalis and I. scapularis are classified far away
from the other ‘‘repressive’’ proteins. Moreover, classifica-
tion based on composition will not discriminate D. pulex1
from D. pulex1 Act1 and D. pulex1 Act2, failing to explain
the data. Next, we randomized elements of bSCDM and per-
formed clustering (see Fig. S7). This method also fails to
capture major features of the data. For example, D. pulex2
is grouped with the moderately repressive proteins
B. mori, B. malayi, and I. scapularis, inconsistent with
data. Further analysis using our charge-product method
again disagrees with the data, failing to distinguish between
strongly repressive, moderately repressive, and nonrepres-
sive (see Fig. S10). These findings reiterate the observation
that subtle features of bSCDMs are important for accurate
classification of IDPs.
RAM

Finally, we considered the disordered RAM region of the
Notch receptor protein (7). The intrinsically disordered
RAM region and the folded ANK domain together regulate
binding to the transcription factor CSL. Unlike previous ex-
amples with PSC and Ste50, RAM has a specific motif that
binds to CSL. Sherry et al. generated synthetic sequences of
RAM by charge scrambling, with some (RAM 2, 5, 7, and 8)
maintaining the noncharged residue positions intact and
others (RAM 1, 3, 4, 6, 9, 10, 11, 12, and 13) shuffling
the entire sequence, excluding the conserved motif (7).
RAM sequences provide an ideal case to test the ability of
bSCDM to classify protein sequences that have the same
charge composition but different decoration.

Fig. 4 shows classification using bSCDM produces three
major classes: class 1, with RAM 12 only; class 2, consist-
ing of RAM 3, 11, and 13; and class 3, containing RAM 1, 2,
4, 5, 6, 7, 8, 9, 10, and the wild-type (WT). Interestingly, this
categorization compares well with a broad classification
based on experimentally measured Kd (in nanomolar)
values, reported in the Supporting material (see Table S4,
color coded by theoretically assigned cluster). The rough
classification using Kd also identifies three clusters: RAM
12 as the weakest binder (Kd z 100); RAM 10, 11, and
13 clustered together as the moderate binder (40 > Kd >
29); and the rest of the RAM permutations (RAM 1, 2, 3,
4, 5, 6, 7, 8, 9, and WT) grouped as the strong binder
(23> Kd > 9). This classification is primarily in accordance
with our model, with the exception of RAM 3 and RAM 10.
It is important to note both RAM 3 and RAM 10 have all
amino acids shuffled, excluding in the original binding
motif, in addition to charges. Despite RAM 10 not being
Biophysical Journal 120, 1860–1868, May 18, 2021 1865
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classified with RAM 11 and 13 in our theoretical model, the
distance matrix reveals RAM 10 is closest to RAM 7 but is
also relatively close to RAM 11 (see Table S3). Similarly,
RAM 13 has its nearest neighbors in the following order:
sequence 11, 3, and 10. These observations show although
RAM 10 is not directly clustered with sequence 11 and 13
in the dendrogram, they are closer to RAM 10 when
compared with many other RAM sequences.

In addition to the quantitative analysis and automated
clustering, qualitative insights can be gleaned from color-
coded SCDMs (see Fig. S3). We note that RAM 12 has
distinct topology from all the other sequences with primarily
blue regions. Next, RAM 3, 11, and 13 all have a fairly large
blue island in the middle when compared to all other se-
quences, explaining the clustering of RAM 3, 11, and 13
seen in the dendrogram. The blue island in RAM 10 is
also visually similar to RAM 11 and RAM 13, consistent
with the distance matrix-based similarity noted above.
These color maps again highlight the importance of intra-
chain interaction profiles and topologies in determining
IDP binding affinity with other macromolecule, CSL in
this case.

The overall agreement between theoretical and experi-
mental categorization indicates Kd is greatly influenced by
electrostatic interaction, in accordance with previous studies
(7). Sherry et al. found that the hydrodynamic radius of the
RAM sequences strongly depends on two different charge
segregation metrics (7), albeit much less detailed than the
high-dimensional SCDM. However, it is important to recog-
nize the possible role of nonelectrostatic interactions, given
there are specific binding motifs (noncharge) that have been
disrupted in the designed sequences (RAM 1, 3, 4, 6, 9, 10,
11, 12, and 13). The outliers such as RAM 3 and RAM 10,
noted above, may have influence from nonelectrostatic ef-
fects not captured in our theory. These effects could either
be affecting the strength of the binding of RAMANK to
CSL or altering the access that CSL has to the conserved
binding motif present in RAM.

