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SUMMARY

1. Many neurodegenerative diseases are associated with pathological aggregation of 

proteins in neurons.

2. Autophagy is a natural self-cannibalization process that can act as a powerful 

mechanism to remove aged and damaged organelles as well as protein aggregates. It 

has been shown that promoting autophagy can attenuate or delay neurodegeneration by 

removing protein aggregates.

3. In this paper, we will review the role of autophagy in Alzheimer’s disease (AD), 

Parkinson’s Disease (PD), and Huntington’s Disease (HD) and discuss opportunities 

and challenges of targeting autophagy as a potential therapeutic avenue for treatment of 

these common neurodegenerative diseases.
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Introduction: An overview of autophagy machinery

Macroautophagy (hereafter autophagy) is a eukaryotic intracellular process that includes 

long-lived and damaged organelles, aggregated and misfolded proteins, as well as 

superfluous cellular components by forming a transitory double-membrane structure; 

namely, the phagophore.The phagophore hen matures into a double-membrane 

autophagosome. Mature autophagosomes then fuse with lysosomes to degrade and recycle 

autophagy products into their building blocks, thus providing energy and substrates for 

cellular biosynthesis.1–5 Triggers for neuronal autophagy include several possible causative 

factors including metabolic stress, ischemia and reperfusion (I/R) injury, nutrient 

deprivation, inflammation, physical trauma, neurotoxins, and neurodegeneration.6–9 

Autophagy maintains cellular homeostasis, removes aggregated/misfolded proteins, 

mitigates endoplasmic reticulum (ER) stress, and restores energy via recycling of glucose, 

fatty acids, and amino acids.10–12 Therefore, autophagy initially acts as a cytoprotective 

process in neurons which is referred to as adaptive autophagy (a.k.a. basal or mild 

autophagy). However, persistent or excessive induction of autophagy may contribute to 

neuronal cell death, which is referred to as maladaptive autophagy (also called excessive or 

unchecked autophagy).13–15 Proteins encoded by the family of autophagy-targeted genes 

(ATG) are hierarchically implicated in initiation, nucleation, and maturation steps from 

formation of autophagosomes to autolysosomes (Fig. 1).4 Although the ATG protein family 

is a major constituent of autophagy processes, various upstream signaling pathways and 

molecules are also present to regulate autophagy.5 For instance, protein kinase AMP-

activated catalytic subunit alpha 2 (PRKAA2, also known as AMPK) promotes autophagy 

by inhibiting mechanistic target of rapamycin kinase complex 1 (MTORC1), resulting in 

dephosphorylation and activation of the autophagy initiation complex, so-called unc-51 like 

autophagy activating kinase 1 (ULK1) (Fig. 1).1

Recent, evidence indicated a pivotal role of autophagy in the pathogenesis of cardiovascular, 

infectious, and neurodegenerative diseases.5,16–19 Therapeutic induction of basal autophagy 

has been reported to mitigate onset and progression of disease in mouse models of AD, PD, 

and HD.20,21 This review aims to update the role of autophagy in neurodegenerative diseases 

and summarize possible novel therapeutic avenues for the treatment of these diseases.

Dementia

Autophagy has been shown to promote neuronal survival by eliminating pathological protein 

aggregates and maintaining energy balance In addition, it supports neuronal plasticity, which 

has the potential to prevent the onset and development of neurodegenerative diseases.22 

Conversely, dysfunctional autophagy has been shown to result in the accumulation of 

defective protein aggregates and autophagosomes leading to neurotoxicity, cell death, and 

neurodegeneration.6 Moreover, long-term induction of autophagy could serve as a pro-death 
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mechanism leading to the exacerbation of neurodegenerative diseases including AD, PD, 

and HD.13,22

Dementia is considered the greatest global challenge for health and social care in the 21st 

century.23,24 In contrast to historical views, it is now possible to improve the trajectory of 

symptoms even if the underlying disease may not be curable. This provides an opportunity 

for prevention and intervention that transforms future dementia care. The strongest risk 

factor for dementia including AD is advancing age.25–27 In addition, vascular contributions 

to cognitive impairment and dementia (VCID) are increasingly recognized as a major risk 

factor for dementia;28 However the underlying mechanisms and specific links between 

vascular pathology and dementia are complex and only partially understood.

