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Abstract

Protein therapeutics are vitally important clinically and commercially, with monoclonal antibody 

(mAb) therapeutic sales alone accounting for $115 billion in revenue for 2018.[1] In order for 

these therapeutics to be safe and efficacious, their protein components must maintain their high 

order structure (HOS), which includes retaining their three-dimensional fold and not forming 

aggregates. As demonstrated in the recent NISTmAb Interlaboratory nuclear magnetic resonance 

(NMR) Study[2], NMR spectroscopy is a robust and precise approach to address this HOS 

measurement need. Using the NISTmAb study data, we benchmark a procedure for automated 

outlier detection used to identify spectra that are not of sufficient quality for further automated 

analysis. When applied to a diverse collection of all 252 1H,13C gHSQC spectra from the study, a 

recursive version of the automated procedure performed comparably to visual analysis, and 

identified three outlier cases that were missed by the human analyst. In total, this method 

represents a distinct advance in chemometric detection of outliers due to variation in both 

measurement and sample.
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1. Introduction

1.1 Protein Therapeutics and their Higher Order Structure

Protein therapeutics are vitally important clinically and commercially, with monoclonal 

antibody (mAb) therapeutic sales alone accounting for $115 billion in revenue for 2018, a 

year-on-year increase of 11%.[1] Growth in protein therapeutics (biologics) is outpacing that 

of small-molecule drugs, and the development, production, and delivery of biologics 

presents unique challenges.[3] A typical small molecule drug such as ibuprofen can be 

manufactured by controlled, reproducible chemical reaction of purified components, and the 

resultant molecule can be characterized completely according to its fixed covalent structure 

(i.e. its network of chemical bonds). By contrast, a protein therapeutic is generally 

manufactured using living cells suspended in a culture medium with more than 50 

components[4], and the expressed protein must be characterized not only according to its 

amino acid sequence, which defines its primary structure, but also according to a hierarchy 

of higher order structure (HOS).[5] HOS includes the protein’s conformational motifs over 

short spans of adjacent amino acids (secondary structure), the protein’s three-dimensional 

fold (tertiary structure), and its possible formation of complexes and aggregates of two or 

more proteins (quaternary structure), all of which can change with differing 

biomanufacturing, storage, and delivery conditions.[6] Monitoring this HOS of biologics is 

critical, since misfolding or aggregation can lead to loss of efficacy or harmful 

immunogenicity.[7]

Characterization of HOS is further complicated by post-translational modifications (PTM), 

which are chemical changes to the amino acids during or after protein synthesis.[8] PTMs 

are a natural consequence of protein expression in a living cell, and are commonly an 

outcome or requirement of protein function, such as glycan carbohydrate groups covalently 

linked to mAbs.[9] A biologic may also include intentional synthetic modifications to adjust 

the activity, stability, or other properties of the therapeutic,[10], [11] or to link a drug 

payload, which the biologic will deliver to a target.[12] PTMs can also result from 

unintended chemical changes such as oxidation induced during protein purification or 

storage.[13] A typical biologic may have dozens or hundreds of potential PTM sites; some 

PTMs may be essential to therapeutic activity, some PTMs alone or in combination can 

harm activity or cause detrimental immune responses, and many PTMs may have no 

observable therapeutic consequence.[14], [15] As a result of natural variations in living cells 

in response to growth conditions, and the many possibilities for unintended PTMs during 

subsequent steps such as protein purification, biologics are complex heterogeneous mixtures 

that vary from lot to lot, making HOS characterization both more critical and more 

challenging.

1.2 Spectral Fingerprinting: Characterization of Higher Order Structure by NMR

As a result of the intricate combination of chemical structure and conformation as it relates 

to biologic safety and efficacy, there are many stages in the biologic life cycle where 

monitoring HOS can be valuable, including during development, formulation design, 

optimization of manufacturing protocols, and quality control during production.[7] NMR 

spectroscopy can play a unique role in the characterization of biologics, since NMR can 
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reveal information over the entire hierarchy of protein conformation, including amino acid 

sequence and PTMs, protein secondary structure, tertiary fold, and intermolecular 

interaction, while providing this information at atomic level resolution.

The central idea of NMR fingerprinting is simple: a change in HOS will cause a systematic 

change in the corresponding NMR spectra, so that observed changes in spectra can be 

analyzed to reveal changes in HOS. These spectral changes can be identified visually, or 

quantified and characterized numerically according to spectral similarity metrics. Several 

approaches to characterizing HOS by one-dimensional (1D) and two-dimensional (2D) 

NMR have been demonstrated[2], [16]–[25], with the additional advantage that NMR 

methods can be applied to biologics quantitatively and non-destructively, often with little or 

no special sample preparation, and in the presence of excipients as formulated.[18], [26], 

[27] In particular, 2D 1H,13C NMR has been shown to be a powerful tool to probe HOS for 

molecules as large as intact mAbs, even at natural isotopic abundance. [19], [28], [29] In the 

current work, we present a method for automated classification of nuclear magnetic 

resonance (NMR) spectra to enable characterization of HOS, and we employ the method to 

identify outliers in related collections of spectra.

2. Materials and Methods

2.1 The NISTmAb Interlaboratory NMR Study

The outlier detection method was developed and tested using data from the NISTmAb 

Interlaboratory NMR Study.[2] This study was an international effort between 26 

organizations to evaluate the performance of 2D heteronuclear NMR as used to characterize 

the HOS of proteins, with the aim of supporting the use of NMR to characterize biologic 

therapeutics. The 450 spectra produced by the study are publicly available to support 

continued development and adoption of NMR as a tool for HOS characterization.[30] In the 

study, each participating lab measured a series of NMR spectra on two kinds of solution-

state protein samples with ~98% sequence identity. Both samples were based on the 

NISTmAb (NIST primary sample PS-8670), an IgG1κ reference mAb.[31], [32] An overlay 

of representative 2D 1H,13C gHSQC (gradient-selected heteronuclear single quantum 

coherence)[33] spectra for the two samples is shown in Figure 1. As described in Figure 1, 

each study spectrum has a study identifier (ID), consisting of a unique index number 

followed by series of fields encoding sample and measurement details.

