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Abstract

We show how quantum many-body systems on hyperbolic lattices with nearest-neighbor hopping 

and local interactions can be mapped onto quantum field theories in continuous negatively curved 

space. The underlying lattices have recently been realized experimentally with superconducting 

resonators and therefore allow for a table-top quantum simulation of quantum physics in curved 

background. Our mapping provides a computational tool to determine observables of the discrete 

system even for large lattices, where exact diagonalization fails. As an application and proof of 

principle we quantitatively reproduce the ground state energy, spectral gap, and correlation 

functions of the noninteracting lattice system by means of analytic formulas on the Poincaré disk, 

and show how conformal symmetry emerges for large lattices. This sets the stage for studying 

interactions and disorder on hyperbolic graphs in the future. Importantly, our analysis reveals that 

even relatively small discrete hyperbolic lattices emulate the continuous geometry of negatively 

curved space, and thus can be used to experimentally resolve fundamental open problems at the 

interface of interacting many-body systems, quantum field theory in curved space, and quantum 

gravity.

I. INTRODUCTION

Non-Euclidean and hyperbolic geometry has inspired thinkers for millennia due to its 

intriguing properties and perplexing beauty [1]. Besides its aesthetic appeal, the immense 

usefulness of hyperbolic geometry in physics due to the famous anti–de Sitter and conformal 

field theory (AdS-CFT) correspondence [2,3] makes field theories and quantum physics in 

hyperbolic space one of the central themes of current theoretical research. Furthermore, 

many recent developments in the context of holography and quantum information point 

towards a deep connection between geometry, entanglement, and renormalization [4–9]. 

Other exciting applications of hyperbolic geometry emerge, for instance, in the field of fault-

tolerant quantum computing [10–12]. To elevate the study of quantum physics in hyperbolic 

space from pure theory to experimentally verifiable questions, it is crucial to create 

laboratory setups for exploring the underlying effects in a tunable manner.
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Important progress towards the quantum simulation of curved space has been made in 

nonlinear optical media [13–19], ultracold quantum gases [20–27], and other platforms [28–

32], which allowed, for instance, for observation of event horizons [33,34] and Hawking 

radiation [35,36]. In these experiments, curvature is often emulated in Euclidean geometries 

through nonlinear field propagation. A complementary path was followed in recent cutting-

edge experiments in circuit quantum electrodynamics (QED) [37–41], where hyperbolic 

geometry was emulated directly through photon dynamics confined to a hyperbolic lattice 

made from superconducting resonators [42,43]. The setup is highly tunable and can be used 

to achieve photon interactions, coupling to spin degrees of freedom, or the effects of disorder 

[44–46]. Hyperbolic lattices have been investigated in the context of classical [47–52] and 

quantum spin systems [53], and complex networks [54].

In this work, we show that quantum many-body Hamiltonians relevant for circuit QED on 

hyperbolic lattices can be approximated by a continuum theory on the Poincaré disk. This 

provides a computational tool to access observables even for otherwise intractable very large 

lattices, and shows that the discrete setup constitutes a quantum simulation of continuous 

hyperbolic space. We provide a dictionary between discrete and continuous geometry. To 

show the strength of our mapping, we quantitatively reproduce the ground state energy, 

spectral gap, and correlation functions for the noninteracting theory by analytic continuum 

formulas. We reveal how conformal symmetry emerges on hyperbolic lattices, implying 

significant computational simplifications in applications.

II. HYPERBOLIC LATTICES

The photon dynamics of the circuit QED experiments of Ref. [42] can be modeled as 

nearest-neighbor hopping on a hyperbolic graph G; see Fig. 1. We label the graph in Schläfli 

notation by {p, q}, which corresponds to a tessellation of the plane by regular p-gons with 

coordination number q. Whereas the three Euclidean lattices (triangular lattice {3, 6}, square 

lattice {4, 4}, honeycomb lattice {6, 3}) satisfy (p − 2)(q − 2) = 4, one can show that a 

hyperbolic tessellation is obtained for (p − 2)(q − 2) > 4. In this work, we focus on the 

heptagonal hyperbolic lattice {p, 3} with p = 7 for concreteness, but point out how to 

generalize the results to p ⩾ 7. The actual circuit QED experiments realize the line graph of 

G [43], but their continuum approximation is analogous.

We consider the nearest-neighbor hopping Hamiltonian

ℋ0 = − t
i, j ∈ G

ai
†Aiaj, (1)

with ai
† the photon creation operator on site i and t > 0. The entry Aij of the adjacency matrix 

A is 1 if sites i and j are connected by an edge, and zero otherwise. We construct finite 

hyperbolic graphs that preserve sevenfold rotation invariance from ℓ = 1, 2, 3, … successive 

quasi-concentric rings, where ℓ = 1 corresponds to a single heptagon; see Fig. 1. The total 

number of sites grows exponentially as N ~ 7φ2ℓ for large ℓ, with φ = 1 + 5 /2 the golden 

ratio [51,52]; see Table I. Sites in the interior of G have coordination number 3, and sites on 
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the boundary have either 2 or 3. The average coordination number for large ℓ is 

3 − 1/ 5 = 2.553 and there is always a significant fraction of boundary sites.

For the continuum description, we embed the hyperbolic lattice into the Poincaré disk 

D = z ∈ ℂ, z < 1  with hyperbolic metric

ds2=dx2 + dy2

1 − z 2 2 . (2)

(We write z = x + iy = reiϕ.) Let us briefly recall some properties of this space of constant 

negative curvature [1]: The hyperbolic distance between two points z, z′ ∈ D is

d z, z′ = 1
2arcosh 1 + 2 z − z′ 2

1 − z 2 1 − z′ 2 , (3)

which reduces to |z − z′| for |z|, |z′| ≪ 1. The boundary of D is infinitely far from every point 

in the interior and the area of a disk of radius L < 1 is πL2/(1 − L2). The isometries (distance 

preserving maps) of D are given by conformal automorphisms

z w z = eiη a − z
1 − za (4)

with η ∈ [0, 2π) and a ∈ D. These transformations exchange a with the origin, and so each 

point in D is equivalent. The group of mappings (4) is isomorphic to the group PSL 2, ℝ  of 

Möbius transformations on the upper half-plane. The embedding assigns a coordinate zi ∈ D
to each site i ∈ G so that neighboring sites are separated by a hyperbolic distance d0 = 0.283 

128 [55]; see Appendix A. Importantly, the value of d0 is determined by the lattice geometry 

and cannot be varied.

On the Euclidean square lattice, nearest-neighbor hopping Hamiltonians of type (1) are 

related to the Laplacian through a finite difference approximation, facilitating powerful 

techniques such as the continuum theory of solids or lattice gauge theory in high-energy 

physics. The natural generalization of the Laplacian to curved manifolds is the Laplace-

Beltrami operator

Δg = 1
detg ∂i detg g−1 ij∂j , (5)

where the metric tensor gij = (1 − r2)−2δij is related to the line element in Eq. (2) by ds2 = 

gijdxidxj. This operator is self-adjoint with respect to the canonical scalar product 

f1, f2 = dV gf1*f2, with dV g = d2x detg the invariant volume element. In our case, we find 

the hyperbolic Laplacian to be

Δg = 1 − z 2 2 ∂x
2 + ∂y

2 . (6)

This operator is invariant under conformal automorphisms [1,56,57].
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III. FROM GRAPHS TO GEOMETRY

