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Abstract

Background: We aimed to quantify the excess mortality associated with increased temperature 

due to climate change in six major Korean cities under Representative Concentration Pathways 

(RCPs) which are new emission scenarios designed for the fifth assessment report of the 

Intergovernmental Panel on Climate Change (IPCC).

Methods: We first examined the association between daily mean temperature and mortality in 

each during the summertime (June to September) from 2001 to 2008. This was done using a 

generalized linear Poisson model with adjustment for a long-term time trend, relative humidity, air 

pollutants, and day of the week. We then computed heat-related mortality attributable to future 

climate change using estimated mortality risks, projected future populations, and temperature 

increments for both future years 2041–2070 and 2071–2100 under RCP 4.5 and 8.5. We 

considered effects from added days with high temperatures over thresholds and shifted effects 

from high to higher temperature.

Results: Estimated excess all-cause mortalities for six cities in Korea ranged from 500 (95% CI: 

313–703) for 2041–2070 to 2,320 (95% CI: 1430–3281) deaths per year for 2071–2100 under two 

RCPs. Excess cardiovascular mortality was estimated to range from 192 (95% CI: 41–351) to 896 

(95% CI: 185–1694) deaths per year, covering about 38.5% of all-cause excess mortality. 
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Increased rates of heat-related mortality were higher in cities located at relatively lower latitude 

than cities with higher latitude. Estimated excess mortality under RCP 8.5, a fossil fuel-intensive 

emission scenario, was more than twice as high compared with RCP 4.5, low to medium emission 

scenario.

Conclusions: Excess mortality due to climate change is expected to be profound in the future 

showing spatial variation. Efforts to mitigate climate change can cause substantial health benefits 

via reducing heat-related mortality.
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INTRODUCTION

Studies worldwide have established a robust relationship between high temperature and 

excess mortality (Braga et al., 2002; Curriero et al., 2002; Gouveia et al., 2003; Anderson 

and Bell, 2009, 2011; Hajat and Kosatky, 2010; Basu and Malig, 2011; Gasparrini and 

Armstrong, 2011; Kim et al., 2011; Son et al., 2012). As an increase in the frequency and 

intensity of extreme hot weather is predicted in the future [Intergovernmental Panel on 

Climate Change (IPCC), 2012], its potential health impact raises a growing public health 

concern. A better understanding of the extent of their subsequent impact under climate 

change can help policy makers establish more effective adaptation strategies (e.g., 

improvement of the heat warning system in response to future heat waves) (O’Neill and Ebi, 

2009). However, few studies have quantitatively estimated the heat-related health impacts 

attributable to future climate change. A limited number of studies have projected the health 

impacts of future climate change via heat wave (Peng et al., 2011), temperature increase 

(Dessai, 2003; Knowlton et al., 2007), and air pollution (Bell et al., 2007; Tagaris et al., 

2009; Post et al., 2012). Peng et al. (2011) reported that Chicago could experience between 

166 and 2217 excess deaths per year attributable to heat wave in 2081–2100 based on three 

different climate change scenarios. Similarly, a study of heat-related mortality in Lisbon 

found that the potential increase of annual heat-related mortality rate ranged from 7.3 to 35.6 

per 100,000 persons by the 2050s (Dessai, 2003).

Because the association between hot weather and health vary substantially in space (Curriero 

et al., 2002; Baccini et al., 2008; Hajat and Kosatky, 2010), studies of the health impact of 

future climate change need to capture the spatial heterogeneity in the health effects across 

geographical regions. To date, no study has investigated heat-related mortality under future 

climate change in South Korea.

Gasparrini and Armstrong showed that the “main effect” of heat waves on excess mortality 

due to independent effects of daily high temperatures can be greater than the estimated 

“added effect” due to sustained duration of heat (Gasparrini and Armstrong, 2011). This 

implies that most of the excess mortality due to heat waves can be estimated by the 

temperature effects of individual hot days. Non-linear relations between daily temperature 

and mortality (reverse J-shaped) have been observed; mortality risk decreases as temperature 
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increases from the coldest days. After a certain critical temperature threshold, mortality risk 

increases as temperature increases (Curriero et al., 2002). An important question is how to 

assess the temperature change between the present and future while considering not only the 

days over the empirical temperature threshold, but also days with shifted hot-to-hotter 

temperature. To assess the potential impact of climate change on heat-related mortality, we 

adopted a new approach to include most “main effects” of over-threshold temperature, which 

can cause premature mortality, and the effects of extremely hot days, separately.