Adaptive autophagy in AD

AD is the most prevalent neurodegenerative disease characterized by extracellular deposits 

of β-amyloid (Aβ) peptides and hyper-phosphorylated MAPT/tau protein as neurofibrillary 

tangles.22,29,30 Yet, microscopic examination of post-mortem AD brains reveals extensive 

cerebral small vessel disease (CSVD) pathology, including tortuous microvessels with 

poorly-stained endothelium in affected cortical tissue. The consistent epidemiological 

association of multiple vascular risk factors with the incidence of AD suggests that CSVD is 

a plausible causal factor to the pathogenesis and development of AD. CSVD is highly 

prevalent in the general population with up to 95% of subjects affected at age 65 years and 

older, particularly if they have vascular risk factors,31. CVSD is also recognized as a major 

risk factor for dementia.32–35 Together, these observations highlight the role for CSVD as an 

important pathophysiological link to vascular dementia and AD. Accordingly, mitigating the 

consequences of cerebrovascular disease is a promising strategy to reduce dementia risk.

In this respect, increasing evidence indicates that autophagy dysfunction such as 

accumulation of autophagosomes and downregulation of autophagy proteins occurs in AD 

pathophysiology.36 In AD brains, autophagosomes, and multivesicular and multilamellar 

bodies, were abundantly found, particularly in synaptic terminals under neuritis, suggesting 

a role for defective autophagy in the neurodegenerative process of AD.37 In brains from AD 

patients, beclin 1 (BECN1) ), a core autophagy component, was attenuated.38 In this study, 

BECN1 knockout in a murine model of AD enhanced intracellular Aβ accumulation, and its 

extracellular deposition, indicating that BECN1 may possess therapeutic potential to revive 

autophagy and alleviate AD.38 Genomic studies identified phosphatidylinositol binding 

clathrin assembly protein (PICALM) involvement in AD pathology through modulation of 

autophagy and related MAPT/tau removal.39 In line with this finding, zebrafish PICALM 

transgenic models failed to execute autophagy and MAPT removal.39 Thus, it was 

concluded that adaptive autophagy dysregulation is a contributing factor to the onset and 

progression of AD pathology. Furthermore, circulating levels of autophagy marker “ATG5” 

and mitophagy marker parkin RBR E3 ubiquitin protein ligase (“PRKN”) were 

downregulated in AD patients compared to healthy controls.40,41 This suggests that 

autophagy and mitophagy processes are impaired upon AD insult. Recently, microtubule end 

binding motif of activity dependent neuroprotector homeobox (ADNP) was found to induce 

autophagy. To this end, ADNP was defined as a novel bridge between autophagy and 
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microtubules, which could be utilized for reinitiating defective autophagy in AD and other 

brain diseases.42 Taken together, adaptive autophagy is often impaired in AD and designing 

new strategies to combat defective autophagy is imperative in AD management.

Chaperone-mediated autophagy (CMA) is a type of autophagy that degrades cellular 

proteins without formation of autophagosomes.43 In CMA, cargo is directly transported into 

the lysosomes, which is mediated by heat shock protein family A [Hsp70] member 8) 

(HSC70 ) and lysosomal associated membrane protein 2 (LAMP2) 43 Exposing murine 

primary hippocampal neurons under treatment of oligomeric Aβ to trehalose and lactulose 

reduced neuroinflammation and improved autophagy and CMA. This result suggests that 

trehalose and lactulose could be developed and optimized for the treatment or prevention of 