To understand why Δg appears here, note that every function f:D ℂ induces a function on 

the graph via i ↦ f(zi). Consider then a lattice site zi with coordination number 3 and a 

sufficiently smooth function f(z); see Fig. 2. We have Aijf(zj) = f(zi+e1) + f(zi+e2) + f(zi+e3), 

where the right-hand side represents the sum over the neighbors of zi and we implicitly sum 

over repeated indices. To manipulate this expression, apply an automorphism z ↦ w(z) 

from Eq. (4) with η = 0 and a = zi. This exchanges zi with the origin. Furthermore, the three 

neighbors of zi are mapped to form an equilateral triangle with coordinates w1 = heiχi, w2 = 

heiχiei2π/3, w3 = heiχiei4π/3, and h = tanh(d0) = 0.275 798. The phase χi depends on the 

coordinate zi in a nontrivial manner; see Fig. 5 in the Appendix. Applying the inverse 

automorphism, we arrive at the identity

Aijf zj = f zi − w1
1 − w1z i

+ f zi − w2
1 − w2z i

+ f zi − w3
1 − w3z i

. (7)

This equation can be expanded in powers of h, with the linear term vanishing due to w1 + w2 

+ w3 = 0, and the quadratic term being universal and independent of χi:

Aijf(zj) = 3f(zj) + 3
4ℎ2Δgf(zj) + O(ℎ3) . (8)

This relation between the adjacency matrix and the hyperbolic Laplacian remains true for p-

gons with p > 7, albeit with a different value of h. We emphasize again that h = tanh(d0) is 

fixed by hyperbolic geometry and cannot be tuned. However, the right-hand side of Eq. (7) 

can be evaluated for every h and so permits a formal finite size scaling limit h → 0. In 

Appendix B we compute the O(h3) correction to Eq. (8) and discuss the role of boundary 

sites. In Appendix C, we show that it diminishes as the lattice parameter decreases.

The next step towards a continuum theory for hyperbolic lattices is a formula to approximate 

sums over lattice sites by integrals over the Poincaré disk. For suitable functions f:D ℂ, 

an argument from finite-element triangulations [58–61] implies

i ∈ G
f zj ≈ 1

AΔ z ⩽ L

d2z
1 − z 2 2f z . (9)

Here, dVg = d2z/(1 − |z|2)2 is the invariant hyperbolic volume element and 

AΔ = π − γ1 − γ2 − γ3 /4 = π/28 is the area of the hyperbolic triangle of the dual lattice with 

interior angles γ1 = γ2 = γ3 = 2π/7. Importantly, this implies that a finite graph with ℓ rings 

and N(ℓ) sites corresponds to a finite continuous disk with effective radius

L = N
N + 28, (10)

the value of which is determined such that the right-hand side of Eq. (9) yields N when 

inserting f = 1. We display the first ten effective radii in Table I. In Appendix D, we present 
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an alternative derivation of Eq. (9), which does not utilize the dual lattice. For tessellations 

with p-gons with p ⩾ 7, we replace 28 π/AΔ = 4p/ p − 6 .

This dictionary how to approximate Aij and ∑i∈G on the hyperbolic lattice by their 

continuum counterparts comprises the first main result of this work. As an example consider 

the Bose-Hubbard model Hamiltonian on the hyperbolic lattice,

ℋ =
i ∈ G

−t
j ∈ G

ai
†Aijaj − μai

†ai + U ai
†ai

2 , (11)

with chemical potential μ and on-site interaction U. An exciting quantum simulation 

challenge would be to understand the phase diagram and universality class of the superfluid-

to-Mott insulator transition in this model. The associated superfluid in hyperbolic space is 

then captured by the continuum Hamiltonian

ℋ′ =
z ⩽ L

d2z
1 − z 2 2 αi

† −t′Δg − μ′ αz + U′ αi
†αz

2
(12)

with adjusted parameters t′ = 3
4ℎ2t, μ′ = μ + 3t, U′ = π

28U. The field operators αz = α z

satisfy curved-space commutation relations, α z , α† z′ = 1 − z 2 2δ 2 z − z′ , and we have 

α zi = 28/πai. More generally, every many-body system with Lagrangian ℒ ai  where the 

kinetic term results from nearest-neighbor hopping, especially including multiple species of 

both bosons and fermions and strong or long-ranged interactions, can be simulated in 

hyperbolic space by putting it onto a hyperbolic lattice. The resulting continuum theory is 

described by the action S = dV gℒ αz . In this work, we deliberately ignore boundary 

effects, although holographic models and simulation of bulk-boundary dualities [62–66] are 

a fascinating application that we leave for future work.

IV. APPLICATIONS

The spectral theory of the hyperbolic Laplacian on the Poincaré disk is well understood 

[56,57]. We summarize the main aspects here and give some additional details in Appendix 

E. The eigenvalues of −Δg are ε = 1 + k2 with eigenfunctions

ψK z =
1 − z 2

1 − ze−iβ 2

1
2 1 + ik

, (13)

where K = keiβ is a two-dimensional momentum vector. For z → 0 and k → ∞ 
(corresponding to infinite disk radius and Δg → Δ) we have ε → k2 and 

ψK z e
i
2 Kz + zK = eik · x, which is the local Euclidean plane wave limit. In radial 

coordinates, we write
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ψK z =
m = − ∞

∞
imgkm r eim ϕ − β , (14)

generalizing the partial wave decomposition of plane waves. We have

gkm r ∝ P 1
2 −1 + ik
m 1 + r2

1 − r2 , (15)

where Pν
m is the Legendre function of the first kind. Restricting space to a finite disk of 

radius L < 1 and imposing Dirichlet boundary conditions, ψkm(L) = 0, we obtain a discrete 

energy spectrum εn = 1 + kn
2 with kn > 0, analogous to a particle in a spherical well potential

As a first application of the continuum theory, we estimate ground state energy and spectral 

gap of the Hamiltonian in Eq. (1). We set t = 1. Since ℋ0 is quadratic this reduces to 

determining the lowest two eigenvalues of the matrix H = −A, which we label E0 and E1 = 

E0 + δE with spectral gap δE > 0. Note that the spectrum of H is contained in the real 

interval (−3, 3). For infinite lattices, the ground state energy is known from mathematical 

graph theory to lie in the interval [43,67,68] limℓ→∞ E0 ∈ [−2.966, −2.862]. To estimate the 

lowest eigenvalues from the continuum limit, we approximate H by the differential operator

H cont = − 3 − 3
4ℎ2Δg (16)

with Dirichlet boundary conditions at radius L. Its eigenvalues are the discrete set 

En
cont = − 3 + 3

4ℎ2 1 + kn
2 . As ℓ → ∞, the lowest possible kn → 0, which yields the ground 

state energy E∞ = − 3 + 3
4ℎ2 = − 2.942 95, consistent with the graph bound. For finite ℓ ⩾ 1, 

the first two eigenvalues of H(cont) are readily computed from ψkm(L) = 0 for m = 0, 1, 

respectively. They agree remarkably well with the graph data for ℓ ≳ 4; see Table I and Fig. 

3. For ℓ → ∞ we have

E0, 1
cont E∞ + 3π2ℎ2

4
1

lnφℓ + c0, 1
2 , (17)

with φ = 1 + 5 /2, c0 = ln 2, and c1 = ln 2 − 1. Equation (17) is derived in Appendix F.

As we go to higher energies, the spectra of H and H(cont) start to deviate. Still, the graph and 

continuum partition functions z = nΘ −En e−βEn and z′ =
n

Θ −En
cont e−βEn

cont
 with 

inverse temperature β agree well; see the inset of Fig. 3. (We limit the sums to negative 

energies to roughly cut off high energy contributions clearly outside the continuum 

approximation.) The ability to quantitatively reproduce the low-energy graph spectrum and 

predict the behavior for large graphs by means of the continuum approximation constitutes 

the second main result of this work.
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Our second application of the continuum theory is the computation of correlation functions 

on the graph from the continuum Green function. We denote the Green function of H = −A 
by

Gij ω = 1
H − ω ij

=
n = 1

N ψn i ψn* j
En − ω . (18)

Here ψn and En are the eigenvectors and eigenenergies of H, Hψn = Enψn, and ω ∈ ℂ is a 

complex frequency. Gij(ω) constitutes the measurable two-point correlation function 

ai ω aj
† ω 0 for the free theory averaged with respect to ℋ0, and can be written as an 

auxiliary field Gaussian path integral on the graph; see Appendix G. Approximating the 

latter by the continuum expressions, we obtain

Gij ω ≈ π
21ℎ2G zi, zj,

4 ω + 3
3ℎ2 , L . (19)

Here G(z, z′, λ, L) is the Green function of the hyperbolic Helmholtz operator, i.e., it 

satisfies

λ + Δg G z, z′, λ, L = − 1 − z 2 2δ 2 z − z′ (20)

and Dirichlet boundary conditions G(z, z′, λ, L) = 0 for |z| = L or |z′| = L. Again, the disk 

radius L is matched to ℓ through Eq. (10). The accuracy of the approximation in Eq. (19) is 

remarkably good, as shown in Fig. 4.