We aimed at quantifying the excess mortality associated with high temperatures due to 

future climate change in six major Korean cities based on the Representative Climate 

Pathways (RCPs), adopted for the fifth assessment report (AR5) of the Intergovernmental 

Panel on Climate Change (IPCC) (Moss et al., 2010; Rogelj et al., 2012). We first estimated 

heat-related mortality risks for these six cities using historical mortality and weather data, 

and subsequently calculated summertime temperature increase in the future using projected 

temperature based on a dynamical downscaling approach. Finally, we assessed the excess 

mortality due to climate change using future populations, the increased temperature, and the 

estimated high temperature related mortality risks.

MATERIALS AND METHODS

STUDY AREA

South Korea is located in the temperate region and has a hot and humid summer. The surface 

air temperature in South Korea has significantly increased by about 1.5°C during the past 

100 years, which is greater than the global 0.74°C average increase (National Institute of 

Environmental Research, Ministry of Environment, Korea., 2010). Additionally, a previous 

study about future climate in Korea (Boo et al., 2005) reported that daily mean temperatures 

over Korea would increase by about 5.5°C between 1971–2000 and 2071–2100, whereas 

cold events would be rarer and less severe. We analyzed the effect of future climate change 

on heat-related mortality in six major cities including Seoul, Incheon, Daejeon, Daegu, 

Gwangju, and Busan. There are a total of 21 million residents in these cities, approximately 

half the national population of South Korea. Figure 1 presents the location of the six cities.

HIGH TEMPERATURE AND MORTALITY RISK

Data—We used the following three types of data to estimate the present-day relationship 

between high temperature and mortality: meteorological records, air pollution, and daily 

death counts. Daily meteorological parameters, including temperature, and relative humidity, 

were obtained from the Korean Meteorological Administration (KMA) for six cities. Air 

pollution data were provided by the National Institute of Environmental Research, which 

monitors the ambient air pollution in South Korea. Daily mean concentrations of PM10 and 

ozone were first calculated for each monitoring site using hourly data and then the daily data 

were averaged by city. Mortality data were provided by the Statistics Korea. These records 

include date, residence, cause of death, and other demographic factors (e.g., age and sex). 

Based on the International Classification of Diseases Revision 10 (ICD 10) of primary or 

secondary disease codes, death counts for cardiovascular mortality (CVM) (ICD-10: I00-

I99) and respiratory mortality (ICD-10: J00-99), and all-cause mortality were extracted for 
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the six cities. Deaths attributable to external causes (ICD-10: V01-Y89) were excluded from 

the all-cause mortality. We used data only for the summertime (June 1 to September 30) of 

2001–2008 to focus on the effect of high temperature. Summertime corresponds to the heat 

health warning system period as determined by the KMA.

Statistical analysis—We assessed the effect of high temperature on mortality using a 

Poisson generalized linear regression model (GLM) with natural cubic splines allowing 

over-dispersion (McCullagh and Nelder, 1989). Before fitting the GLM model, we used 

penalized regression curves of a generalized additive model (GAM) to examine the form of 

the relationship between temperature and mortality on the same day for the summertime and 

to determine thresholds of temperature (Wood and Augustin, 2002). When we fitted the 

GAM, confounders including relative humidity, air pollutants, day of week, and long-term 

time trend were controlled. During hot days, ozone can be produced more easily and the 

daily deaths increase as the ozone level increases (Rainham and Smoyer-Tomic, 2003; Ren 

et al., 2006, 2008). Particulate matter also can cause slight changes in estimates of 

coefficients from the model for heat-related mortality (Pattenden et al., 2003). Therefore, we 

controlled for ambient ozone and PM10 as confounding factors. In the GAM model, we 

allowed the data to determine the degree of smoothing.

There is no commonly accepted threshold temperature to analyze the impact of high 

temperature on health. Different regions are likely to have different thresholds due to various 

demographics and adaptation practices. For example, Honda et al. (2007) suggested that a 

daily maximum temperature between the 80th and 85th percentile value of maximum 

temperature is the best parameter in Japan without any outlier city. We selected the upper 

25% of temperature based on the GAM-fitted penalized regression curves since linear 

relationships between temperature and mortality are shown over the 75th percentiles of daily 

mean temperature (Tq
c) for all six cities (Figure 2). We then fitted the GLM only for the 

upper 25% of temperature datasets to quantify the temperature effects on mortality in each 

city. In addition, we tried to include as many days with adverse health effect of high 

temperature as possible by selecting the 75th percentiles of summertime daily mean 

temperature as shown in Figure 2.