The first of the study samples, denoted “NIST-Fab”, was a purified Fab domain derived from 

enzymatic cleavage of the NISTmAb. The Fab domain consists of two amino acid chains, 

called the light and heavy chains. The second study sample, denoted “SSS” (System 

Suitability Sample), was an isotopically-labeled construct with the identical sequence as the 

NIST-Fab sample, but with four additional amino acids at the N-termini of the two chains, 

for a total of 450 amino acids (Figure S1). The NISTmAb study includes data from seven 

different NMR field strengths, two brands of instruments, multiple temperatures, and several 

NMR measurement protocols, including conventional uniformly sampled (US) and non-

uniformly sampled (NUS) acquisition. An interesting aspect of the study was that all spectra 

submitted by participants were retained, even if the measurement failed in some way due to 

setup problems or hardware malfunction. Furthermore, while all study participants 
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submitted spectra that were measured according to recommended study protocols, 

participants were free to submit additional spectra with measurement parameters of their 

own choosing. Of the 375 2D 1H,13C spectra generated by the study, many are not ideal, and 

some are not directly comparable with others. So, these non-ideal outlier spectra must be 

identified before further analysis.

2.2 Characterizing NMR Spectra by Peak Position Metrics

The study results as first presented by Brinson et al. include characterization of 

interlaboratory precision via combined chemical shift deviation (CCSD) statistics, which 

encode differences in tables of chemical shifts (NMR peak positions) between a given 

spectrum and a reference spectrum, and principal component analysis (PCA) implemented 

on weighted peak tables.[2] These analyses confirmed that chemical shift values of a given 

peak are truly robust spectral parameters, since the resonance position is remarkably 

consistent regardless of experimental protocol, with the 1H,13C spectra measured in the 

study at 26 different labs having chemical shifts reproduced to better than six parts per 

billion. Since NMR spectral signals are sharper with increasing field strength, measurements 

on the same sample at different field strengths will yield spectra with slightly different peak 

heights and lineshapes. Even spectra of the same sample measured on the same instrument 

can have variations in lineshape due to instrument hardware and setup details. By contrast, 

unlike lineshape, peak position is tolerant even of selection of the pulse program involved to 

collect the 2D spectral fingerprint. In all these measurement variations, peak chemical shift 

values are exquisitely reproducible, so that analyses of peak position tables are able to 

capture the information that is most directly comparable under differing measurements.

Despite its demonstrated robustness, analysis of peak positions has disadvantages: it requires 

extensive and subjective analysis by a human expert, it is typically limited to well-resolved 

peaks, and it may not capture all of the relevant HOS information encoded in the spectrum. 

The peak table workflow involves mapping a reference peak list onto each new spectrum, 

where an initial correspondence of reference peaks to nearest peaks in the new spectrum is 

performed automatically, and results are visually inspected and manually adjusted by the 

operator. The process may take tens of minutes even for a skilled operator, and since it is 

limited to resolved peaks, not all peak position information is retained. In the case of the 

NISTmAb interlaboratory study, coverage of identifiable reference peaks ranged from 67% 

at 500 MHz to 91% at 900 MHz. More significantly, analysis of peak position alone does not 

encode differences in peak height and lineshape, and critically, it does not account for the 

absence of expected peaks or the appearance of new peaks. Therefore, while remarkably 

robust,[34] peak position metrics are not sufficient to characterize every type of spectral 

difference.

2.3 Characterizing Spectra by Direct Analysis of the Spectral Data Matrix

As an alternative to peak table approaches such as CCSD, the matrix of spectral intensities 

can be used directly as input for methods such as Principal Component Analysis (PCA), and 

these methods have already been applied to 2D 1H,13C spectra of biotherapeutics, revealing 

subtle HOS-related differences in spectra that would be difficult to discern by eye.[24], [29] 

This spectral matrix approach has several advantages: it does not depend on well-resolved 

Sheen et al. Page 4

Chemometr Intell Lab Syst. Author manuscript; available in PMC 2021 June 15.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



peaks, it can be conducted without the need for the extensive and subjective interaction 

required for peak table approaches, and critically, it is also sensitive to spectral changes that 

peak position approaches cannot detect, including appearance of new peaks, or HOS-related 

changes in the lineshape of existing peaks.

The principal deficit of spectral matrix approaches is that subtle but global variations in 

spectra due to measurement details can overwhelm the variations in spectra due to small 

changes in HOS. As demonstrated in the interlaboratory study, peak positions are largely 

invariant with respect to measurement details, and peak positions can be determined 

successfully even when parts of the spectrum are distorted or contain artifacts, provided that 

the peaks of interest are unobscured. By contrast, peak heights and lineshapes are expected 

to vary with measurement details such as NMR field strength, but even small measurement 

differences at the same field strength can result in systematic differences large enough to 

affect chemometric results and obscure HOS characterization. These measurement 

differences can include acquisition details that are usually considered minor, such as changes 

in shimming protocol, use of non-uniform sampling, and changes to the digital resolution of 

the indirect dimension, although this later issue can be addressed by spectral processing. In 

addition, hardware defects can distort lineshapes and introduce artifacts, degrading 

performance of spectral matrix analysis. Since analysis methods that use the matrix of 

spectral data directly will potentially be affected by any distortion or artifact in the analysis 

region, it becomes more critical to employ carefully controlled and consistent measurement 

protocols, and likewise beneficial to employ an outlier detection procedure sensitive enough 

to detect any distortion that could affect chemometric results.

