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Divisive normalization (DN), an algorithm prominent in sensory processing and viewed as a 

canonical neural computation1, has been recently proposed to play a similarly important role 

in decision making, capturing aspects of both neural value coding and choice behaviour2–13. 

In a previous study, DN was proposed to explain context-dependent Independence from 

Irrelevant Alternatives (IIA) violations, where the relative preference between two given 

alternatives depends on the value of a third (distracter) alternative14; however, Gluth et al.15 

conclude in a replication study that there is no effect of distracter value on choice behaviour 

in their dataset, instead finding an effect on reaction times. Here, we reanalyze the 

replication dataset, graciously made available by the authors, using econometric techniques 

specifically designed to test for the presence of divisive normalization in multi-alternative 

choice datasets; while we observe some differences between their data and the dataset 

originally reported by Louie et al.14, overall we find compelling evidence for a DN effect in 

choice in their dataset. This discrepancy arises primarily from unnecessarily restrictive 

assumptions used in prior analyses14,15, emphasizing the importance of deriving the analysis 

directly from the choice theory itself.

Testing for normalization in choice data

In sensory processing, DN is a prevalent computation observed in multiple brain regions, 

sensory modalities, cognitive processes, and species from invertebrates to humans1. Recent 

studies suggest that DN also plays a crucial role in the neural representation of subjective 

value, and consequently, choice behaviour. At the neural level, DN captures context-

dependent value coding8,12, characterizes reward-related neural dynamics9, and falls within 

the class of provably optimal methods for encoding value under neural noise10. At the 

behavioural level, DN predicts both within-choice and across-choice context effects 

observed in nematodes4, monkeys13,14, and humans2,5–7,14. An early example of DN-
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predicted choice behaviour is a negative distracter effect in trinary choice, in which 

distracter value diminishes relative choice accuracy14. However, variable and even opposite 

distracter effects have also been observed2,3, emphasizing the importance of replication 

studies and robust tests for DN in behaviour.

The Gluth et al.15 replication employed a three-alternative choice experiment that was 

analyzed with a binary Logit regression on the average valuations of each alternative V1, V2, 

and V3 in the choice set. This model was estimated both at the subject level (with random 

effects) and via a hierarchical analysis that allows each subject’s behaviour to arise from a 

distribution estimated at the level of the pooled sample. While a similar analysis approach 

was used in Louie et al.14, we have more recently noted that this method of analysis faces a 

number of challenges11.

1. A logistic regression is derived from a model of binary choice. The reported 

experiment offers a choice between three alternatives. While including the third 

alternative is particularly important when choices of the lowest-valued alternative 

are frequent, it still improves model estimation even if the third alternative is 

never chosen. In the analyses reported by Louie et al.14 and Gluth et al.15, trials 

on which subjects chose the lowest valued option were simply dropped from the 

analysis and the binary Logit model was imposed on the remaining datapoints, a 

strategy we no longer employ.

2. DN, by design, specifies a non-linear relationship between inputs and outputs. A 

Logit regression imposes a linear relationship between the log-odds and the 

regressors (V1, V2, and V3). Given that normalization necessarily predicts a non-

linear effect on the log-odds, the Logit regression is thus a severe mis-

specification of the theory.

3. In order to test the normalization model using stochastic choice data, an 

assumption on the distribution of errors must be made. Louie et al.14 described 

the predictions of DN under an independent normally-distributed error term. 

Recently, we have employed a more sophisticated error model that has 

broadened our understanding of DN and the IIA violations it induces. For 

example, Webb et al.11 examined the predictions of DN when the errors follow 

the Gumbel distribution (a standard noise assumption in discrete choice analysis) 

as well as the more flexible multivariate normal distribution. Ensuring the 

analysis is robust to assumptions on the error term is critical because any analysis 

of normalization in choice data is a joint test of normalization and the assumed 

error distribution11.

A reexamination of the Gluth et al data

To relax Gluth et al.’s assumptions and to take a broader look at normalization effects in 

choice, we applied a simplified version of the econometric model described in Webb et al.11 

to the data from the replication experiment. This choice model uses the same random utility 

form that underlies standard Logit and Probit regression, but takes as arguments the 

normalized rather than unnormalized values.
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Ui = V i
σ + ω∑n V n

+ εi, (1)

Importantly, this specification allows a fit parameter, ω ∈ − ∞, ∞ , to govern the degree of 

normalization in utility. Choice is determined by which of these utilities is largest, with the 

probability of choosing alternative i given by

Pi V = ∫ 1 V i − V j
σ + ω∑n V n

> εj − εi,  ∀j ≠ i f ε dε (2)

where f(ε) is the joint probability density of the errors and must be assumed.