After determining the threshold based on the GAM model, we fitted GLM model controlling 

for the same set of confounders in the GAM model. For the lag effect analysis, single-day 

lagged effect of 0 days (same day), 1 day (previous day), 2 days (2 previous days), and 3 

days (3 previous days) in each city were applied. The model specifications are as follows:

ln E(Y t
c) = α + βcT t − lag

c + γcDOWt + ns(Timet) + ns(RHt
c)

+ ns(APit
c )

(1)

where E(Yt
c) is the expected daily death count for city c on day t; α is the model intercept; 

βc is the coefficient (slope) for the daily mean temperature for city c for a specific lag from 

day t (Tt−lag
c); γc is the vector of regression coefficients for day of week for city c; DOWt is 

a 7-level indicator for day of week; ns(Timet) is the natural cubic spline of a variable 

representing time to adjust for long-term trends with 2° of freedom for each summertime 

(16° of freedom for 8 summers); ns(RHt
c) is the natural cubic spline of relative humidity of 
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city c on day t with 4° of freedom; and ns(APit
c) denotes natural cubic splines of air 

pollutants i (daily mean PM10 and ozone) for city c on day t with 4° of freedom.

After estimating city-specific high temperature effects, we combined all the data to evaluate 

the overall effect (pooled effect of temperature on mortality across the six cities). We 

conducted meta-regression analyses using the estimates derived from the GLM. To take into 

account heterogeneity across cities, we applied random effect model by using restricted 

maximum-likelihood estimation (Harville, 1977; Viechtbauer, 2010). The percent change 

was derived from relative risks (RR) using the formula (RR-1) × 100. Here, RR indicates the 

change rate of expected death due to a 1°C increase in temperature. In addition to computing 

the effects of high temperature for all ages, we also estimated the effect on the elderly 

population (over 65 years of age).

All statistical analyses were performed in R 2.15.1 (The Comprehensive R Archive 

Network: http://cran.r-project.org) using the “mgcv” package (version 1.7-22) for city-

specific effects and “metafor” package (version 1.6-0) for overall effects. All tests were two-

sided, and an alpha level of less than 0.05 was considered significant.

FUTURE TEMPERATURE

Projected daily mean temperature data for the Korean Peninsula from 2000 to 2100 is 

publicly available through the Climate Change Information Center (CCIC)-KMA database 

(CCIC-KMA, 2012). The estimated future weather is based on the RCPs.

Climate researchers from different disciplines coordinated by the IPCC have established a 

new coordinated parallel process for developing new scenarios, RCPs. This starts with four 

scenarios of future radiative forcing levels (the changes in the balance between incoming 

and outgoing radiation to the atmosphere caused by changes in atmospheric constituents, 

such as carbon dioxide) [20]. Four RCPs were produced based on a comprehensive literature 

review: one high pathway for in which radiative forcing reaches >8.5 W/m2 by the year 2100 

and continues to rise for some amount of time (RCP 8.5); two intermediate “stabilization 

pathways” in which radiative forcing is stabilized at approximately 6 W/m2 (RCP 6.0) and 

4.5 W/m2 (RCP 4.5) after 2100; and one pathway where radiative forcing peaks at 

approximately 3 W/m2 before 2100 and then declines (RCP 2.6) (Moss et al., 2008). RCP 

8.5, 6.0, 4.5, and 2.6 assume approximately 1,370, 850, 650, and 490 ppm CO2 equivalent 

(CO2-eq) concentrations in 2100, respectively. The best estimate of CO2-eq concentration in 

2005 for long-lived greenhouse gases (GHGs) only is about 455 ppm CO2-eq (Moss et al., 

2010).

To project regional climate change, CCIC-KMA used a dynamic downscaling method from 

global climate change projection by a coupled atmosphere-ocean general circulation model, 

HadGEM2-AO, with about 135-km resolution under RCP 4.5 and 8.5. To evaluate the 

agreement between HadGEM2-AO-modeled temperature and observation, the CCIC-KMA 

checked geographical distribution of temperature for the period of 1979–1999. The model 

simulates presented climate well for the patterns of global and zonal temperature 

distribution. Details about the performance of the HadGEM2-AO are presented in Baek et al. 