2.4 Interactive Classification of Outliers

To establish a rough benchmark for the automated outlier detection, spectra were first scored 

by a quick subjective visual inspection of contour plots, generally using less than 30 seconds 

per spectra. A score of zero was assigned to spectra which had the expected quality and were 

free of defects, and so were suitable for further analysis by direct spectral matrix methods. A 

score of one was assigned to spectra that were deemed to have intermediate quality, still 

suitable for further analysis, but not ideal in some way, for example if they had the 

appearance of lower than usual signal to noise, or minor local phase or baseline distortions. 

A score of two was assigned to spectra that exhibited pervasive systematic distortions, and 

so should be classified as outliers. Examples of spectra with scores 0, 1, and 2 are shown in 

Figure 2. As noted above, criteria for being able to use a spectrum for CCSD analysis are 

different than for direct analysis of the spectral matrix, and the interactive outlier 

classification was performed with the expectation that small but pervasive artifacts and 

distortions would make a spectrum unusable.

3. Theory and Calculation

3.1 Chemometric Outlier Detection for 2D NMR Spectra

The outlier analysis builds on methods developed for a previous multilaboratory study on 1D 
1H NMR spectra of metabolites.[35] In this previous work, the detection procedure was 

applied both to identify individual outlier spectra, and also to classify laboratories as outliers 
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according to the aggregated quality of all measurements from a given laboratory. As with the 

current work, the central concept of the previous work was that outlier detection is based on 

an average metric of dissimilarity between a given spectrum and all others in its group.

In the present work, the 2D spectra, which have both positive and negative intensities, are 

first converted to grayscale images. As shown in Figure 3, as an intermediate step in 

grayscale conversion, spectra are first represented as color images using a display mode 

commonly employed for visual inspection of NMR data, with positive intensities drawn in 

shades of blue, and negative intensities drawn in shades of red. Conversion is performed 

according to two thresholds, here 2.5% of the maximum NMR intensity and 35% (2.5% 

times contour spacing 1.310) of that intensity. As shown in Figure S2, this is typical of the 

intensity range displayed in a contour plot of the data. The NMR intensity is mapped to 

color values using the following expressions for the red and blue intensities:

I red, jk =

1 Ijk < − 0.35
Ijk − 0.025

(0.35 − 0.025) −0.35 ≤ Ijk < − 0.025

0 −0.025 ≤ Ijk

[Eqn 1]

I blue, jk =

1 Ijk > 0.35
Ijk − 0.025

(0.35 − 0.025) 0.35 ≥ Ijk > 0.025

0 0.025 ≥ Ijk

where j and k are 2D indices, Ijk is the matrix of spectral intensities, and I red and I blue are 

the intensities of the red and blue channels. These are converted to grayscale matrix xjk 

using the factor of 0.11 for blue and 0.3 for red, a common grayscale conversion scheme 

having the added benefit of heavily weighting negative NMR intensities, an advantage here 

since the study spectra are expected to have all-positive signals in the analysis region. The 

color image is converted to greyscale by applying the mapping,

xjk = 0.3I red, jk + 0.11I blue, jk [Eqn 2]

After applying this mapping, every matrix x is subsequently normalized so that it sums to 1, 

a requirement for the distance measure performed next.

3.2 Classification Using the Kullback-Liebler Metric for Spectral Dissimilarity

The converted, normalized grayscale images are compared using the symmetric Kullback-

Liebler (KL) divergence[36], dKL, which for two data matrices x and y is given by:

dKL(x, y) = ∑
j, k

xjklnxjk
yjk

+ yjkln yjk
xjk

[Eqn 3]
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This metric is chosen because it strongly penalizes spectra that contain features not present 

in other spectra from the same population. So, as an initial step, the spectra are grouped into 

populations expected to be similar enough for direct comparison. Within each group, the KL 

statistic is calculated for each pair of spectra. Then, for each spectrum, the mean of the KL 

divergence to all other spectra in its population is calculated,

Di, k = 1 Nk ∑
j ≠ i

dKL xi, xj [Eqn 4]

Di,k is the mean distance of spectrum i to the other spectra in subpopulation k, and Nk is the 

number of spectra in population k. This set of means is fit to a lognormal distribution, and 

then each spectrum is judged according to how far it is from the mean of this distribution. A 

threshold is chosen for each population, here the 95% confidence limit, and spectra beyond 

this threshold are classified as outliers. Each spectrum is assigned a logarithmic Z-score 

calculated by

Zi, k = exp lnDi, k − μk /σk [Eqn 5]

where μ and σ are the mean and standard deviations of subpopulation k. This makes the 95% 

confidence limit equivalent to a Z-score of about 5.2. Because some of the subpopulations 

are small, we define a support fraction f, which determines the maximum number of outliers 

that can be removed as n = floor[Nk(1 – f)] (e.g. if the population contains 7 samples, at 

most one could be removed). If more spectra exceed the 95% confidence threshold than n, 

only the n spectra with the largest Z-scores are removed.

Some details that can be varied include how the spectra are divided into subpopulations for 

direct comparison, the threshold for classifying a spectrum as an outlier, and whether a 

single-pass or a recursive outlier detection is used. In the single pass method, statistics are 

computed once, and all spectra with scores over the specified threshold are removed as 

outliers (subject to the support fraction). In the recursive method, outliers are removed one at 

a time, with statistics recomputed after each outlier is removed. A Flowchart for the 

recursive variation is shown in Figure 4. Because the recursive method is more aggressive in 

removing outliers, a support fraction of 0.85 was used to minimize false positives and a 

support fraction of 0.6 (effectively 0) for all other cases. To ensure that egregious outliers are 

always removed, a final pass is conducted which removes spectra outside the 99% 

confidence interval (those with Z-scores greater than about 10).