AD.44 MAPT fragments, after being degraded by autophagy, can be a substrate of CMA by 

binding to HSC70 and entering the lysosome.45 However, CMA dysfunction may lead to 

inefficient translocation of MAPT fragments, which potentiates MAPT aggregation, 

lysosomal dysfunction, and ultimately AD pathology.45

The tryptophan-aspartic acid (WD) domain of ATG16L1 is of paramount importance for 

noncanonical autophagy pathways; i.e., alternative autophagy mechanisms that do not 

involve the full complement of ATG proteins typically needed for autophagosome formation.
46 For example, a murine study showed that dysfunction in noncanonical autophagy due to 

the absence of the WD domain resulted in the Aβ buildup, MAPT/tau hyperphosphorylation, 

and neurodegeneration associated with an AD-like phenotype. Absence of the WD domain 

leads to failure of Aβ receptor recycling in microglial cells. Given that inhibition of 

neuroinflammation ameliorates memory loss and neurodegeneration,47,48 it was concluded 

that the impairment of noncanonical autophagy due to absence of the WD domain might 

trigger severe neuroinflammation. This study implies that autophagy is a pro-survival 

mechanism that could attenuate the onset or progression of AD.49

Similarly, it was reported that branched chain amino acid aminotransferase (BCAT) is 

upregulated leading to the accumulation of Aβ due to the suppression of autophagy via 

BCAT-mediated hyperactivation of MTORC1, suggesting that autophagy activation 

ameliorates AD via eliminating Aβ aggregates.50 Also, berberine has been reported to 

attenuate the accumulation of MAPT/tau via autophagy activation in a PIK3C3/VPS34-

BECN1-dependent manner.51 Similarly, repetitive transcranial magnetic stimulation (rTMS) 

alleviates AD via promoting autophagy and reducing apolipoprotein E (APOE).52 

Furthermore, an in vitro model of AD revealed that β-asarone (derived from Acorus 
tatarinowii Schott) effectively counters those proteins implicated in AD pathogenesis 

including amyloid beta precursor protein (APP) ), presenilin-1 (PSEN1/PS-1), beta-secretase 

1 (BACE1), and Aβ via potentiating autophagy, which is demonstrated by LC3-II and 

BECN1 upregulation.53 Moreover, in the SAMP8 mouse AD model, treatment with Yishen 

Huazhuo decoction enhanced Aβ removal via upregulation of BECN1 and downregulation 

of MTORC1 and promoted autophagosome formation, resulting in enhanced autophagy.54 In 

sum, adaptive (mild) autophagy is a cytoprotective mechanism that mitigates AD, whereas 

dysfunctional autophagy promotes neuronal injury and AD.
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Maladaptive autophagy in AD

A growing body of evidence shows that autophagy could serve as a pro-degenerative 

mechanism in AD. It has been shown that aberrant autophagosomes contain Aβ, which 

ultimately results in extracellular accumulation of Aβ and ultimately AD, suggesting that 

abnormal autophagy processes could be an underlying cause of this disease.55 It was 

postulated that autophagy is altered to facilitate Aβ plaque formation during AD.56 In line 

with this notion, it was found that AD is associated with increased accumulation of Aβ and 

derivatives, aberrant autophagosomes and compromised Aβ clearance.57 Conversely, 

persistent Aβ accumulation results in excessive autophagy induction, which leads to 

apoptotic or autophagic cell death and ultimately exacerbation of AD.58 Jiang et al, revealed 

that Aβ aggregates induce the overexpression of NADPH oxidase 2 (NOX4) which enhances 

ROS generation and results in the hyperactivation of autophagy and neuronal death.58 

Estrogen has been reported to alleviate cognitive damage in an animal model of vascular 

dementia via downregulation of BECN1 and LC3-II (two core autophagy proteins) and 

upregulating WNT-CTNNB1/β-catenin signaling cascade elements, which abolishes 

maladaptive autophagy.59 In summary, aberrant autophagy and excessive autophagy 

induction (maladaptive autophagy) are two major mechanisms in the pathophysiology of AD 

pathogenesis.