The continuum Green function G(z, z′, λ, L) is uniquely specified by the Dirichlet boundary 

condition [57,69–71]. The full but lengthy analytic expression is derived in Appendix H and 

summarized in Appendix I. As L → 1, the Green function is solely a function of the 

hyperbolic distance d(z, z′) due to automorphism invariance. For λ = 0 we have

G z, z′, 0, L = − 1
4πln L z − z′

L2 − zz′

2
, (21)

which, indeed, is a function of tanh d z, z′ = z − z′
1 − zz′  for L = 1. In turn, this implies that also 

the graph correlation function Gij(ω) is approximately a universal function of the hyperbolic 

distance dij = d(zi, zj) for large ℓ, as shown in Fig. 4. The quantitative matching of graph and 

continuum Green functions and the finding of emergent conformal symmetry on the 

hyperbolic lattice constitute our third main result.

V. OUTLOOK

The continuum approximation for hyperbolic lattices that we have put forward shows a path 

for how quantum many-body systems in continuous hyperbolic space can be reliably 

simulated using discrete geometries. It also gives a computational framework to efficiently 

compute observables relevant for experiments simulating curved spaces. In particular, the 
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continuum Green function can be used in diagrammatic techniques to accurately determine 

interaction effects even for relatively small system sizes. One platform of interest is, of 

course, circuit QED realizations, where the interplay of curvature and strong interactions 

between photons and qubit degrees of freedoms can be studied. However, hyperbolic lattices 

or their topological equivalents can, in principle, also be realized in other experimental 

platforms that allow for engineered hopping on graphs, including optical lattices for 

ultracold atoms [72] or electrical circuits [73], and thus can be utilized to simulate other 

many-body Hamiltonians in hyperbolic space (including fermions or artificial gauge fields). 

The strong coupling regime in experiment has the potential to uncover novel effects and can 

be used to benchmark our theoretical description of nonperturbative quantum physics in 

curved space.

The continuum formalism also naturally connects to statements of AdS-CFT correspondence 

and the intriguing interplay between boundary field theories and a gravitational bulk. In this 

context, we want to make the point that simulating bosons in hyperbolic space is related to 

simulating quantum gravity in two Euclidean dimensions. Although the Einstein-Hilbert 

action is purely topological in two dimensions, an important alternative theory for metric 

fluctuations is Liouville quantum gravity [74], which also appears in the context of the 

Sachdev-Ye-Kitaev (SYK) model [75] and bosonic string theory [76]. Since every two-

dimensional metric can be written as gij = eφδij with a scalar field φ, a saddle-point 

expansion of the Liouville action yields a field theory for φ in a hyperbolic background of 

constant negative curvature, and fluctuations of φ in that background correspond to 

fluctuations of the metric gij. We conclude that hyperbolic lattices promise a bright future for 

the genuine simulation of quantum physics in curved space.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A:: EMBEDDING COORDINATES

In this Appendix, we explain how the finite graph with ℓ rings is embedded into the Poincaré 

disk.

We assign a coordinate zi ∈ D to each graph site i∈G such that neighboring sites are at 

hyperbolic distance d0, with d0 to be determined. In order to label the coordinates zi ∈ D, we 

have in mind the topologically equivalent graph with ℓ concentric rings; see Fig. 1 in the 

main text. We enumerate the N graph sites with an index i in a counterclockwise manner by 

starting on the first ring, then the second ring, and so forth. In this way, the first i = 1, …, 7 
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sites are on ring ℓ = 1, sites i = 8, …, 35 are on ring ℓ = 2, etc. The number of sites on each 

ring is summarized in Table II.

The construction of the tessellation starts with the central regular heptagon with |z1| = ⋯ |z7| 

= r0. For a general hyperbolic lattice {p, q} we have

r0 =
cos π

q + π
p

cos π
p − π

q
, (A1)

and so for our tessellation {7, 3} we find

r0 = 0.300 743 . (A2)

In particular, the first two coordinates are z1 = r0 and z2 = r0e2πi/7 so that

d0 = d z1, z2 = 0.283 128 (A3)

with d(z, z′) the hyperbolic distance in the Poincaré disk. Starting from the central heptagon, 

the hyperbolic lattice is generated by iteratively applying the two generators of the symmetry 

group of the tessellation to the existing sites, which are rotations by 2π/7 through the center 

of a heptagon and rotations by 2π/3 through a vertex. Alternatively, we can create polygons 

by iteratively inverting existing polygons on hyperbolic circles along the edges of the 

polygon.

A list of coordinates {zi} for the sites of the first ℓ = 6 rings is provided in the Supplemental 

Material [55]. The list contains 2240 lines, which correspond to the 2240 coordinates for the 

graph with six rings. The first (second) column of the data constitutes the real (imaginary) 

part of ii D. In order to extract the coordinates for a graph with ℓ = 1, 2, 3, 4, 5, 6 rings, 

restrict to the first 7,35,112,315,847,2240 lines of the data, respectively.

APPENDIX B:: DERIVATION OF EQ. (7) AND CORRECTIONS

In this section we present a more detailed derivation of Eq. (7) for approximating the 

adjacency matrix by the hyperbolic Laplacian. We further discuss the validity of this relation 

for boundary sites with coordination number 2 and compute the next-to-leading order 

correction in the expansion in powers of h.

Derivation of Eq. (7).

Choose an arbitrary site zi of the hyperbolic lattice with coordination number 3. For a test 

function f:D ℂ such that f(zi) = fi we then have

Aijfj = f zi + e1 + f zi + e2 + f zi + e3 , (B1)

where zi+ea with a = 1, 2, 3 stands for the sites adjacent to zi. The heptagonal lattice is such 

that all adjacent lattice sites have the same distance with respect to the hyperbolic metric. In 
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particular, this property remains invariant under automorphisms of the Poincaré disk. We 

apply the transformation D D,

z w z = zi − z
1 − zz i

, (B2)

w z w = zi − w
1 − wz i

, (B3)

which exchanges zi and the origin. We write f z = f w z  and have

Aijfj = f w zi + e1 + f w zi + e2 + f w zi + e3 . (B4)

The adjacent sites in the rotated frame, however, have very simple coordinates: Modulo 

rotation, they correspond to three sites at hyperbolic distance d0 from the origin, with mutual 

relative angle 2π/3. The corresponding Euclidean distance h in the disk is such that

d ℎ, 0 =! d0, (B5)

and so

ℎ = tanh d0 = 0.275 798 . (B6)

We write

w1 = w zi + e1 = ℎeiχi, (B7)

w2 = w zi + e2 = ℎei2π/3eiχi, (B8)

w3 = w zi + e3 ℎei4π/3eiχi, (B9)

where the angle χi is determined by the coordinate zi; see below. We have

w1 + w2 + w3 = w1
2 + w2

2 + w3
2 = 0 . (B10)

Applying the inverse automorphism we can parametrize the sites adjacent to zi as

zi + e1 = z w1 = zi − w1
1 − w1z i

, (B11)

zi + e2 = z w2 = zi − w2
1 − w2z i

, (B12)
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zi + e3 = z w3 = zi − w3
1 − w3z i