4. Results and Discussion

4.1 Application to the Interlaboratory Study Data

Of the 375 1H,13C study spectra, the largest directly comparable group were all gHSQC 

spectra measured at 37 °C using the recommended study protocols. These 252 spectra were 

subjected to outlier detection. As given in Table 1, each spectrum has an experiment code 

that indicates the sample type and acquisition parameters used. The spectra were grouped 

into populations based on experiment code, since it is expected that spectra measured on the 

same sample with similar acquisition parameters should be most directly comparable. To 
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account for expected spectral differences in resolution due to NMR field strength, these 

populations were further subdivided into high-field (800 MHz and greater), mid-field (700 

MHz and 750 MHz), and low-field (all others), as shown in Table 2. This yielded 21 groups 

of 6 to 20 spectra each.

Spectra were analyzed using three variations of the outlier detection procedure: the single 

pass detection and recursive detection describe above, and detection using a single meta-

distribution for all spectra. In the single-distribution method, distributions and Z-scores were 

calculated for each of the 21 classes, the populations of Z-scores were combined into a 

superpopulation, a lognormal distribution was fit to this superpopulation (a Z-score of Z-

scores), and outlier detection was performed using this superpopulation distribution. 

Examples of distributions and their parameters for the 21 classes are shown in Figures 5 and 

6. The outlier detection methods were implemented in python[37], and the python 

workbooks and NMRPipe-format[38] input data are available for download.[30] The results 

of the interactive outlier detection are summarized in Table 3, and results of automated 

detection in Tables 4, 5, and 6.

For conducting the automated classifications, we desired a result free of “false negative” 

classifications, cases where a spectrum was visually classified as distorted, but was not 

classified as an outlier by the automated procedure. Very bad spectra are easy to identify by 

eye, so all spectra with interactive score = 2 are definitely outliers, as with the example in 

the right panels of Figure 2. Ideally, an automated method should successfully identify all 

score = 2 spectra as outliers. Likewise, spectra with an interactive score = 0 should not be 

classified as outliers, and spectra with interactive score = 1, the intermediate quality spectra, 

could acceptably be assigned to either class, good or outlier, by the automated method. Table 

4 tallies results for two cases: all spectra that were interactively classified as outliers (12 

spectra with score = 2), or automatically classified as outliers when interactive classification 

listed the spectrum as acceptable (6 spectra with score = 0).

4.2 Results on the Interlaboratory Study Data

As shown in Table 4, the recursive outlier detection gave the best results, detecting 11 of the 

12 interactively classified outlier spectra, with the one error being misclassification of a D2B 

high-field spectrum (212-D2B-S-N-800–6211-405–37C). However, as was shown in Table 

3, the D2B high field class, which contains 13 spectra, has 3 of its members interactively 

classified as outliers, making it the only group with more than one interactively classified 

outlier, and also the group with the largest fraction of outliers (23%, while the others vary 

from 5% to 11%). Since the method was set to allow deletion of no more than 15% of a 

given group’s spectra, it was not possible to identify all three outliers in this group.

Table 6 tallies those cases where interactive analysis classified the spectrum as intermediate 

quality (score = 1), along with the classification results from the automated methods. As 

noted above, these spectra could acceptably be assigned to either class, good or outlier, by an 

automated method, and so we do not analyze these cases in detail in the present work. It can 

be noted though, as shown in Table 6, that the recursive method is more sensitive than the 

other two automated methods, declaring more of these spectra to be outliers than the other 
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two methods (13 outliers out of 26 for the recursive method, compared to 8 out of 26 for the 

other two methods).

4.3 Evaluation of Potential False Positive Results

The 16 spectra classified as outliers by either interactive analysis or the automated recursive 

method are shown in Figure 7. To provide context, the positions of these 16 spectra in a 

Principal Component Analysis (PCA) score plot for all 252 spectra are shown in Figure 8. 

The recursive method produced four potential “false positives” (spectra 31, 49, 69 and 173) 

that were interactively classified as good (score = 0), but nevertheless classified as outliers 

by the automated procedure.

Spectrum 69 (069-D3A-F-U-700–8473-007–37C) looks reasonable at higher contour levels, 

but when viewed at the lower contour levels of Figure 7, obviously has worse signal to noise 

than expected. Interestingly, spectrum 69 is also an “extreme” spectrum in the PCA results, 

having the largest component 2 score of any spectra in the PCA plot of Figure 8. On closer 

inspection, as shown in Figure 9A, spectrum 69 has small systematic distortions in 

lineshape. We therefore judge this to be an interactive misclassification (that is, this 

spectrum is a true outlier) not a misclassification by the recursive algorithm. Thus, in this 

case, the automated method highlighted an error in the interactive result. The remaining 

three spectra, 31 (031-D2A-S-U-800–2461-102–37C), 49 (049-D2C-S-U-750–2974-004–

37C), and 173 (173-D3A-F-U-500–8179-307–37C), all show good quality contour plots 

with no conspicuous artifacts, so having these spectra classified as outliers is initially 

surprising.

In the PCA plot of Figure 8, spectrum 173 is near outlier spectrum 353 (353-D3B-F-N-600–

8822-067–37C), in a sub-cluster away from the main body of the Fab spectra cluster. 

Brinson et al. have also identified spectrum 173 as one of the outliers of the study, as 

attributed to improper measurement temperature, with attendant changes in peak positions as 

shown in Figure 9B.[2] So, while spectrum 173 shows good visual quality, it is a true outlier 

due to measurement error, and does not belong in a group of spectra measured at 37 °C. In 

this case, the automated method highlighted an error in the initial labeling of the spectrum 

(e.g., it does not belong in the D3A low field class).