Adaptive autophagy in HD

HD is a neurodegenerative disorder characterized by the ubiquitous presence of mutated 

huntingtin (mHTT) in the brain. Similar to AD, autophagy activation plays a cardinal role in 

degrading protein aggregates and alleviating HD symptoms. As a result, autophagy 

deregulation or dysfunction can contribute to the onset of HD.60 In this regard, ATG7 

polymorphism was correlated with the early onset of HD.61 Walter, et al. demonstrated that 

inducing AMPK activation was a promising approach for HD alleviation due to the 

reinvigoration of adaptive autophagy in an mTORC1-independent manner.62 In a murine 

model of HD, BECN1 overexpression in the early disease progression rewired defective 

autophagy, reduced mHTT aggregates, and alleviated neuronal pathology.63 Moreover, in a 

mouse model of HD, defective autophagic flux was found to be an essential and early event 

following mHTT aggregation in neurons.64 Furthermore, Synder and colleagues reported 

that RASD family member 2 (RASD2) binds mHTT and exacerbates its cytotoxicity.65 

These investigators went on to reveal that RASD2 knockdown dampened autophagy, 

although overexpression of RASD2 enhanced autophagy in PC12 cells.66 The underlying 

mechanism appears to be that RASD2 binds BECN1 and reduces its interaction with BCL2 

apoptosis regulator (BCL2), leading to BECN1-mediated autophagy.66 However, mHTT and 

its binding with RASD2, compromised RASD2-mediated autophagy and triggered 

autophagy defects.66 Genomic screening showed that homeodomain interacting protein 

kinase 3 (HIPK3)() is a negative regulator of autophagy and positive modulator of mHTT 

both in vitro and in vivo models of HD.67 mHTT also enhanced HIPK3 levels, and thereby, 

attenuated adaptive autophagy. To this end, inactivation of HIPK3 could be a therapeutic 

strategy to revitalize defective autophagy upon HD.67

Cuervo et al showed that LAMP2 and HSC70 (two markers of CMA) were significantly 

upregulated in both cellular and murine model of HD.68 They concluded that due to the 
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adaptive autophagy defect in the early stage of HD, CMA increases as a compensatory 

mechanism. However, this compensatory CMA declines with age.68 Furthermore, some 

studies have shown that mHTT aggregates can be degraded by CMA; thus, modulating 

CMA pathways and components could be a therapeutic approach for the treatment of HD.69

It was found that overexpression of transcription factor EB (TFEB), a regulator of autophagy 

genes, did not significantly influence removal of mHTT aggregates. However, Beclin-1 

overexpression in the early stage of the disease provoked autophagic removal of mHTT 

aggregates in a murine model of HD. Based on this study, activating Beclin-1-mediated 

autophagy in the early stage of the disease imparts neuroprotection within HD.63 Also, 

protective effects of rutin flavonoid found in apples, tea, and buckwheat against HD was 

attributed to mild autophagy induction, attenuation of oxidative stress, and the induction of 

insulin/insulin-like growth factor 1 (IGF1) signaling in a Caenorhabditis elegans HD model. 

This implies that maintaining a basic level of autophagy in neurons along with antioxidants 

could be implicated in the management of HD.70 Moreover, it was revealed that upregulation 

of glutamine synthetase 1 (GS1) inhibited activation and phosphorylation of mTORC1 and 

ribosomal protein S6 kinase B1 (S6K), respectively, thereby mitigating neuronal motility 

defects caused by mHTT aggregates.71 WD repeat and FYVE domain containing 3 (Wdfy3) 

is an autophagy adaptor protein (interacts with LC3II) playing a role in the brain clearance 

of protein aggregates. Depletion of Wdfy3 was reported to exacerbate HD pathogenesis and 

accelerated mHTT aggregates, indicating the cytoprotective role of autophagy and its 

adaptors in the alleviation of HD.72 Overexpression of cytochrome P450 family 46 

subfamily a member 1 (CYP46A1), a cardinal enzyme in brain cholesterol metabolism, 

attenuated the size and quantity of mHTT aggregates in a neuroblastoma cell HD model 

which was linked to mild autophagy induction.73 Huntingtin (HTT) plays various roles in 

mitophagy, selective autophagy of mitochondria, such as promoting mitophagy initiation and 

the recruitment of mitophagy receptors. Franco-Iborrait et al reported that mHTT impaired 

the formation of mitophagy protein complexes leading to mitophagy defects, oxidative 

stress, and neurodegeneration in HD. This suggests that HD impairs selective autophagy 

which results in mitochondrial dysfunction and disease progression. Thus, restoring selective 

autophagy mechanisms such as mitophagy might alleviate HD.74

Maladaptive autophagy in HD

Similar to AD, excessive autophagy induction may lead to neuronal cell death. Sharma et al 

reported that upon HD onset and progression, mHTT induced DNA damage which 

upregulated a DNA sensor, namely, cGMP-AMP synthase (cGAS) leading to the 

inflammation and exacerbation of HD. Furthermore, they found that cGAS mediated 

excessive autophagy induction via promoting cGAS/stimulator of interferon response 