(2013). Compared to 24 Coupled Model Intercomparison Project (CMIP) models, the 
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HadGEM2-AO showed some improvements especially for India and East Asia regions 

where CMIP3 models generally show bad performances (Baek et al., 2013). For the 

preparation of national climate change scenario, the CCIC-KMA downscaled the regional 

climate projections for the years 2000–2100 over the Korean peninsula domain with 1-km 

resolution (National Institute of Meteorological Research, Korea, 2011).

We used daily mean temperature for 2001–2010 for baseline and 2041–2100 for future 

temperature to compute the increased high temperature. We divided 2040–2100 into two 

time periods, 2041–2070 and 2071–2100, and averaged the daily mean temperature for each 

time period to reduce the variation of the model simulation. When the simulated 

temperatures were compared with observed daily mean temperature for same period, 2001–

2008, the coefficient of determinant and slope were 0.95 and 1.01, respectively (Figure S1).

EXCESS MORTALITY DUE TO CLIMATE CHANGE

Excess mortality due to high temperature in the future was calculated employing health 

impact function, derived from the log-linear function in the GLM model. The health impact 

function has been used in the estimation of health impact of heat wave and climate change 

(Dessai, 2003; Peng et al., 2011; Post et al., 2012) and air pollution (Tagaris et al., 2009; 

Fann et al., 2012). Basic formula is as follows;

Δy = y0 eβΔT − 1 × D (2)

where Δy is expected number of excess deaths during summertime; y0 is the expected daily 

number of death without climate change (the product of the baseline mortality incidence rate 

per day and the exposed population); β is coefficient of the relationship between mortality 

and high temperature (above threshold); ΔT is the increased temperature in the future due to 

climate change (future temperature—present temperature); D indicates number of exposed 

days to high temperature.

Future mortality incidences, baseline mortality incidences without climate change, were 

calculated using projected populations, which were published by Statistics Korea (2012), 

and current mortality rates for each city. Statistics Korea projected future populations from 

2010 to 2040 by considering population growth, natural increase rate and migration based on 

2010 Korean Census Survey. We used the projected population in 2040 for both 2041–2070 

and 2071–2100 because there was no projected population for 2071–2100. We used current 

non-accidental, all-cause mortality and CVM rates for the year of 2008 to calculate future 

baseline mortality incidences.

To calculate temperature changes in the future, 2041–2070 and 2071–2100, compared with 

the present (2001–2010), we divided the future summer days into two categories based on 

temperature level, days with above and below 75th percentile of daily mean temperature of 

the future summer for each city. Days with above 75th percentile of future summer 

temperature were used to calculate the temperature shift effect from high (present-day) to 

higher temperature (in the future) (“shifted” effect). We first calculated differences between 

averaged daily mean temperatures of the upper 25% of present summer days and those of 

future summer days (future temperature-present temperature) to apply for ΔT in equation 2. 
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We applied 30.5 days (25% of June through September) for the number of exposed days to 

high temperature (D in Equation 2) to compute the “shifted” temperature effect on mortality.

Among future summer days below 75th percentile of future summer temperature, we 

selected days with daily mean temperatures higher than Tq
c, the 75th percentile of present 

summer temperature by city, to evaluate the effect of added high temperature days due to 

climate change. We averaged the increased daily mean temperatures over Tq
c (Daily mean 

temperature of newly added day over Tq
c − Tq

c) by city and applied the averaged increase in 

temperature for ΔT in Equation 2. The average of the increase in temperature over Tq
c and 

the number of added days with temperature over Tq
c was used as ΔT and D in Equation 2 to 

estimate the impact of newly “added” high temperature over Tq
c (“added” effect). “Added 

days” in Table 3 indicates the number of exposed days with over Tq
c, D, used for the 

“added” effect. Figure S2 depicts how future summer days over present threshold, Tq
c are 

classified into “added” and “shifted” high temperature days.

Finally, we estimated excess mortality caused by climate change using the estimated 

mortality risks, projected future populations, and temperature increments. We first estimated 

excess mortality caused by “shifted” high temperatures (i.e., from high to higher 

temperature) and by newly “added” days over Tq
c in the future, separately. We then summed 

them to estimate the total effect of climate change. We computed excess mortality for each 

city using city-specific mortality risks and overall impact using the pooled mortality risk. 