(B13)

and so

Aijfj = f zi − w1
1 − w1z i

+ f = zi − w2
1 − w2z i

+ f zi − w3
1 − w3z i

. (B14)

The right-hand side is a complex number that depends on the parameter h and can be 

approximated through Taylor’s formulas by a polynomial in h. We write

Aijfj = 3f zi + Q1ℎ + Q2ℎ2 + O ℎ3
(B15)

with

Q1 = d
dℎ f zi − w1

1 − w1z i
+ f zi − w2

1 − w2z i
+ f zi − w3

1 − w3z i ℎ = 0
, (B16)

Q2 = 1
2

d2

dℎ2 f zi − w1
1 − w1z i

+ f zi − w2
1 − w2z i

+ f zi − w3
1 − w3z i ℎ = 0

. (B17)

We use a complex notation where we identify f z ≡ f z, z  and

∂z = ∂
∂z = 1

2 ∂x − i∂y , (B18)

∂z = ∂
∂z = 1

2 ∂x + i∂y . (B19)

For a = 1, 2, 3 (with wa,h := dwa/dh = wa/h) we arrive at

d
dℎf zi − wa

1 − waz i ℎ = 0
= − 1 − zi

2 w1, ℎ∂z + w1, ℎ ∂z f zi ,
(B20)

d2

dℎ2f zi − wa
1 − waz i ℎ = 0

= 1 − zi
2 2 ∂z

2f zi w1, ℎ
2 + ∂z

2f zi w1, ℎ
2

− 2z i 1 − zi
2 w1, ℎ

2 ∂zf zi − 2zi 1 − zi
2 w1, ℎ

2 ∂zf zi

+ 2 1 − zi
2 2 w1, ℎ

2∂z ∂zf zi .

(B21)

Summing over the index a and using a = 1
3 wa = a = 1

2 wa2 = 0 and |wa,h| = 1, this implies
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Q1 = 0 (B22)

and

Q2 = 3 1 − zi
2 2∂z ∂zf zi . (B23)

Note that Δ = 4∂z ∂z. Thus we have shown that

Aijfj = 3f zi + 3
4ℎ2Δgf zi + O ℎ3

(B24)

for a site with coordination number 3.

Coordination number 2.

Any site zi with coordination number 2 necessarily lies on the boundary of the graph, which 

we assume to be built from ℓ rings. Denote the two sites adjacent to zi in G by zi+e1 and zi+e2. 

The coordinate of the third neighboring site zi+e3 lies on the (ℓ + 1)th ring outside G, but is 

otherwise uniquely specified by the heptagonal tessellation of the hyperbolic plane. We then 

have

Aijfj = f zi + e1 + f zi + e2
= − f zi + e3 + f zi + e3

0
+ f zi + e1 + f zi + e2

= − f zi + e3 + 3f zi + 3
4ℎ2Δgf zi + O ℎ3 .

(B25)

We could now expand the first term to linear order in h, giving f(zi+e3) = f(zi) + hδnf(zi), 

with δnf(zi) a directional derivative along the line from zi to zi+e3. On the other hand, for our 

purposes we need Eq. (B24) only for the case that fi = ai = α(zi) is an annihilation operator. 

For any many-body state |Ψ〉 describing the system on graph G we have αi + e3 |Ψ〉 = 0, since 

zi+e3 ∉ G. Consequently

Aijaj Ψ = 3α zi + 3
4ℎ2Δgα zi Ψ + O ℎ3 , (B26)

and so the linear term should not affect observables. We leave the detailed analysis of these 

boundary effects to future work, since obviously they do not significantly affect the accuracy 

of the observables computed in this work.

Third order in h.

It is further possible to determine the coefficient Q3 in the expansion

Aijfj = 3f zi + 3
4ℎ2Δgf zi + ℎ3Q3 + O ℎ4

(B27)

along the same lines. We have
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Q3 = − 1
2 e3iχiDf zi + e−3iχiDf zi (B28)

with differential operator

D = ∂z
2 1 − zi

2 3∂z . (B29)

To understand the role of χi in this formula, it is instructive to express ∂z in radial 

coordinates according to

∂z = e−iϕ

2 ∂r − i
r ∂ϕ . (B30)

Consequently only the combination

δi = χi − ϕi (B31)

is relevant when applying D in Eq. (B21). We find that δi in most cases (not all) only 

depends on the radius ri, and is wildly fluctuating as we go from one lattice site to the other; 

see Fig. 5. This may explain why the contributions of the operator D, although only 

suppressed by a power of h, seem to be unimportant for computing the observables we 

consider in this work.
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FIG. 5. 
The angle δi = χi − ϕi is heavily oscillating between sites with nearby radius. In most cases, 

δi only depends on the value of the radius |zi| = ri. Here we plot the averaged angle δi vs site 

radius ri for the first five rings (comprising 847 sites). The red “error bars” indicate those 

cases where the mapping δi ↔ ri is not unique. Still, for any given site i we can 

unambiguously assign the value of δi through Eqs. (B7)–(B9).

TABLE II.

Number of sites on the ℓth ring, Nring(ℓ), and total number of sites for a graph with ℓ rings, 

N(ℓ), for the first eight rings.

ℓ rings

1 2 3 4 5 6 7 8

Nring(ℓ) 7 28 77 203 532 1393 3647 9548

N(ℓ) 7 35 112 315 847 2240 5887 15435

APPENDIX C:: FINITE-SIZE SCALING LIMIT

In this section, we perform a formal finite-size scaling limit h → 0 of Eq. (B14) and show 

that the higher-order corrections vanish in this formal limit.
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The lattice parameter h is fixed by hyperbolic geometry for every {p, 3} lattice through h = 

tanh(d0) with d0 = d(r0, r0e2πi/p) and r0 from Eq. (A1). Some examples for the lowest (and 

highest) values of p are

p 7 8 9 10 ∞

d0 0.283128 0.36352 0.409595 0.439590 1

h 0.275798 0.348311 0.388129 0.413304 1/2

We observe that the heptagonal lattice has the smallest value of h. As such, the fixed value of 

h yields a fundamental limit to the accuracy of the approximation in Eq. (B24). However, 

since h is relatively small, including the O(h3) correction in Eq. (B27) yields virtually exact 

results.

Remarkably, the right-hand side of Eq. (B14) can be evaluated for every value of h and so 

allows for a formal finite-size scaling limit h → 0. To see this, let us rewrite the equation as

Aℎf i: = f zi − ℎeiχi

1 − ℎeiχiz i
+ f zi − ℎei2π/3eiχi

1 − ℎei2π/3eiχiz i

+ f zi − ℎei4π/3eiχi

1 − ℎei4π/3eiχiz i
,

(C1)

where we defined a formal, h-dependent operator Aℎ. Importantly, we can now modify the 

value of h at will. (But, for h ≠ 0.275 798, the operator loses its interpretation as the 

adjacency matrix of the heptagonal lattice.)

To simplify the finite-size analysis, let us focus on radially symmetry functions f(r). For 

most sites i, the expression Aℎf i only depends on the radius ri; see Fig. 5. Consequently, 

after averaging over the radii, we can plot Aℎf vs the hyperbolic distance from the origin d(r, 

0); see Fig. 6. We compare the full expression Aℎf with the quadratic and cubic continuum 

approximations given by

Aℎ
2 f

i
= 3f zi + 3

4ℎ2Δgf zi (C2)

and

Aℎ
3 f

i
= 3f zi + 3

4ℎ2Δgf zi

− ℎ3

3 e3iχiDf zi + e−3iχiDf zi ,
(C3)

respectively. We verify that for h → 0 the quadratic approximation is sufficient to 

approximate the full result Aℎf. For general h ⩽ 0.275 798, Aℎ
2 f always gives a good 

qualitative and overall approximation. For sizable but small h ~ 0.1, the cubic approximation 
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is sufficient to even capture the quantitative behavior of Aℎf, whereas, for the physical value 

h = 0.275 798, deviations between Aℎf and Aℎ
3 f are visible, though small.