The role of the ANK folded domain on the conformation
of RAM is also neglected in our model. We note the binding
data with Kd-values (discussed above) correspond to the full
RAMANK sequence of the RAM permutation to CSL, not
the binding of the RAM region alone. This data set was
used because limited binding data were available for trun-
cated (without the flanking ANK domain) version of the
RAM. Although transcriptional activation data were avail-
able, we only compared classification using Kd because
the intrachain conformational map is expected to directly in-
fluence binding with other partners. Furthermore, lack of
correlation between transcriptional activity and Kd shows
the possible role of other factors, including in vivo effects,
controlling transcription.

For RAM, we did not use sequence composition as a con-
trol, unlike Ste50 and PSC, because all the permutants
would have the same composition. Thus, as a control we
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classified sequences by shuffling the elements of bSCDM
(see Fig. S8). There are two main clusters, one containing
RAM 3 and 12, and all others are assigned in the second
cluster. Although this correctly assigns RAM 12 outside
of all the other RAM sequences, RAM 3 is not placed
correctly. Moreover, the second cluster consists of two sub-
clusters, one containing RAM 2, 4, 5, 6, 7, and 10 and the
other containing RAM 1,WT, 8, 9, 11, and 13. Experimental
data, however, show RAM 10, 11, and 13 should be clus-
tered together. Clustering based on the charge product
(Fig. S11) again shows few to no trends that agree with
experimental data. 10 out of 14 proteins appear to be virtu-
ally unclassifiable. Clustering these proteins based upon
their SCD also does not capture the same effects as clus-
tering by bSCDM. These results further support our previ-
ous observation that the nuanced topology of the
intrachain interaction maps—quantified by bSCDMs—is
key to detect functional similarities in IDPs.

Cohan et al. provided an alternate approach using
ensemble entropy to cluster RAM sequences (8). The infor-
mation-entropy-based classification of Cohan creates four
primary clusters in comparison to three using bSCDM and
binding (Kd) data. In their classification, cluster 1 contains
RAM 11 and 13; cluster 2 contains RAM 7, 10, and 12; clus-
ter 3 contains RAM 2, 3, 5, WT, 6, 8, and 9; and cluster 4
consists of RAM 1 and 4. Similar to our bSCDM-based clas-
sification, information entropy classifies RAM 11 and 13
together without RAM 10, in contradiction to the Kd-based
grouping. However, RAM 12 is classified close to many
other proteins, whereas experimental data (and our classifi-
cation using bSCDM) show it should be clustered on its
own. We also note that RAM 1 and 4, which should be clas-
sified very close to WT, are classified as far away as
possible. Overall, we conclude that our algorithm using
bSCDM, despite the outliers of RAM 10 and 3, clusters pro-
teins in reasonable accordance with Kd data.
CONCLUSIONS

We devised a high-dimensional intrachain interaction ma-
trix containing a set of sequence-patterning metrics that
mathematically projects protein sequences on a smaller
yet meaningful space. This set of sequence-decoration met-
rics reveals the hidden relation between interaction and
chain conformation. In the space of these metrics, we can
classify proteins that strongly correlate with experimental
classification based on function. We specifically used an
interaction matrix arising from electrostatics and defined it
as SCDM.We show the success of bSCDM-based clustering
in three protein families in which electrostatics is known to
be important for function. All these protein families have
available experimental data to test our proposed method.
For the Ste50 family, proteins are correctly classified as
functional or nonfunctional. Likewise, for the PSC-CTR
family, our algorithm correctly discriminates between
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repressive and nonrepressive for wild-type and synthetic se-
quences. Moreover, for PSC-CTR families our algorithm
can depict finer subclassifications such as ‘‘strong’’ and
‘‘moderate’’ repressive in agreement with experimental
data based on binding affinity and inhibition concentration.
Even for the challenging cases in which functional readout
can vary continuously without sharp demarcation between
subclasses such as synthetic RAM sequences—classified us-
ing binding affinity—our algorithm shows moderate suc-
cess. The emerging theme is that protein self-interaction
captured by the patterns in the bSCDM can also serve as
an indicator of interaction with other biomolecules impor-
tant for function. Consequently, similarity (dissimilarity)
in these patterns of bSCDM can be used to detect proteins
that are functionally similar (or dissimilar). The success of
this approach is further evident by the control study, in
which disrupting these patterns by shuffling the decoration
matrix failed to cluster proteins in accordance with data. It
is important to note the algorithm only identifies proteins
that are similar or dissimilar but cannot a priori determine
which cluster will be functional. These results demonstrate
power of mathematical metrics, derived on physical princi-
ples, to classify IDPs that typically evade traditional
sequence and structure alignment tools successful in
modeling folded proteins.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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