The effects on respiratory mortality were not statistically significant in all cities, including 

the overall effect. Therefore, excess death counts for only all-cause mortality and CVM were 

estimated.

RESULTS

MORTALITY RISK

Table 1 shows summary statistics of study population, weather, and air pollutants of the 

summertime in the six cities. The population of the six cities ranged from 1,462,133 

(Gwangju) to 10,081,017 (Seoul) for 2008. In 2040, the populations of four cities (Seoul, 

Daegu, Gwangju, and Busan) are expected to decrease slightly, while those of Incheon and 

Daejeon increase. Overall, the population of the six cities is predicted to decrease by about 

500,000. Averaged daily death counts during the summertime for 2001–2008 ranged from 

12.9 (Daejeon) to 88.5 (Seoul) for non-accidental all-cause mortality and from 3.1 

(Gwangju) to 23.7 (Seoul) for CVM. Daily mean temperatures of 75th percentile of 

summertime were slightly higher in cities located at relatively lower latitude and inland area 

(e.g., Daegu and Gwangju) than cities at higher latitude and adjacent to the sea (e.g., 

Incheon). PM10 concentrations were on a similar level across the six cities, whereas daily 

mean ozone concentration in Daejeon (12.9 ppb) was much lower than other cities during 

the summertime.

Figure 2 depicts the smoothing plots of relative risk of temperature on all-cause mortality for 

the six cities during the summertime derived from GAM with adjustments for long-term 

time trend, relative humidity, and air pollutants. The relationship between daily mean 

temperature and mortality vary by city. Thresholds of all-cause mortality risks were found in 
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relation to daily mean temperature during the study period except for Daejeon. Linear 

relationships between temperature and mortality are shown over the 75th percentiles of daily 

mean temperature for all six cities.

The estimated mortality risks on days with daily mean temperature greater than the 75th 

percentiles of summertime derived from GLM with natural cubic splines are presented in 

Table 2. Percent increases of all-cause mortality due to high temperature were the highest in 

same day models in most cities. The effect of high temperature on all-cause mortality was 

the highest in Daegu, showing 3.5% (95% CI: 0.4–6.7%) and 5.8% (95% CI: 1.6–10.1%) 

increase due to 1°C increase in daily mean temperature for the all ages and over-65 years 

age groups, respectively. Overall effects of 1°C increase in daily mean temperature were 

associated with a 2.7% (95% CI: 1.7–3.7%) increase in all-cause mortality for all ages and 

3.4% (95% CI: 2.1–4.8%) increase for over 65 years old across the six cities when same-day 

models were fitted.

The overall percent increase for CVM as well as city-specific percent changes was the 

highest in the 1-day lagged model, compared to no-lagged and lagged by 2–5 days models 

(data not shown). Therefore, we chose the 1-day lagged model and results for CVM in 

Tables 2, 4 were from 1-day lagged model. The effect of high temperature on CVM varied 

by city; those for Daejeon and Incheon were especially high, showing 10.7% (95% CI: 0.4–

21.9%) and 8.6% (95% CI: 2.5–15.1%) for all ages, respectively, whereas results for the 

other cities were not statistically significant. Overall effects on CVM were 3.8% (95% CI: 

0.8–6.9%) and 4.6% (95% CI: 0.4–8.9%) for all ages and over 65 years old, respectively, 

showing a greater value than the all-cause mortality data.

CLIMATE CHANGE AND EXCESS MORTALITY

Table 3 shows the temperature change between present and future and added days with daily 

mean temperature over Tq
c, the 75th percentile of present summer temperature by city. For 

the upper 25% of summer temperature, the averages of daily mean temperature were 

predicted to increase ranging from 1.9°C (Daejeon under RCP 4.5) to 3.7°C (Daegu under 

RCP 8.5) in 2041–2070 and from 2.5°C (Daejeon under RCP 4.5) to 5.9°C (Incheon under 

RCP 8.5) in 2071–2100. For the added days with daily mean temperature over Tq
c, the 

averaged increase in temperature ranged from 0.6°C in 2041–2070 (Daegu under RCP 4.5) 

to 2.9°C in 2071–2100 (Seoul, Incheon and Busan under RCP 8.5). Increases in temperature 

for the “shifted” days, upper 25% of summertime, were higher than those for the “added” 

days. Days with daily mean temperature over Tq
c were predicted to increase by 11–88 days, 

varying by city and emission scenario.