Spectrum 31 (031-D2A-S-U-800–2461-102–37C) is in class D2A,high with 12 spectra, one 

of which was visually identified as an outlier (spectrum 42, 042-D2A-S-U-800–7244-013–

37C). Close inspection shows systematic intensity differences between spectrum 31 and the 

other six 800 MHz spectra in this class, as shown in Figure 10 and in Figures S3 and S4. 

Figure 10 shows an overlay plot of spectrum 31 and a representative spectrum (spectrum 28, 

028-D2A-S-U-800–2146-002–37C), where many peaks in the methylene region of spectrum 

31 are attenuated, and there is some evidence of changes in the methionine methyl region. 

These are signatures of the early stages of sample degradation and aggregation, where 

decreases in protein tumbling rates will broaden signals from the less mobile sidechain 

methylene groups more than signals from rapidly reorienting methyl groups. Figure S3 

shows PCA results for the 12 spectra in this class, with both spectra 42 and 31 showing up as 

outliers having the largest component 2 and 3 scores respectively. Systematic variation is 

further highlighted by intensity versus intensity correlation plots, which can also be 

Sheen et al. Page 9

Chemometr Intell Lab Syst. Author manuscript; available in PMC 2021 June 15.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



revealing of spectra differences.[39][40] As shown in Figure S4, which compares 

representative spectrum 28 versus the other six 800 MHz spectra in the class, the correlation 

plot for spectrum 28 versus known outlier spectrum 42 shows obvious systematic 

differences, and also gives the lowest correlation coefficient. The correlation plot for 

spectrum 31 also exhibits systematic differences, and has a lower correlation coefficient than 

for all the remaining 800 MHz spectra in this class. Lab 2461, the source of spectrum 31, 

had several problematic cases, with three other spectra classified as insufficient for CCSD 

analysis by Brinson et al. due to pulse program error.[2] Four spectra from this source were 

visually classified as intermediate quality, and two of these four were classified as outliers 

by the automated recursive method, as listed in Table 6. Accordingly, spectrum 31 is a true 

outlier, likely due to slight sample deterioration, representing another case where the 

automated method uncovered a systematic difference that was not initially apparent by 

visual inspection, nor, in previous analyses, was it discovered from PCA of peak positions.

[2]

As with spectrum 31, spectrum 49 (049-D2C-S-U-750–2974-004–37C, in class D2C,mid 

with 7 spectra) shows good signal to noise, and no unexpected visual differences from the 

other spectra in this class; overlays of spectra 31 and the other six spectra are shown in 

Figure S5. This spectrum is therefore judged to be a true false positive result from the 

recursive classification method. The seven midfield classes have only six to nine spectra 

each. Because the outlier detection method depends on building a representative probability 

distribution for each group, and extracting a reliable mean and standard deviation, it is 

expected that the method will be less reliable for group sizes that are too small to represent 

the expected range of variation in spectra. The false positive classification of spectrum 49 is 

attributed to the small size of its class, where only one other 750 MHz spectrum is included.

4.5 Increasing the Group Sizes to Eliminate False Negative and False Positive Results

As described, the outlier detection requires that a group of spectra contains a limited fraction 

of outliers and a sufficient number of non-outliers to allow fitting of a representative 

lognormal distribution. When applied to the initial 21 groups, the automated recursive 

method produced one false negative classification for spectrum 212 in group D2B,high, and 

one false positive classification for spectrum 49 in class D2C,mid. In both cases, the 

classification error is attributed to insufficient number of non-outlier spectra, and this can be 

demonstrated by performing the classification on larger versions of these two problematic 

groups.

The D2B experimental protocol is a non-uniformly sampled (NUS) version of the D2A 

protocol, meaning that the NMR data measured in a D2B experiment is a subset of the data 

measured in a corresponding D2A experiment. It is therefore possible to resample and 

reprocess D2A NMR data so that it corresponds more closely to D2B protocol data. For 

demonstration purposes, we created a “D2AB,high” group, consisting of the original 13 

D2B,high spectra augmented with 10 additional non-outlier D2A,high spectra, resampled 

and reprocessed to correspond with the D2B protocol. When this new, larger group is 

analyzed, spectrum 212 is now correctly classified as an outlier, along with previously 
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identified outliers 211 and 224. The results for group D2AB,high are summarized in Table 

ST1.

Likewise, protocol D2E is a NUS version of protocol D2C, and for demonstration purposes, 

we created a new “D2CE” group, consisting of all 7 D2C,mid spectra, resampled and 

reprocessed to match the D2E protocol, combined with all 6 D2E,mid spectra. When this 

new, larger group is analyzed, none of the spectra are classified as outliers, eliminating the 

false positive classification of spectrum 49. The results for group D2CE,mid are summarized 

in Table ST2.

4.6 Limits of Applicability for the Outlier Detection Method

The single false positive was correctly reclassified when the group size was expanded from 7 

to 13. The single false negative result occurred in a group of 13 spectra with 23% outliers, 

and this case was correctly reclassified when 10 additional spectra were included so that the 

fraction of known outliers was 13%, below the set detection limit of 15%. This suggests a 

rule of thumb that within the 15% outlier detection fraction, group sizes of around 10 to 15 

spectra or more would be most appropriate for applying the automated outlier detection 

method to types of 1H,13C spectra measured in the study. Outlier analysis of the 

interlaboratory study data, which is extremely diverse, is somewhat different than typical use 

cases in a biopharma environment, where all data would more likely be measured using a 

single protocol at the same NMR field strength, or even on the same instrument. The specific 

requirements for number of measurements and the accuracy of classification will depend on 

the nature of the classification task and the expected variability in the spectra, and in practice 

would be verified by multiple measurements for a given use case.

5. Conclusions

We have described an automated, objective spectral outlier classification method that can be 

applied to 2D spectra used for characterization of biotherapeutics such as mAbs. The 

method uses the symmetric Kullback-Liebler divergence as a measure of spectral similarity. 