APPENDIX D:: DERIVATION OF EQS. (8) AND (9)

In this section we show how sums of the type

i ∈ G
f zi (D1)

with a suitable function f(z) can be approximated by integrals over the Poincaré disk with a 

finite radius L < 1. We assume the graph G to consist of ℓ rings. We present two methods: 

Method 1 is geometric in nature and relies on determining the area of the fundamental 

polygon of the dual lattice, whereas Method 2 is numerical and based on fitting the growth 

of the number of sites with increasing radial coordinate. The outcomes, Eqs. (8) and (9) in 

the main text, are the same.

Method 1.

The first method to approximate sums by integrals employs the fact that [58–61]

i ∈ G
Aif zi ≃ d2z

1 − z 2 2f z (D2)

With Ai = area Pi , where Pi = z ∈ D:d z, zi ⩽ d z, zj for all j ≠ i  is the set of all points in 

D that are closer to zi in comparison to any other lattice point. Equation (D2) is commonly 

applied for discretization of curved manifold, such as in finite-elements methods for 

numerical simulations. Due to the high symmetry of the tessellation {p, 3} with regular p-

gons, the set Pi is the fundamental triangle of the dual lattice {3, p}; see Fig. 4. 

Furthermore, the area Ai = AΔ is independent of i in this case, as all sites are equivalent with 

respect to automorphisms. We then arrive at Eq. (8) from the main text.

In order to compute the area AΔ, we note that the area of a hyperbolic triangle with interior 

angles α, β, γ is generally given by (π − α − β − γ)/4. In this case, all interior angles are 

2π/p. To see this, choose a dual triangle with one vertex at the origin. Clearly, the interior 

angle at the site at the origin is 2π/p, because the outgoing geodesics are straight lines. 

However, since the other two vertices of the triangle can be brought to the origin by a 

suitable Moebius transformation, we conclude that in fact all interior angles are 2π/p. We 

then arrive at

AΔ = π
4 1 − 6

p , (D3)

as quoted in the main text. For p = 7, we have AΔ = π/28.
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Method 2.

To simplify the matter let us first assume that f(z) only depends on r = |z|. Define the 

counting function

N r =
i ∈ G

Θ r − ri . (D4)

Further introduce the hyperbolic invariant ρ via

ρ = 1 + r2

1 − r2 , dρ = 4 dr r
1 − r2 2 . (D5)

We find that N r  is approximately linear in p and given by

N r ≈ 14ρ + b, (D6)

with b a constant; see Fig. 7. Hence dN r = 14dρ. In order to approximate the finite sum by 

a compactly supported integral, we restrict the integration to a disk of radius L < 1, with L to 

be determined. We have

i ∈ G
f ri ≈ dN r f r = 14 dρ f r

= 14 × 4
0

L
dr r

1 − r2 2f r

= 14×4
2π

z ⩽ L

d2z
1 − z 2 2f z .

(D7)

we fix the effective radius L by matching the total number of sites N to the right-hand side 

14 × 4
2π

πL2

1 − L2  for f(r) = 1. This yields

L = N
N + 28 . (D8)

In order to approximate the angular dependence for a more general function f(z) = f(reiϕ) we 

can employ standard arguments from Riemann integration. Due to the sevenfold rotation 

invariance of the lattice we can divide the N lattice sites {i ∈ G} into N/7 “shells,” labeled 

[i], where each shell contains seven sites with equal radius ri and angle ϕi + 2π j/7 with j = 0, 

…, 6. Summing over these seven sites for fixed ri we have

j = 0

6
f rieiϕi + 2πij/7 ≈ 7

0

2π dϕ
2π f rieiϕ , (D9)

where we approximated the sum by a Riemann integral. For the total sum over lattice sites 

we then have
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i ∈ G
f rieiϕi =

i j = 0

6
f rieiϕi + 2πij/7

≈
0

2π dϕ
2π i

7f rieiϕ

=
0

2π dϕ
2π i ∈ G

f rieiϕ

≈
0

2π dϕ
2π 14 × 4

0

L
dr r

1 − r2 2f reiϕ

= 14×4
2π

z ⩽ L

d2z
1 − z 2 2f z .

(D10)

This shows that Eq. (D7) generalizes to functions with nontrivial angular dependence.
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FIG. 6. 
Finite-size scaling. We define the h-dependent operator Aℎ through Eq. (C1), which allows 

us to connect the physical value of h = 0.275 798 for the heptagonal lattice to a formal h → 
0 limit. For the radially symmetric test function f(r) = cos[πd(r, 0)] we show here Aℎf

(empty black circles), the cubic approximation Aℎ
3 f from Eq. (C3) (filled blue squares), and 

the quadratic approximation Aℎ
2 = 3f + 3

4ℎ2Δgf (gray solid line). We subtract 3f for better 

visibility of the deviations. The three figures correspond to decreasing values of h, with the 
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individual values given in the plot labels. As h → 0, the quadratic approximation 

quantitatively reproduces the full expression.

FIG. 7. 
Counting function N r  for radii within the first ℓ = 4 rings versus the linear curve 14ρ + b, 

with b = −9.096.

APPENDIX E:: EIGENFUNCTIONS OF HYPERBOLIC LAPLACIAN

In this section we summarize the spectral properties of the hyperbolic Laplacian, i.e., the 

eigenvalues and eigenfunctions in different representations.

We label the eigenfunctions of Δg on the Poincaré disk by a momentum parameter

K = keiβ (E1)

with k ⩾ 0 the amplitude and β ∈ [0, 2π) a phase. The corresponding eigenfunction is

ψK z =
1 − z 2

1 − ze−iβ 2

1
2 1 + ik

, (E2)
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and applying Δg = 4 1 − z 2 2∂z ∂z it is easy to see that the corresponding eigenvalue is

εK = − k2 + 1 . (E3)

The norm of ψK for a disk of radius L < 1 is

ψK
2 =

z ⩽ L

d2z
1 − z 2 2 ψK z 2 = πL2

1 − L2 , (E4)

which is the hyperbolic volume of the disk. Note how this is analogous to the Euclidean 

case. Indeed, the Euclidean plane wave solutions

ψK z ≃ eik · x = exp i
2 Kz + Kz (E5)

are recovered for z ≪ 1 and k ≫ 1, which corresponds to the radius of the Poincaré disk 

approaching infinity and hence vanishing curvature.

Often it is advantageous to express the eigenfunction in radial coordinates z = reiϕ. For k ⩾ 0 

and m ∈ ℤ we define the radial eigenfunctions gkm(r) corresponding to the eigenvalue −(k2 + 

1) such that

ψK z =
m = − ∞

∞
imgkm r eim ϕ − β . (E6)

The ansatz is motivated by the Euclidean formula

eik · x =
m = − ∞

∞
imJm kr eim ϕ − β (E7)

with Bessel functions Jm. We have

gkm r = i−m

0

2π
dϕ
2π e−imϕ 1 − r2

1 − reiϕ 2

1
2 1 + ik

, (E8)

which can be solved numerically. However, the functions gkm(r) can be determined in closed 

form by making the ansatz gkm r = g 1 + r2
1 − r2 , which leads to Legendre’s differential equation 

(H14) for g. This yields

gkm r ∝ Pv
m 1 + r2

1 − r2 (E9)

with ν = 1
2 −1 + ik  and Pv

m the Legendre function of the first kind. The correct prefactor 

ensuring Eq. (E6) is found to be
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gk, m = 0 r = Pν
1 + r2

1 − r2 ,

gk, m > 0 r = 1
n = 0
m − 1 ν − n

Pν
m 1 + r2

1 − r2 ,

gk, m < 0 r = −1 mgk, m > 0 r .

(E10)

In the Euclidean limit r ≪ 1 and k ≫ 1, we recover gkm(r) ≃ Jm(kr).