Figure 3 and Table 4 present city-specific (Figure 3) and overall (Table 4) annual excess 

mortality due to climate change-induced temperature increase in the future. Estimated excess 

mortalities for six cities in South Korea were a total of 500 (95% CI: 313–703) deaths per 

year in 2041–2070 and 766 (95% CI: 478–1077) deaths per year in 2070–2100 based on 

RCP 4.5 and 1008 (95% CI: 628–1420) deaths per year in 2041–2070 and 2320 (95% CI: 

1430–3281) deaths per year in 2070–2100 based on RCP 8.5. Excess CVM was estimated to 

range from 192 (95% CI: 41–351) to 896 (95% CI: 185–1694) deaths per year, comprising 

Kim et al. Page 8

Front Environ Sci. Author manuscript; available in PMC 2021 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approximately 38.5% of all-cause excess mortality (Comparison of EMs between all-cause 

mortality and CVM can be seen in Figure S3).

When temperature increase is relatively mild (e.g., 2041–2070 under RCP 4.5), the “added” 

effects (i.e., the impact induced by increased days with daily mean temperature over Tq
c) 

were not higher than the “shifted” effects (i.e., impact induced by temperature increment of 

upper 25% of summer temperature). However, the “added” effects increased as temperature 

difference increased. The overall “added” effect for six cities in 2070–2100 under RCP 8.5 

was 1273 (95% CI: 784–1775) deaths per year; this is about 22% higher than the “shifted” 

effect (1047 (95% CI: 646–1506)).

Estimated future heat-related mortality varied by city as shown in Figure 3. Absolute death 

counts attributable to future temperature increase were the highest in Seoul, showing 1053 

(95% CI: 478–1675) deaths per year in 2070–2100 under RCP 8.5 when the “shifted” (427 

(95% CI: 193–694) deaths per year) and the “added” effect (626 (95% CI: 284–981) deaths 

per year) were summed (Figure 3A). However, when the excess death counts were adjusted 

with the future population scale of each city, those for Busan (17 (95% CI: 3–32)) deaths per 

100,000 persons in 2071–2100 under RCP 8.5, located at a relatively lower latitude, were 

higher than Seoul (11 (95% CI: 5–17)) deaths per 100,000 persons in 2071–2100 under RCP 

8.5 (Figure 3B).

DISCUSSION

We have assessed excess mortality attributable to future climate change in six Korean cities 

by applying the estimated mortality risks, projected populations, and projected daily mean 

temperatures based on RCPs. Our findings support the assumption that the impact of future 

temperature increment on human health will be profound and indicate that we can reduce the 

health burden of climate change substantially by lowering future carbon dioxide emission.

To directly assess the temperature change between the present and future while considering 

increased days with over a threshold temperature and shifted hot-to-hotter temperature, we 

separated future summer days into two categories as follows: days with the upper 25% of 

daily mean temperature and days with lower 75% of daily mean temperature. This made it 

possible to evaluate the “shifted” and the “added” temperature effects of future climate 

change on mortality, as well as to directly compute excess mortality due to climate change-

induced temperature increase. The daily mean temperature over the 75th percentile of 

summertime for the future was expected to be much higher than the present; that is, the 

averaged daily mean temperature of upper 25% during the summer would be 32.1°C in 

Seoul and 33.0°C in Daegu in 2071–2100 (Table S1) based on RCP 8.5, which represents 

the highest GHGs emission among four RCPs, whereas those for present-day (2001–2010) 

are 26.6°C in Seoul and 27.4°C in Daegu (Moss et al., 2010).

In most cases, excess mortality derived from the “shifted” effect exceeded the “added” 

effect. However, when temperature increase was very high (e.g., 2070–2100 under RCP 8.5), 

the “added” effects on mortality were predicted to surpass the “shifted” effects in the future 

(Table 4 and Figure 3). It is mainly because the number of increased days with daily mean 
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temperature over threshold, the 75th percentile of present summer temperature (Tq
c), would 

increase considerably.