We benchmarked the method on 21 groups of spectra drawn from a collection of all 252 1H,
13C gHSQC measurements from the NISTmAb International Multilaboratory NMR Study 

presented in 2019.[2] Groups were assigned by measurement details and NMR field strength 

so that spectra within a group are directly comparable. A recursive version of the automated 

outlier detection performed better than visual analysis, producing one false positive 

classification and one false negative classification, but identifying three outlier cases due to 

measurement or sample that were missed by the human analyst. It was further demonstrated 

that the false positive and false negative cases were due to insufficient group size, with best 

results achieved when groups contain 10 to 15 or more non-outliers, and less than 15% 

outliers total.

Since the automated method works directly on the matrix of spectral intensities, it is well 

suited to determine whether spectra are of sufficient quality for further direct analysis of the 

spectral matrix such as by PCA. As with PCA, the automated outlier classification method is 

sensitive to spectral differences that cannot readily be judged by eye. In addition, the details 

and parameters of the automated method can be varied to reduce false positive or false 
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negative classifications, according to the needs of a given task. Since the outlier detection is 

in practice a method for deciding whether or not a given spectrum belongs to a group, this 

outlier detection method can be re-purposed for other types of supervised classification, and 

this will be explored in future work. In total, this automated method represents a distinct 

advance in chemometric detection of outliers due to variation of both measurement and 

sample.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations

1D one-dimensional

2D two-dimensional

CCSD combined chemical shift deviation

Fab monoclonal antibody Fab domain

gHSQC gradient-selected heteronuclear single quantum coherence spectrum

HOS high order structure

KL Kullback-Liebler divergence

mAb monoclonal antibody

NMR nuclear magnetic resonance spectroscopy

NIST National Institute of Standards and Technology

NUS non-uniformly sampled

PCA principal component analysis

PLS partial least squares regression

PTM post-translational modification

US uniformly sampled
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Figure 1. 
1H,13C gHSQC[33] spectral overlay for a System Suitability Sample (red, study ID 001-

D2C-S-U-900–8822-010–37C) and a NIST-Fab sample (blue, study ID 004-D3A-F-U-900–

7425-015–37C).[2] The study IDs encode the sample and measurement details in a series of 

fields separated by dashes, in this order from left to right: unique study index number, 

experiment code (as given in Table 1), sample (F for NIST-Fab, S for System Suitability 

Sample), NMR sampling type (U for Uniform, N for Non-Uniform), spectrometer frequency 

in MHz, laboratory ID, spectrum ID within that laboratory, and measurement temperature. 

Contour levels start at 2.5% of maximum intensity. The region shaded in gray, consisting 

primarily of protein sidechain methyl signals, was used for the outlier analysis in the present 

work (1H 1.9 ppm to −0.9 ppm, 13C 30.5 ppm to 9.0 ppm). Spectra were acquired as detailed 

by Brinson et al.,[2] and processed as described there by NMRPipe.[38]
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Figure 2. 
Examples of interactively scored spectra, drawn with a region of interest highlighted in gray 

(top row) and with the region shown in expanded view (bottom row). Spectra are labeled 

with their study titles, as described in the study data package,[30] and are drawn with 

contour levels starting at 2.5% of maximum intensity. Left column: study spectrum 7425–

003, which was assigned score 0 because it has the expected appearance. Middle column: 

study spectrum 2461–103, which was assigned score 1 because it has the appearance of 

slightly worse than expected signal to noise. Right column: study spectrum 7244–017, which 

was assigned score 2 because it has pervasive artifacts in the form of vertical streaks 

throughout the spectrum.
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Figure 3. 
Mapping of two-color spectral display to grayscale. Left: Image representation of an NMR 

spectrum using a red/blue color map, with zero intensity drawn as white instead of black for 

clarity. Right: Grayscale brightness based on red and blue channel intensity and the 

grayscale conversion function described in the text. In both plots, a region with negative 

artifacts is highlighted and drawn in expanded view in the inset; the choice of grayscale 

conversion function is intended to emphasize negative intensities, since in these spectra, no 

negative features are expected.

Sheen et al. Page 17

Chemometr Intell Lab Syst. Author manuscript; available in PMC 2021 June 15.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 4. 
Conceptual flowchart of the recursive version of the outlier classification procedure. All of 

the outlier classification methods start by computing the KL metric between each pair of 

spectra x and y in group k, and using these values to find the average KL metric between 

each spectrum x and all others in group k. This collection of average KL values is fit to a 

lognormal distribution, which results in a mean value and standard deviation for the 

distribution, and from these, a confidence limit is calculated. Then, in a recursive loop, the 

spectrum with the largest average KL value is tested to see if it is beyond the confidence 

limit from the distribution mean. If it is not, the spectrum is not an outlier, and recursive 

iterations stop. However, if the spectrum with the largest average KL value is beyond the 

confidence limit, it is classified as an outlier, removed from the group, new distribution 

parameters are calculated with the remaining spectra, and the recursive loop is repeated to 

test for additional outliers.
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Figure 5. 
Example probability distributions for classes used for the outlier detection procedure. The 

topmost graph shows the distribution for all spectra, the other graphs show the distributions 

for each of the 21 classes used. The red histograms show the actual distribution of the 

measured data, and the black curves show the fit of the histograms to lognormal 

distributions. In a given distribution, spectra which fall to the right of the dashed line, 

representing the 95% confidence limit of the distribution, are classified as outliers.
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Figure 6. 
Example probability distribution parameters for classes used in the outlier detection 

procedure, with selected points labeled with the class name and percentage of visually 

identified outliers in that class. The presence of outliers in a class will tend to increase the 

mean interspectral distance and the width of the confidence interval, as for the class 

D2B,high which has three visually identified outliers out of 13 spectra, as listed in Table 3.
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Figure 7. 
The 16 spectra classified as outliers either interactively or by the automated recursive 

method, as listed in Table 4. Contour levels start at 2.0% of maximum intensity, with 

positive intensities drawn in in blue shades, and negative intensities drawn in red shades. 