If fits of the model indicate that ω = 0 and f(ε) is Gumbel, then this indicates that there is no 

normalization and the model reduces to the standard multinomial Logit in which IIA must 

hold. Therefore the model allows for a nested hypothesis test (via log-likelihoods) for the 

presence of normalization, and by extension, whether IIA is violated. We emphasize that - if 

normalization is not present in a dataset - then ω would be zero and all of the variance in the 

choice data should be captured by the parameter ℴ. On the other hand, a non-zero ω would 

support a contextual choice effect captured by normalization: a positive ω replicates the 

divisive normalization result of Louie et al.14 whereby larger distracter values (V3) decrease 

relative choice performance (P1/P2); a negative ω, while rarely employed in sensory 

normalization models and harder to interpret, predicts – in at least some scenarios - a 

contrasting facilitatory effect of distracter value that has also been previously reported2,3.

We estimated two versions of this model. The first uses the dataset pooled over all subjects 

and considers three different distributions of the error term: the Gumbel, the independent 

standard normal (N), and the multivariate normal (MVN). Across all of them, we find a 

highly significant effect of normalization (Table 1). The best-performing model uses the 

Gumbel distribution, where we find a departure from IIA with ω significantly larger than 

zero p = . 0041,  χ2 1 ; note that in this analysis, ω was not constrained to be positive. 

Normalization accounts for 14% of the variance in choice behaviour (calculated at the 

average of V1, V2, and V3). Figure 1 shows the estimated probability ratio P1/P2 as V3 is 

varied for the best-fitting model from the two datasets in question: DN with MVN errors for 

the Louie et al. dataset (i.e. as previously described11), and DN with Gumbel errors for the 

Gluth et al. dataset (i.e. the estimates reported in Table 1). Two findings are evident: (1) 

clearly, including normalization allows the model to capture an initial decrease in P1/P2 as 

V3 increases in both datasets, and (2) the pattern of IIA violations differs between the 

datasets, with a notable u-shaped non-monotonicity in the Louie et al. dataset. Note that the 

latter non-monotonicity is consistent with both computational simulations of a normalization 

model and observed choice patterns in the original dataset14.

Our second analysis estimates a hierarchical version of the model that allows both ℴ and ω 
to follow a distribution over subjects (i.e. a random effect for both parameters). In this 

analysis, we assumed Gumbel errors and allowed the ω parameter to follow a Normal 

distribution over subjects; the ℴ parameter followed a Gamma distribution. The mean of the 
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distribution for ω = 0.007 was significantly positive (p < . 0001, χ2 2 ), and allowing the 

density for ω to depart from zero captures 36% of the variance in choice behaviour 

(calculated at the average of V1, V2, and V3 and the mean of the densities for ω and ℴ).

Conclusion

In our re-examination of the Gluth et al. data, all of our analyses display significant evidence 

of normalization, regardless of assumptions. We believe this discrepancy arises from two 

factors. First, we employed a more rigorous regression approach that unambiguously 

indicates that DN is observed in these data. Second, we examined the complete pattern of 

choice behaviour implied by the model fits and identified a differences between the original 

and replication datasets. This difference in observed choice behaviour may reflect a general 

difference between the datasets, consistent with the reported difference in reaction time 

effects. Furthermore, this difference aligns with the reported variability in the nature of 

trinary IIA violations3 and may reflect underlying complexity in the generating mechanisms. 

The shape of IIA violations is a critical and deeply interesting question that we applaud 

Gluth and colleagues for raising. Like these authors, we are devoting significant energy to 

understanding the experimental conditions under which IIA violations occur and the proper 

methodology for analyzing them. However, we believe this new dataset does not materially 

challenge the evidence for DN: In all of the specifications we estimated, we observed a 

significant role for normalization in accounting for the variance in choice behaviour. This 

leads us to the conclusion that in this new dataset, as in others, divisive normalization 

influences decisions with multiple alternatives.
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Figure 1. Best-performing model fits of the P1/P2 ratio as V3 is varied.
Left, the original Louie et al. dataset; right, the Gluth et al. replication. IIA is represented by 

the dashed line. These fits are generated for the average V1 and V2 observed in each sample. 

In the Louie et al. dataset, Divisive Normalization with the MVN error captures a u-shaped 

non-monotonic pattern in the P1/P2 ratio. In the Gluth et al. dataset, Divisive Normalization 

with the Gumbel error captures a decreasing pattern. Overall, both datasets show evidence 

for normalization but differ in the specific pattern of context-dependence, suggesting subtle 

differences in the choice data.
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Table 1:

Maximum likelihood estimates for the Gluth et al. replication dataset, pooled over subjects. Standard errors are 

in parentheses

No Normalization Divisive Normalization

f(ε) Gumbel N MVN Gumbel N MVN

σ 1.072 1.064 .994 .927 .794 .783

(.012) (.011) (.016) (.051) (.046) (.044)

ω 0 0 0 .018 .033 .027

(.006) (.006) (.006)

C1 .547 .556

(.038) (.039)

C2 .957 .942

(.019) (.018)

LL −16727 −16917 −16898 −16723 −16900 −16886

p-value on X2(1) test for ω > 0 .0041 .0000 .0000

AIC 33456 33836 33802 33450 33804 33780
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