Previous studies used similar “health impact function” to this study (Dessai, 2003; Knowlton 

et al., 2007) For example, Knowlton et al. (2007) first calculated daily heat-related 

premature deaths attributable to high temperature over thresholds and summed them to 

estimate annual deaths for both present (1990s) and future (2050s). They then calculated 

percent change of future premature deaths compared with present premature deaths. When 

we applied the method presented by Knowlton et al. (2007) for Seoul, Korea, assuming the 

75th percentile of temperature as a threshold, heat-related premature deaths for present 

(2001–2010) were 77 deaths per year and 1158 deaths per year for future (2071–2100) under 

RCP 8.5. Therefore, the difference, 1081 deaths per year, could be considered as excess 

mortality due to the climate change-induced temperature increase. This result is very similar 

to the results of our current study; total excess mortality for Seoul derived from our study 

was about 1053 deaths per year for 2071–2100 under RCP8.5 when the “shifted” and 

“added” effects were summed (Figure 3A). We directly estimated excess mortality due to 

climate change-induced temperature increase by dividing the temperature of future 

summertime into two temperature levels. We then assessed excess mortalities caused by 

“shifted” and “added” effects, separately. This approach helps us to make more detailed 

evaluation of the heat-related premature deaths. Relatively low temperature increase in the 

future will cause heat-related excess mortality mainly attributable to shifted hot to hotter 

temperature. In contrast, high temperature increase will cause heat-related excess mortality 

more attributable to the newly added days above the threshold temperature than the shifted 

hot days.

Regarding the mortality risk, we fitted GLM using the upper 25% of temperature during 

present summertime to estimate mortality risks in the six cities. The mortality risk can vary 

by percentiles of temperature even in a city. A previous study showed that the percent 

change of mortality risk for the 90th percentile (25°C) to the 50th percentile (15°C) of year 

round temperature in Seoul during 2000–2007 was 10.2% (95% CI: 7.4–13.0%) and that for 

the 99th percentile (29°C) to the 90th percentile (25°C) was 3.9% (95% CI: −0.3–8.3%) 

(Son et al., 2011). Hajat et al. (2006) reported that heat wave effects resulted from linear 

slope models varied by percentiles of temperature, showing that the higher percentile is, the 

greater the slope is. Our previous study showed that estimated percent increase for the 90th 

percentile of temperature during summertime (9.3% (95% CI: −0.4–19.9%)) was 2.7-fold 

greater than that for the 75th percentile of temperature (3.5% (95% CI: 1.0–6.0%)) in Daegu, 

South Korea (Kim and Joh, 2006). We selected the 75th percentile of daily mean 

temperatures of present summertime as a threshold for each city in order to include as many 

days with high temperatures that cause heat-related excess mortality as possible.

All-cause mortality risks to high temperature in this study were estimated to increase by 

2.7% (95% CI: 1.7–3.7%) for all ages and by 3.4% (95% CI: 2.1–4.7%) for over 65 years 

old across the six cities. The predicted mortality risks of high temperature in this study are 

quite robust and in accordance with other studies. Our previous study presented that percent 

change of all-cause mortality caused by daily maximum temperature over 27.9°C was 2.6% 

(95% CI: 1.5–3.8%) in Seoul when applied by GAM for 2000–2002 (Kim and Joh, 2006). 
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Percent change of all-cause mortality for Seoul in this study is 2.6% (95% CI 1.2–4.5%) for 

daily mean temperature over 25.5°C (Table 2). Studies from other countries also show 

similar results (Curriero et al., 2002; Tagaris et al., 2009; Guo et al., 2011). For example, 

Curriero et al. (2002) observed that mortality rate due to daily mean temperature over 

21.5°C had increased by 3.7% in Washington, DC for 1973–1994.

Mortality risks in this study show inconsistency between all-cause and cardiovascular 

mortality and between cities. For example, the all-cause mortality risk in Seoul is significant 

while CVM risk is not, whereas in Incheon, CVM risk is quite high with significance while 

all-cause mortality risk is insignificant. Uncertainty of statistical modeling and differences of 

these populations are possible causes. The magnitudes of daily death counts vary by city, 

which is related to the statistical significance. In particular, most death counts of CVM are 

very small, e.g., those for Daejeon and Gwangju are less than 5, which might cause the 

nonsignificant RR or wide range of confidence interval for CVM in the cities. The effect of 

heat stress on mortality varies by latitude, cause of disease, lagged days, and demographic 

characteristics (Curriero et al., 2002; Hajat and Kosatky, 2010). Besides, Schwartz (2005) 

reported that patients with diabetes had a higher risk of dying on hot days than other subjects 

(odds ratio, 1.17; 95% CI, 1.04–1.32), which suggest that all-cause mortality risk due to heat 

stress be able to be higher than that of CVM. Therefore, it can be inferred that in Seoul, heat 

stress impacts on mortality not through aggravation of cardiovascular disease but through 

other diseases such as diabetes, whereas in Incheon, cardiovascular disease patients are more 

vulnerable to heat stress than other cities. The different responses to heat waves among cities 

might be caused by their different adaptation capacity including their emergency response 

systems. However, we did not consider such socioeconomic factors, which is a limitation of 

our study.