TABLE III.

We compare the ground and first excited state energies for the graph and continuum for ℓ = 1, 

…, 10. The “asymptotic” continuum formulas for E0
cont  and E1

cont  correspond to Eqs. 

(F10) and (F16), respectively. For ℓ ⩾ 8 we give an estimate of E0 and E1 from sparse matrix 

methods.

ℓ

1 2 3 4 5 6 7 8 9 10

E0 −2 −2.636 −2.787 −2.847 −2.877 −2.894 −2.905 −2.91 −2.92 −2.92

Exact E0
cont

− 1.500 −2.570 −2.770 −2.842 −2.876 −2.895 −2.906 −2.914 −2.920 −2.924

Asymptotic 

E0
cont −2.535 −2.738 −2.820 −2.861 −2.884 −2.899 −2.909 −2.916 −2.921 −2.924

E1 −1.274 −2.283 −2.627 −2.762 −2.827 −2.863 −2.884 −2.90 −2.91 −2.91

Exact E1
cont

0.620 −2.085 −2.578 −2.746 −2.821 −2.861 −2.884 −2.899 −2.908 −2.915

Asymptotic 

E1
cont 15.58 −1.633 −2.507 −2.728 −2.815 −2.858 −2.883 −2.898 −2.908 −2.915

APPENDIX F:: COMPUTATION OF LOWEST EIGENVALUES AND 

DERIVATION OF EQ. (14)

In this section we give details for the determination of the ground state energy and spectral 

gap of (1) the Hamiltonian H = −A on a graph with ℓ rings and (2) its continuum 

approximation H cont = − 3 − 3
4ℎ3Δg on a disk of radius L = N/ N + 28 .

Graph Hamiltonian.

Denote the lowest two eigenvalues of H by E0 and E1 > E0. For moderately sized ℓ ≲ 7 we 

easily find the spectrum of A using matrix diagonalization. For larger ℓ ⩾ 8, due to the 

exponential increase in the size of the matrix, we use sparse matrix techniques to determine 

the lowest two eigenvalues. Specifically, we employ the numerical Lanczos algorithm to 

estimate E0 and E1, and estimate the results to be reliable to about three significant digits. 

Note that the accuracy of the algorithm becomes worse as the spacing between E0 and E1 

becomes smaller. Since a more precise determination of the values of E0 and E1 is not 
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among the goals of the present work, we are not able to test whether the relative error 

between E0,1 and E0, 1
cont  decreases as ℓ → ∞. The results are summarized in Table III.

Continuous Hamiltonian.

The eigenvalues of H(cont) read

Enm = − 3 + 3
4ℎ2 knm

2 + 1 , (F1)

where knm satisfies the Dirichlet boundary condition

Pνnm
m 1 + L2

1 − L2 = 0 (F2)

with Legendre function of the first kind Pv
m and vnm = 1

2 −1 + iknm . We label the 

eigenenergies by n = 1, 2, 3, … and m ∈ ℤ. The ground and first excited states have 

azimuthal quantum numbers m = 0 and m = 1, respectively. In order to declutter notation in 

the following we define

k0 = k1, 0, E0
cont = − 3 + 3

4ℎ2 k0
2 + 1 , (F3)

k0 = k1, 1, E1
cont = − 3 + 3

4ℎ2 k1
2 + 1 . (F4)

Equation (F2) is readily solved numerically and we present the lowest two eigenvalues 

E0
cont  and E1

cont  in Table III.

We can employ Eq. (F2) to compute the asymptotic behavior of k0 as L → 1 (or equivalently 

ℓ → ∞). For large x → ∞ we have

Pν x ∞ 2
x

1
2 1 + ik Γ −ik

Γ 1
2 1 − ik 2

+ 2
x

1
2 1 − ik Γ ik

Γ 1
2 1 + ik 2

(F5)

\ with Euler’s Γ function. In order to find the zeros we consider the amplitude

Pν x ∞ 2 2
x

Γ −ik
Γ 1

2 1 − ik 2

2

× 1 + 2
x

−ik Γ ik Γ 1
2 1 − ik 2

Γ −ik Γ 1
2 1 + ik 2

2

= 2
x

cosh2 πk/2
πk sinh πk × 1 + 2

x
−ik

eiΦ k
2

(F6)
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with

iΦ k = ln
Γ ik Γ 1

2 1 − ik 2

Γ −ik Γ 1
2 1 + ik 2 . (F7)

The first term in Eq. (F6) is positive. Thus the lowest zero k0 for L → 1 follows from

π =! − k0 ln 2
x + Φ k0

= − k0 ln 2
x − π + 4k0 ln 2 + O k3

= − π+k0 ln 8x + O k3

(F8)

for x = 1 + L2

1 − L2 ∞. Consequently,

k0
2π

ln 81 + L2

1 − L2

≃ π
ln 2φℓ .

(F9)

We inserted N ~ 7φ2ℓ with golden ratio φ = 1 + 5 /2 such that 1 + L2

1 − L2
1
2φ2ℓ. The ground 

state energy for large ℓ follows as

E0
cont − 3 + 3

4ℎ2 + 3π2ℎ2

4
1

ln φ ℓ + ln 2 2 . (F10)

The first excited state energy of H(cont) can be determined in a fully analogous way from

Pν1
1 1 + L2

1 − L2 = 0, ν1 = 1
2 −1 + ik1 . (F11)

We have

Pν
1 x ∞ 2 ∝ 1 + 2

x
−ik

eiΦ1 k 2
(F12)

with

iΦ1 k = ln
Γ ik Γ 1

2 1 − ik Γ 1
2 −1 − ik

Γ −ik Γ 1
2 1 + ik Γ 1

2 −1 + ik
. (F13)

Hence k1 for x = 1 + L2

1 − L2 ∞ is found from
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π =! − k1 ln 2
x + Φ1 k1

= − k1 ln 2
x − π + 2 2 ln 2 − 1 k1 + O k1

3

= − π − k1 ln 8x
e2 + O k1

3 .

(F14)

This implies

k1
2π

ln 8
e2

1 + L2

1 − L2

≃ π
ln 2

e φℓ (F15)

and

E1
cont − 3 + 3

4ℎ2 + 3π2ℎ2

4
1

ln φℓ + ln 2 − 1 2 . (F16)

APPENDIX G:: DERIVATION OF EQ. (16)

In this section we derive the relation between the graph green function Gij(ω) and the 

continuum Green function G(z, z′, λ, L) using an auxiliary field path integral representation.

We first recall some path integral identities [70]. If θi is a discrete real variable and Mij a real 

and symmetric matrix then

θiθj : =
Dθ θiθj e− 1

2θkMklθl

Dθ e− 1
2θkMklθl

= M−1
ij (G1)

with Dθ = idθi. Furthermore, if θ(x) is a real field and D a differential operator, then 

Dθ = xdθ x  and

θ x θ y : =
Dθ θ x θ y e− 1

2 ddrθDθ

Dθ e− 1
2 ddrθDθ

= − G x, y , (G2)

where G(x, y) is the Green function of D according to

DG x, y = − δ d x − y (G3)

This can be applied to match the Green function on the graph Gij to the continuum Green 

function G(z, z′) evaluated on the graph sites. The graph Green function is given by
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Gij ω, ℓ = 1
H − ω1 ij

=
n = 1

N ψn zi ψn* zj
εn − ω (G4)

with H = −A and Hψn = εnψn. Introduce the auxiliary real field θi → θ(zi) and approximate 