Spectra are labeled with their study index number and their laboratory and spectrum IDs. 

The bottom four spectra (31, 49, 69, and 173) are those that were classified as outliers only 

by the automated method, and not interactively. As shown here, spectrum 69 has worse than 

expected signal to noise, and should have been interactively classified as an outlier.
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Figure 8. 
Principal Component Analysis (PCA) of all 252 spectra in the outlier analysis, labeled with 

the study index numbers of spectra classified as outliers either interactively or by the 

automated recursive method, as listed in Table 4. Agreed outliers are those classified as 

outliers by both interactive analysis and the recursive method. The PCA results cleanly 

separate spectra of the two samples, Fab and System Suitability Sample (SSS). Interestingly, 

most of the outliers tend to occur in the outer portions of these two clusters. PCA results 

were computed with the specView utility of NMRPipe[38], using the region of spectral 

intensities from 1H 1.9 ppm to −0.9 ppm, 13C 30.5 ppm to 9.0 ppm. Region were scaled to 

uniform maximum intensity, and used for PCA without binning and without centering 

(subtraction of the average).
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Figure 9. 
A: Overlay of outlier spectrum 69 (D3A-F-U-700–8473-007–37C) and a reference spectrum 

76 (D3A-F-U-700–8543-007–37C). Spectrum 69 has small systematic lineshape distortions 

(examples at gray arrows). Spectrum 69 is also seen as an outlier in PCA results, with the 

largest component 2 score in the PCA plot of Figure 8. B: Overlay of outlier spectrum 173 

(D3A-F-U-500–8179-307–37C, red) and a reference spectrum 177 (D3A-F-U-500–

9966-006–37C, blue), showing changes in peak positions that are characteristic of different 

measurement temperatures (gray arrows). Spectrum 173 is one of several identified by 

Brinson et al. as a temperature outlier (a spectrum recorded at the wrong temperature).[2] 

Contours are drawn starting at 2.5% of maximum intensity.
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Figure 10. 
Overlay plot of potential outlier spectrum 31 (D2A-S-U-800–2461-102–37C, blue) and a 

representative spectrum from the same class (spectrum 28 D2A-S-U-800–2146-002–37C, 

red). The methylene region, shaded in gray, shows that peaks in spectrum 31 are attenuated, 

and there is some evidence of changes in the methionine methyl signals (gray arrow) 

expanded in the inset at the upper left. Contours are drawn starting at 2.5% of maximum 

intensity.
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Table 1.

Experiment codes for 1H,13C gHSQC spectra[33] used in the outlier analysis. Taken from Brinson et al.[2]

Experiment Code Number of 
Spectra (Total = 

252)
Sample

NMR Acquisition 
Type Comments

D2A 39 SSS Uniform Field-independent acquisition: 128 total points in the 13C 
dimension

D2B 32 SSS Non-Uniform 50% Non-Uniform Sampling of D2A

D2C 41 SSS Uniform Field-dependent acquisition: 25 ms acquisition in the 13C 
dimension

D2D 31 SSS Non-Uniform 50% Non-Uniform Sampling of D2C

D2E 26 SSS Non-Uniform Twice the scans per increment, 50% Non-Uniform 
Sampling of D2C

D3A 47 NIST-Fab Uniform Field dependent acquisition: 25 ms acquisition in 13C 
dimension

D3B 36 NIST-Fab Non-Uniform 50% Non-Uniform Sampling of D3A
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Table 2.

Spectral groupings for the outlier analysis.

Group Name (500–600 
MHz)

Number of 
Spectra

Group Name (700–750 
MHz)

Number of 
Spectra

Group Name (800–950 
MHz)

Number of 
Spectra

D2A – Low Field 19 D2A – Mid Field 8 D2A – High Field 12

D2B – Low Field 13 D2B – Mid Field 6 D2B – High Field 13

D2C – Low Field 20 D2C – Mid Field 7 D2C – High Field 13

D2D – Low Field 14 D2D – Mid Field 6 D2D – High Field 11

D2E – Low Field 11 D2E – Mid Field 6 D2E – High Field 9

D3A – Low Field 25 D3A – Mid Field 9 D3A – High Field 14

D3B – Low Field 18 D3B – Mid Field 7 D3B – High Field 11
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Table 3.

Interactively determined outlier counts with group size N for the spectral groups, with entries for groups 

having one or more interactive outliers highlighted in red.

Group Name (500–600 
MHz) Outliers/N Group Name (700–750 

MHz) Outliers/N Group Name (800–950 
MHz) Outliers/N

D2A – Low Field 1/19 D2A – Mid Field 0/8 D2A – High Field 1/12

D2B – Low Field 0/13 D2B – Mid Field 0/6 D2B – High Field 3/13

D2C – Low Field 1/20 D2C – Mid Field 0/7 D2C – High Field 1/13

D2D – Low Field 0/14 D2D – Mid Field 0/6 D2D – High Field 1/11

D2E – Low Field 0/11 D2E – Mid Field 0/6 D2E – High Field 1/9

D3A – Low Field 0/25 D3A – Mid Field 0/9 D3A – High Field 1/14

D3B – Low Field 1/18 D3B – Mid Field 0/7 D3B – High Field 1/11
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Table 4.

Results of interactive and automated outlier detection for spectra interactively classified as outliers, or 

interactively classified as acceptable when one or more of the automated methods classified the spectrum as an 

outlier. Cases where the automated result differed from the interactive result are highlighted in red.