CGAMP interactor 1 (STING) pathway and enhancing the formation of LC3II and 

autophagosomes which contributed to the progression of HD.75 Overall, autophagy 

induction at the basic level is a cytoprotective mechanism, which prevents the onset or 

progression of HD; however, unrestrained autophagy induction might adversely affect HD 

progression and recovery.
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Adaptive autophagy in PD

PD is a neurodegenerative disorder caused by dopaminergic neurons loss in the brain due to 

the aggregation of aberrant α-synuclein. Mutated α-synuclein triggers autophagy 

dysfunction, which relates to PD development and progression.76 Microglial ATG5 

knockout in mice rendered PD-like phenotypes such as impaired cognitive recognition or 

motor coordination.77 The mechanism was that autophagy inhibition activated NLR family 

pyrin domain containing 3 (NLRP3) () through phosphodiesterase 10A (PDE10A) )-cAMP 

axis, which ultimately led to pro-inflammatory cytokines such as macrophage migration 

inhibitory factor (MIF) ().77 Therefore, activating defective autophagy could be a clinical 

therapy for the management of PD patients. PTEN induced kinase 1 (PINK1) (PTEN 

induced kinase 1) is a serine-threonine kinase with role in mitophagy.78 Upon PINK1 

deficiency, excessive ROS production, deregulation of calcium homeostasis and electron 

transport chain can induce alterations in mitochondrial quality and quantity. Therefore, 

modulation of PINK1 may confer protection against different forms of PD via re-initiation 

of defective mitophagy.78 Overall, defective mitophagy and autophagy exacerbates PD 

pathogenesis and progression.

CMA activation contributes to the clearance of α-synuclein. Whereas, its depletion 

contributes to aggresome and oligomer formation in the pathology of PD.79 Kabuta and 

associates found that ubiquitin C-terminal hydrolase L1 (UCHL1) () abnormally interacted 

with LAMP2, heat shock protein family A [Hsp70] member 8) (HSPA8) (heat shock protein 

90 alpha family class B member 1 (HSP90AB1) (), and thereby, impaired CMA.80 Therefore 

aberrant interactions between UCHL1 and CMA components can contribute to PD 

pathogenesis. Thus, targeting the inhibition of UCHL1 may alleviate defective CMA in PD.
80

Ample evidence indicates that strategies to boost neuronal autophagy flux (i.e., lysosomal 

degradation capacity of autophagolysosomes) may attenuate PD-associated pathogenesis. 

For example, in a murine PD model, autophagy was activated via mucolipin 1/Ca2+/

calcineurin/TFEB signaling cascade leading to the alleviation of PD and reduced cell death. 

TFEB overexpression imparted similar effects, suggesting that TFEB-mediated autophagy 

acts as a pro-survival mechanism in PD.81 Melibiose and lactulose are trehalose analogs, 

which improved motor deficits and upregulated LC3II and anti-oxidant genes including 

nuclear factor erythroid 2-related factor 2 (Nrf-2), superoxide dismutase 2 (SOD2), and 

NAD(P)H dehydrogenase (NQO1) in a murine PD model, indicating that anti-PD effects of 

melibiose and lactulose are attributed to autophagy activation.82 Similarly, the 

neuroendocrine peptide, apelin-36, had neuroprotective effects and eliminated α-synuclein 

aggregates via upregulation of Beclin-1, LC3II, and anti-oxidant genes such as glutathione 

(GSH) and SOD and the suppression of apoptosis signal-regulating kinase 1 (ASK1)/ C-Jun 