H ≈ − 3 − 3
4ℎ2Δg and ∑i ≈ 28

π z ⩽ L
d2z

1 − z 2 2  to find

Gij ω, ℓ =
Dθ θiθj exp − 1

2 i, jθi H − ω1 ijθj

Dθ exp − 1
2 i, jθi H − ω1 ijθj

=
Dθ θiθj exp − 1

2 i, jθi 31 − A − ω + 3 1 ijθj

Dθ exp − 1
2 i, jθi 31 − A − ω + 3 1 ijθj

≈

Dθ θ zi θ zj exp − 1
2

28
π z ⩽ L

d2z

1 − z 2 2θ z − 3ℎ2
4 Δg − ω + 3 θ z

Dθ exp − 1
2

28
π z ⩽ L

d2z

1 − z 2 2θ z − 3ℎ2
4 Δg − ω + 3 θ z

=

Dθ θ zi θ zj exp − 1
2C′

z ⩽ L
d2z

1 − z 2 2θ z −Δg − λ θ z

Dθ exp − 1
2C′

z ⩽ L
d2z

1 − z 2 2θ z −Δg − λ θ z

= 1
C′G zi, zj, λ, L

(G5)

with

C′ = 3ℎ2

4
28
π = 21ℎ2

π = 0.508, λ=4 ω + 3
3ℎ2 . (G6)

Here G(z, z′, λ, L) is the hyperbolic Green function of (Δg + λ) on a disk of radius L, i.e.,

1
1 − z 2 2 Δg + λ G z, z′, λ, L = − δ 2 z − z′ . (G7)

We conclude

Gij ω, ℓ = π
21ℎ2G zi, zj, λ = 4 ω + 3

3ℎ2 , L . (G8)

APPENDIX H:: CONTINUUM GREEN FUNCTION (COMPUTATION)

In this section, we compute Green’s functions for the hyperbolic Laplacian Δg and 

hyperbolic Helmholtz operator λ + Δg (with λ ∈ ℂ) on the disk of radius L ⩽ 1 with 
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Dirichlet boundary conditions. A self-contained summary of the relevant formulas is given 

in Appendix I.

Definition.

The Green function is defined by

λ + Δg G z, z′, λ, L = − 1 − z 2 2δ 2 z − z′ (H1)

with Δg = 1 − z 2 24∂z ∂z acting on z and Dirichlet boundary conditions such that G(z, z′, λ, 

L) = 0 for |z| = L or |z′| = L. Here (1 − |z|2)2δ(2)(z − z′) is the δ function with respect to the 

hyperbolic volume measure. For an arbitrary continuous function f:D ℂ it is defined by

D

d2z
1 − z 2 2 1 − z 2 2δ 2 z − z′ f z = f z′ . (H2)

In Cartesian coordinates such that z = x + iy we have d2z = dx dy and δ(2)(z − z′) = δ(x − x
′)δ(y − y′).

Spectral representation.

It is always possible to give a closed expression for the Green function in terms of the 

spectral decomposition of the operator. For this write the eigenfunctions of the hyperbolic 

Laplacian in radial coordinates by gkm(r)eimϕ with gkm from Eq. (E10). The normalized 

eigenfunctions of Δg on the disk of radius L < 1 are given by

ψnm z =
gknmm r eimϕ

gknmm
, (H3)

where knm solves gknmm(L) = 0 and the norm is

gkm
2 = 2π

0

L
dr r

1 − r2 2 gkm r 2 . (H4)

The Green function can then be written in spectral representation as

G z, z′, λ, L =
m = − ∞

∞

n

ψnm z ψnm* z′
−λ + knm

2 + 1
. (H5)

Equation (H1) follows from the completeness of the eigenfunctions and the Dirichlet 

boundary condition is satisfied due to ψnm(z) = 0 for |z| = L. However, the spectral 

representation is not the most useful form of the Green function since it requires one to 

determine the discrete momenta knm and subsequently to perform the double-sum 

numerically. Thus we derive a few complementary expressions in the following.
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Hyperbolic Laplacian.

First consider the case λ = 0, where Eq. (H1) reduces to

ΔgG z, z′, 0, L = − 1 − z 2 2δ 2 z − z′ . (H6)

We divide by (1 − |z|2)2 and observe that G(z, z′, 0, L) coincides with the Green function of 

the ordinary Laplacian Δ on a disk of radius L < 1. The latter is given by

G z, z′, 0, L = − 1
4πln z − z′ 2 + δG z, z′, 0, L , (H7)

where the first term is the fundamental solution, while the second term is a harmonic 

function ensuring Dirichlet boundary conditions. We construct δG from a mirror charge 

outside the disk, whose location is obtained from inversion on the circle, z′ L2/z′. Hence

δG z, z′, 0, L = 1
4πln z − L2

z′
2

+ const (H8)

with a suitably chosen constant. We arrive at

G z, z′, 0, L = − 1
4πln L z − z′

L2 − zz′

2
. (H9)

For z′ = 0 we have

G r, 0, 0, L = − 1
2πln r

L = − 1
2πln tanh d r, 0

L (H10)

with d(r, 0) the distance from the origin.

Hyperbolic Helmholtz operator.

Now consider the case of arbitrary λ ∈ ℂ. We construct the Green function by reducing the 

problem to a one-dimensional Sturm–Liouville problem. We refer to Appendix C of Ref. 

[71] for a detailed discussion of the procedure. Write

G z, z′, λ, L = G0 z, z′, λ − δG z, z′, λ, L , (H11)

where G0 is the fundamental solution and δG is a harmonic function to ensure Dirichlet 

boundary conditions. To construct these functions, we first solve, for z ≠ 0, the equation

λ + Δg f z = 0 (H12)

through an ansatz
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f z =
m = − ∞

∞
fλm ρ eimϕ (H13)

with ρ = 1 + r2
1 − r2 . Then fλm satisfies Legendre’s differential equation

1 − ρ2 fλm″ − 2ρfλm′ + ν ν + 1 − m2

1 − ρ2 fλm = 0 (H14)

with ν = 1
2 −1 + i λ − 1  or λ

4 = − ν ν + 1 . The two linearly independent solutions are

um ρ = Qν
m ρ , (H15)

vm ρ = Pν
m ρ , (H16)

which are the Legendre functions of the second/first kind, being singular/regular at ρ = 1. 

Without loss of generality we assume m ⩾ 0 in the following, otherwise replace m → |m|.

Introduce the Sturm-Liouville operator

Lm = − 4 d
dρ p ρ d

dρ + qm ρ (H17)

with

p ρ = 1 − ρ2 , qm ρ = ν ν + 1 − m2

1 − ρ2 . (H18)

We have

λ + Δg f z =
m = − ∞

∞
eimϕLmfλm ρ . (H19)

The fundamental solution of Lm is defined through

LmGm ρ, ρ′ = − 4δ ρ − ρ′ , (H20)

with the factor of 4 for later convenience. It is given by

Gm ρ, ρ′ = Cmum ρmax vm ρmin
= Cm um ρ vm ρ′ Θ ρ − ρ′ + um ρ′ vm ρ Θ ρ′ − ρ , (H21)

where ρmax(ρmin) is the maximum (minimum) of ρ and ρ′, and Cm a constant to be 

determined. To verify Eq. (H20), use Lmum = 0 and Lmvm = 0 and the definition of Lm to 

find
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LmGm ρ, ρ′ = 4Cmkm ρ δ ρ − ρ′ , (H22)

Where

κm ρ = p ρ u′m ρ vm ρ − um ρ v′m ρ (H23)

= −
4mΓ ν + m + 2

2 Γ ν + m + 1
2

Γ ν − m + 2
2 Γ ν − m + 1

2
(H24)

is constant and follows from the Wronksian of Legendre’s functions [69]. Thus we have to 

choose Cm = −1/κm and find

Cm =
Γ ν − m + 2

2 Γ ν − m + 1
2

4mΓ ν + m + 2
2 Γ ν + m + 1

2
(H25)

or

C0 = 1, (H26)

Cm ≠ 0 = −1 m

n = 0

m − 1
n + 1

2
2 + 1

4 λ − 1
.