Index Spectrum Study Title Interactive 
Score

Outlier 
Determination, Non-

Recursive Method

Outlier 
Determination, 

Single Population 
Method

Outlier 
Determination, 

Recursive Method

42 042-D2A-S-U-800–7244–013–37C 2 TRUE TRUE TRUE

43 043-D2C-S-U-800–7244–016–37C 2 TRUE TRUE TRUE

44 044-D3A-F-U-800–7244–019–37C 2 TRUE TRUE TRUE

88 088-D2A-S-U-600–1894–102–37C 2 TRUE TRUE TRUE

89 089-D2C-S-U-600–1894–104–37C 2 TRUE TRUE TRUE

211 211-D2B-S-N-800–6211–403–37C 2 TRUE TRUE TRUE

212 212-D2B-S-N-800–6211–405–37C 2 FALSE FALSE FALSE

224 224-D2B-S-N-800–7244–015–37C 2 FALSE FALSE TRUE

225 225-D2D-S-N-800–7244–017–37C 2 TRUE TRUE TRUE

226 226-D2E-S-N-800–7244–018–37C 2 TRUE TRUE TRUE

227 227-D3B-F-N-800–7244–020–37C 2 TRUE TRUE TRUE

353 353-D3B-F-N-600–8822–067–37C 2 TRUE TRUE TRUE

31 031-D2A-S-U-800–2461–102–37C 0 FALSE FALSE TRUE

49 049-D2C-S-U-750–2974–004–37C 0 TRUE TRUE TRUE

69 069-D3A-F-U-700–8473–007–37C 0 TRUE TRUE TRUE

173 173-D3A-F-U-500–8179–307–37C 0 FALSE FALSE TRUE

233 233-D2D-S-N-750–2974–005–37C 0 TRUE TRUE FALSE

234 234-D2E-S-N-750–2974–006–37C 0 TRUE TRUE FALSE
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Table 5.

Tally of potential false positive classifications, where spectra are classified as outliers by one of the automated 

methods, but not by interactive scoring, with entries for groups with one potential false positive classifications 

highlighted in red.

Group Name (500–600 
MHz) Outliers/N Group Name (700–750 

MHz) Outliers/N Group Name (800–950 
MHz) Outliers/N

D2A – Low Field 0/19 D2A – Mid Field 0/8 D2A – High Field 1/12

D2B – Low Field 0/13 D2B – Mid Field 0/6 D2B – High Field 0/13

D2C – Low Field 0/20 D2C – Mid Field 1/7 D2C – High Field 0/13

D2D – Low Field 0/14 D2D – Mid Field 1/6 D2D – High Field 0/11

D2E – Low Field 0/11 D2E – Mid Field 1/6 D2E – High Field 0/9

D3A – Low Field 1/25 D3A – Mid Field 1/9 D3A – High Field 0/14

D3B – Low Field 0/18 D3B – Mid Field 0/7 D3B – High Field 0/11
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Table 6.

Results of interactive and automated outlier detection for spectra interactively classified as intermediate 

quality (score = 1). Cases where the automated result differed from the interactive result are highlighted in red.

Index Spectrum Study Title (N = 26) Interactive 
Score

Outlie 
Determination, Non-
Recursive Method, 

Outliers = 8

Outlie 
Determination, 

Single Population 
Method, Outliers = 8

Outlie 
Determination, 

Recursive Method, 
Outliers = 13

33 033-D3A-F-U-800–2461–106–37C 1 FALSE FALSE TRUE

90 090-D3A-F-U-600–1894–107–37C 1 TRUE TRUE TRUE

129 129-D2C-S-U-600–6324–019–37C 1 FALSE FALSE FALSE

131 131-D2A-S-U-600–7244–04–37C 1 TRUE TRUE TRUE

132 132-D2C-S-U-600–7244–007–37C 1 FALSE FALSE TRUE

133 133-D2C-S-U-600–7244–009–37C 1 FALSE FALSE TRUE

134 134-D3A-F-U-600–7244–010–37C 1 TRUE TRUE TRUE

175 175-D2A-S-U-500–9966–002–37C 1 FALSE FALSE TRUE

176 176-D2C-S-U-500–9966–004–37C 1 FALSE FALSE TRUE

208 208-D2B-S-N-800–2461–103–37C 1 FALSE FALSE FALSE

209 209-D2D-S-N-800–2461–105–37C 1 FALSE FALSE FALSE

210 210-D3B-F-N-800–2461–107–37C 1 FALSE FALSE TRUE

215 215-D2B-S-N-800–6211–409–37C 1 FALSE FALSE FALSE

216 216-D2D-S-N-800–6211–410–37C 1 FALSE FALSE FALSE

217 217-D2E-S-N-800–6211–411–37C 1 FALSE FALSE FALSE

218 218-D3B-F-N-800–6211–412–37C 1 FALSE FALSE FALSE

220 220-D2D-S-N-800–6272–008–37C 1 FALSE FALSE FALSE

221 221-D2E-S-N-800–6272–009–37C 1 FALSE FALSE FALSE

222 222-D2D-S-N-800–6272–010–37C 1 FALSE FALSE FALSE

223 223-D3B-F-N-800–6272–014–37C 1 FALSE FALSE FALSE

266 266-D2B-S-N-700–8473–003–37C 1 TRUE TRUE FALSE

269 269-D3B-F-N-700–8473–008–37C 1 TRUE TRUE TRUE

341 341-D2B-S-N-600–7244–006–37C 1 TRUE TRUE TRUE

342 342-D2D-S-N-600–7244–008–37C 1 TRUE TRUE TRUE

343 343-D3B-F-N-600–7244–011–37C 1 TRUE TRUE TRUE

359 359-D2B-S-N-600–9963–003–37C 1 FALSE FALSE FALSE
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