N-terminal kinase 1 (JNK1)/caspase-3 signaling cascade in a murine PD model.This further 

indicates the pivotal role of autophagy in the degradation of α-synuclein and alleviation of 

PD.83 Also, the anti-PD function of extracts of Eucommia ulmoides Oliver leaves was 

shown to evoke autophagy induction, which rescued the loss of neural vasculature and 

dopaminergic neurons, blocked apoptosis, and mediated α-synuclein elimination in 

zebrafish PD model.84 Moreover, exosomes secreted from human umbilical cord 
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mesenchymal stem cells (hucMSCs) averted apoptotic cell death and dopaminergic neuron 

loss by enhancing autophagy in the SH-SY5Y cells PD model.85

Maladaptive autophagy in PD

It was revealed that brain-derived neurotrophic factor anti-sense (BDNF-AS), a long non-

coding RNA, was upregulated in the murine model of PD leading to the suppression of 

excessive autophagy induction and apoptosis via targeting microRNA (miR)-125b-5p.86 

Therefore, it can be interpreted that unnecessary autophagy induction might adversely affect 

PD progression. Overall, mild autophagy induction is a potential strategy to reverse PD 

progression, while over-activation of autophagy might pose destructive effects in neurons 

upon PD.

Targeting autophagy for the management of neurodegenerative diseases

A growing body of evidence suggests that pathology of neurodegenerative diseases may be 

attributed to abnormal protein aggregates which also serve as substrates of autophagy. 

Therefore, therapeutic activators of autophagy may alleviate these diseases in both in vivo 
and in vitro models.87 However, when autophagy is defective, therapeutic inducers of 

autophagy may not enhance the removal of protein aggregates and in some cases may lead to 

autophagosome accumulation, which would exacerbate disease pathology. Understanding 

pathways downstream and upstream from autophagy might help identify novel therapeutic 

targets. Rapamycin and temsirolimus (a soluble analogue of rapamycin) are the leading 

autophagy inducers in neurodegenerative diseases and function by inhibiting MTORC1.88–90 

Inhibition of MTORC1 may cause adverse effects in patients such as impaired wound 

healing and immunosuppression due to non-autophagic roles of MTORC1.91,92 However, 

until recently several autophagy inducers independent of MTORC1 were screened for 

possible clinical utility. For instance, lithium induces autophagy by inhibition of inositol 

monophosphatase 1 (IMPA1) and depletion of inositol-3-phosphate [Ins(1,4,5)P3], 

representing a possible candidate for HD treatment.93 Similarly, carbamazepine mediates 

autophagy by reducing Ins(1,4,5)P3 through inhibition of inositol synthesis thus, exhibiting 

anti-AD effects in mouse models.94 Although psychotropics such as lithium and 

carbamazepine are used in the clinical management of the psychiatric aspects of HD, proof 

of a neuroprotective effect in human HD is lacking. Trehalose and disaccharide trehalose 

also act independent of MTORC1 and induce autophagy via un-identified mechanisms, and 

exert neuroprotection in murine amyotrophic lateral sclerosis (ALS) and tauopathy.95–97

Besides, futures studies could be supported by the use of nanomedicine and drug delivery 

systems for specific and optimized targeting of autophagy in neurodegenerative diseases.
98,99 Table 1 lists both natural and pharmaceutical modulators of autophagy in the context of 

neurodegenerative diseases. Figure 2 summarizes holistic strategies including physical 

exercise and caloric restriction, as well as natural therapeutics for the management of 

neurodegenerative diseases via autophagy regulation.
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Concluding remarks

Evidence to date suggests that autophagy defects play a pivotal role in the pathogenesis of 

neurodegenerative diseases. A better understanding of autophagy dysregulation in the 

context of neurodegenerative diseases promises to provide novel therapeutic targets. 