(H27)

We conclude that the fundamental solution of λ + Δg is given by

G0 z, z′, λ = 1
2π m = − ∞

∞
eim ϕ − ϕ′ Gm ρ, ρ′ . (H28)

Indeed, using meim ϕ − ϕ′ = 2πδ ϕ − ϕ′  and

1 − z 2 2δ 2 z − z′ = 1 − r2 2

r δ r − r′ δ ϕ − ϕ′
= 4δ ρ − ρ′ δ ϕ − ϕ′

(H29)

we verify

λ + Δg G0 z, z′, λ = 1
2π m = − ∞

∞
eim ϕ − ϕ′ LmGm ρ, ρ′

= − 1
2π m = − ∞

∞
eim ϕ − ϕ′ 4δ ρ − ρ′

= − 1 − z 2 2δ 2 z − z′ .

(H30)
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Equation (H28) for the fundamental solution G0 allows one to easily construct the correction 

δG such that the total Green function G = G0 − δG satisfies Dirichlet boundary conditions: If 

either |z| = L or |z′| = L, then ρmax = 1 + L2

1 − L2 . Consequently, we choose

δG z, z′, λ, L = 1
2π m = − ∞

∞
eim ϕ − ϕ′ Cmvm ρ vm ρ′

um
1 + L2

1 − L2

vm
1 + L2

1 − L2

. (H31)

This is a harmonic function and satisfies G0 = δG whenever |z| = L or |z′| = L. As an 

illustrative example consider the central correlation function for z′ = 0. We have

G z, 0, λ, L = 1
2π Qν

1 + r2

1 − r2 −
Qν

1 + L2

1 − L2

Pν
1 + L2

1 − L2

Pν
1 + r2

1 − r2 , (H32)

clearly vanishing for r = L.

The Green function for L = 1 can be given in closed form, because it can only depend on the 

hyperbolic invariant d(z, z′). Making the ansatz G z, z′, λ, 1 = F y  with

y = cosh 2d z, z′ = 1 + 2 z − z′ 2

1 − z 2 1 − z′ 2 , (H33)

we find for z ≠ z (or y > 1) that

0 =! λ + Δg F y
= − 2 1 − y2 F″ y − 2yF′ y − λ

4 F y , (H34)

which again is Legendre’s differential equation. The singular contribution gives the 

fundamental solution, because

Qv y 1 − ln 1
2arcosh y + const, (H35)

and the regular solution is the harmonic correction to ensure the Dirichlet boundary 

condition. Hence

G z, z′, λ, 1 = 1
2π Qν y − CPν y (H36)

with
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C = lim
y ∞

Qν y
Pν y . (H37)

Importantly, since the fundamental solution does not depend on L, it is always given by [57]

G z, z′, λ = 1
2πQν 1 + 2 z − z′ 2

1 − z 2 1 − z′ 2 . (H38)

To compute the constant C, the parameter λ needs to be restricted to λ ∈ ℂ\ 1, ∞ , since the 

spectrum k2 + 1 of −Δg on the infinite disk is in the interval [1, ∞). For real λ < 1 this 

implies ν < −1/2. We expand Pν(y) and Qν(y) for large y and arrive at

C = 2νi−νπ3/2Γ −ν
Γ 1 + ν

2 Γ 1 + ν
2

−cos πν
2

Γ 1 + ν
2

2

Γ 1 − ν
2

2 + i sin πν
2

Γ 1 + ν
2

2

Γ − ν
2

2 . (H39)

APPENDIX I:: CONTINUUM GREEN FUNCTION (SUMMARY)

We summarize the expressions for the Green function G(z, z′, λ, L) derived in Appendix H. 

We write

G z, z′, λ, L = G0 z, z′, λ − δG z, z′, λ, L , (I1)

where the first term is given by

G0 z, z′, λ = 1
2πQv 1 + 2 z − z′ 2

1 − z 2 1 − z′ 2 (I2)

with Qν = Qν
m = 0 the Legendre function of the second kind and

ν = 1
2 −1 + i λ − 1 . (I3)

The second term reads
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δG z, z′, λ, L = 1
2πPν ρ Pν ρ′

Qν
1 + L2

1 − L2

Pν
1 + L2

1 − L2

+ 1
π m = 1

∞
Cm cos m ϕ − ϕ′ Pν

m ρ

× Pν
m ρ′

Qν
m 1 + L2

1 − L2

Pν
m 1 + L2

1 − L2

.

(I4)

with Pν
m and Qν

m the Legendre function of the first and second kind, hyperbolic invariant

ρ = 1 + r2

1 − r2 , (I5)

and

Cm =
Γ ν − m + 2

2 Γ ν − m + 1
2

4mΓ ν + m + 2
2 Γ ν + m + 1

2
. (I6)

In practice, it is sufficient to limit the sum over m to the first few (typically ten or less) 

terms. For L = 1 we have

δG z, z′, λ, 1 = C
2πPv 1 + 2 z − z′ 2

1 − z 2 1 − z′ 2 (I7)

with Pν = Pν
m = 0 and

C = 2νi−νπ3/2Γ −ν
Γ 1 + ν

2 Γ 1 + ν
2

−cos πν
2

Γ 1 + ν
2

2

Γ 1 − ν
2

2 + i sin πν
2

Γ 1 + ν
2

2

Γ − ν
2

2 . (I8)
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FIG. 1. 
(a) We consider the regular tessellation of the hyperbolic plane with heptagons, embedded 

into the Poincaré disk with a hyperbolic metric. All neighboring lattice sites have equal 

hyperbolic distance and the unit disk boundary is infinitely far away from each point in the 

interior. (b) Finite graphs preserving sevenfold rotation invariance can be constructed by 

considering subsets that are topologically equivalent to ℓ = 1, 2, 3 … concentric rings, shown 

here for ℓ = 3.
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FIG. 2. 
(a) The adjacency matrix can be approximated by the hyperbolic Laplacian in the continuum 

limit through Eq. (8). To derive this property, we choose an arbitrary site zi with 

coordination number 3 (blue diamond). When applying the automorphism 

z w z =
zi − z
1 − zzi

, which maps zi to the origin, the three neighbors of zi (red squares) are 

mapped to an equilateral triangle. This implies Eq. (7), which can be expanded in powers of 

h to yield the desired relation. (b) Sums over lattice sites are replaced by integrals over 

hyperbolic space according to Eq. (9). This is achieved by assigning to each site zi an 

effective hyperbolic triangle with interior angles 2π/7 and area AΔ = π/28.
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FIG. 3. 
Ground state energy E0 (blue, lower data) and first excited state energy E1 (orange, upper 

data) for the graph (filled circles) and corresponding continuous disk (empty circles). The 

solid lines are the asymptotic continuum formulas from Eq. (17). Inset: Partition function Z 
summed over negative energies for the graph with ℓ = 4 (blue) and associated disk (red) as a 

function of inverse temperature f. The dashed line is the low-temperature asymptote ln Z ~ 

−βE0.
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FIG. 4. 
Quantitative match between graph Green function Gij and continuum Green function G(zi, 
zj). We fix site zi to be on the second ring, and plot the correlations as a function Fj of site zj. 

Upper panel: Results for ω = −2.95 just below E0. Left: The two plots are Fj = Gij and Fj = 

G(zi, zj). The size of dots is proportional to |Fj|1/2, and blue (red) corresponds to positive 

(negative) sign of Fj. Right: Mean correlation function vs hyperbolic distance dij = d(zi, zj), 

where the red (black) data are the graph (continuum) function. To obtain the curves, we 

make a list of pairs (Fj, dij) and compute the average Fj as a function of distance, with the 

error bar being the standard deviation. The quantitative agreement between graph and 
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continuum is remarkable. Emergent conformal symmetry is reflected by the data points 

collapsing onto a single curve Gij = f(dij) with some function f for large ℓ. The main plots are 

for ℓ = 6, the insets for ℓ = 3. Lower panel: The same setting for ω = −2.5 + 0.1i with Re(ω) > 

E0. We plot the real part of the correlation function.
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