Specifically, balancing basal autophagy induction while avoiding excessive induction of 

autophagy is important to improve neuronal survival.
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Figure 1. 
Various neuronal stresses such as nutrient deprivation and ROS trigger diverse pathways that 

regulate autophagy. Deprivation of amino acids and glucose substantially accelerate 

cytosolic level of AMP and Ca2+ in neurons. Enhanced AMP level triggers activation of 

AMPK (master regulator of autophagy), which upregulates ATG genes, blocks MTORC1, 

and activates ULK1, ultimately leading to autophagy initiation. Increased cytosolic level of 

Ca2+ also mediates AMPK activation and mitochondrial depolarization, which accounts for 

ROS production. ROS, in turn, activates certain transcriptional factors and AMPK thus, 
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leading to autophagy. Eventually, ATG proteins are recruited to various steps of phagophore 

and autophagosome formation, resulting in clearance of protein aggregates and impaired 

organelles via fusion with lysosome. Although basal autophagy alleviates 

neurodegeneration, its excessive induction may lead to various styles of cell death 1,8,110,111.

Abbreviations: DAPK (death associated protein kinase), CAMKK2 (calcium/calmodulin 

dependent protein kinase kinase 2), JUN/C-Jun (Jun proto-oncogene, AP-1 transcription 

factor subunit), FUNDC1 (FUN14 domain containing 1), Ub (ubiquitin), AMP (adenosine 

monophosphate), HIF1A/HIF1α (hypoxia inducible factor 1 subunit alpha), RPTOR/raptor 

(regulatory associated protein of MTOR complex 1), MAPK8/JNK1 (mitogen-activated 

protein kinase 8), DDIT4 (DNA damage inducible transcript 4), PIK3R4/VPS15 

(phosphoinositide-3-kinase regulatory subunit 4), DRAM (DNA damage regulated 

autophagy modulator), RB1CC1/FIP200 (RB1 inducible coiled-coil 1), BNIP3 (BCL2 

interacting protein 3).
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Figure 2. 
Holistic strategies for targeting autophagy in the management of neurodegenerative diseases. 

Natural autophagy inducers manipulate autophagy regulators via various mechanisms, 

leading to basal autophagy induction (likely, in a dose dependent manner). Numerous studies 

have substantiated the vital role of physical exercise and caloric restriction as non-invasive 

strategies for autophagy induction 2,112–115.

Abbreviations: NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2), FOXO3 (forkhead box 

O3), SIRT3 (sirtuin 3), RAB7 (RAB7, member RAS oncogene family), VDAC1 (voltage 
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dependent anion channel 1), MAPK1/3 (mitogen-activated protein kinase 1/3), MAP1LC3B/

LC3B (microtubule associated protein 1 light chain 3 beta)
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Table 1.

Therapeutic modulators of autophagy.

Modulators Name/Source Function Ref

A769662 Direct AMPK activator Induces AMPK-mediated autophagy and clearance of α-synuclein in 
neurons

100

AUTEN-67 Autophagy enhancer-67 Induces autophagy by modulating MTORC1 in AD 101

CysC Cystatin C Induces autophagy by manipulating AMPK-MTORC1 axis and inhibits 
aggregation of Aβ

102

Digoxin Natural compound Induces autophagy in a TFEB-dependent fashion 103

GSK621 Specific AMPK agonist Induces AMPK-mediated autophagy and clearance of α-synuclein in 
neurons

100

Latrepirdine Pharmaceutical compound Induces autophagy in MTORC1-dependent manner, ameliorates yeast 
model of AD, and upregulates ATG5

104,105

Metformin N,N-dimethylbiguanide Exerts neuroprotection and reduces cognitive decline via AMPK-mediated 
autophagy

106

MSL Synthetic autophagy upregulator Activates calcineurin, leading to dephosphorylation of TFEB that 
translocates to nucleus and upregulate ATG genes, and blocks 

neurodegeneration inflammation

107

Resveratrol Found in peanuts, red grapes, 
and blueberries

Enhances degradation of α-synuclein in in vivo models of PD via inducing 
AMPK-SIRT1-mediated autophagy

108

RSVA314 and 
RSVA405

Synthetic molecules Activate CAMKK2-AMPK axis, leading to autophagy induction and Aβ 
clearance

109

Abbreviations: TFEB (transcription factor EB), SIRT1 (sirtuin 1)
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