Some studies have reported mortality displacement. Hajat et al. (2005) reported that 

mortality displacement exists in London, where there is higher proportion of elderly people 

than other cities. These results might imply that excess daily mortality results from short-

term displacement, known as the “harvesting” effect. However, Hajat et al. (2005) also 

observed no mortality displacement in other European cities, except for London. Basu and 

Malig (2011) stated that the evidence of mortality displacement was not found since no 

significant negative effects were observed in the following single or cumulative days in 

California, USA. Mortality displacement may not be robust and may vary by city. According 

to a previous study about heat-related mortality in South Korea, cumulative percent increase 

of mortality over 30 days was still significant and greater than the single-day effect in Seoul 

and Incheon (Ha et al., 2011). Ha et al. (2011) used a distributed lag model, which considers 

a cumulative effect that the single-day model cannot identify, and concluded that summer 

high temperature did not just advance the date of premature deaths by a few days, but its 

impacts on mortality was robust. Therefore, excess mortality estimated in this study cannot 

be considered just mortality displacement.

One of the limitations of our analysis is that simulations from only one climate model were 

used. This is because there are no other archived model projections based on the new 

emission scenarios, the RCPs, in South Korea. Although the simulated future temperature 

vary by model and scenario (Peng et al., 2011), the CCIC-KMA results used in this study 
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have showed similar temperature increases to previous studies that had simulated future 

temperature in South Korea using different climate models and emission scenarios (Boo et 

al., 2005; Koo et al., 2009). Boo et al. (2005) reported that simulated daily temperature for 

the period of 2071–2100 was projected to shift by about 5.5°C compared to the period of 

1971–2000 in South Korea. The increased temperature resulted in increase in frequency and 

intensity of hot weather when the temperature was predicted based on the IPCC Special 
Report on Emissions Scenario (SRES) A2, which assumes 830 ppm of CO2 in 2100. The 

temperature change predicted by Boo et al. (2005) is similar to the temperature increase in 

2071–2100 based on RCP 8.5. In addition, Koo et al. (2009) reported that regional climate 

projection using Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) dynamic-

downscaling simulation showed that the annual mean value of daily mean temperatures will 

increase by 3.8°C between the present and 2071–2100 based on the SRES A1B scenario, 

which assumes 720 ppm of CO2 in 2100. These previous studies as well as the CCIC-KMA 

results have shown consistent temperature increases in South Korea in the future, exceeding 

the globally averaged temperature increase. Furthermore, according to a previous study on 

future temperature distribution, changes in the mean and variability of temperature analyzed 

by temperature projection time series are not influenced by climate model bias (Gosling et 

al., 2009). Despite of the consistency in temperature increase in South Korea in the future, 

there exists uncertainty in the projected temperature changes. Without additional model 

simulations available, our current analysis cannot quantify this uncertainty, nor can it 

evaluate the effectiveness of any potential policy interventions. Nonetheless, we selected two 

RCPs, i.e., the most plausible emission pathway (RCP 4.5) and the highest emission 

pathway (RCP 8.5) as future temperature changes would likely be bounded by these two 

scenarios. Using ensemble model simulation results will be our future research direction.

We have not estimated the excess mortality in the context of demographic vulnerability to 

climate change due to a lack of detailed future population data. Further studies on the heat-

related excess mortality based on age and gender specific future population and mortality 

risk are required. Another limitation of this study is not accounting for acclimatization of 

people to the warming climate. Knowlton et al. (2007) reported that projected regional 

increases in heat-related premature mortality by the 2050s ranged from 47 to 95% increase 

compared with the 1990s. This increase was reduced by about 25% when acclimatization 

including air-conditioning was considered. However, we could not consider this effect 

because there is no study on the acclimatization in South Korea.

To our knowledge, this study is the first to quantify the health impact of future climate 

change in South Korea. We applied city-specific mortality risks for six cities to estimate the 

health impact of temperature increment due to climate change in the future. Furthermore, we 

suggested a method to directly assess the health impact of increased temperature due to 

climate change while distinguishing the effects of shifted high to higher temperature and 

increased days over a temperature threshold. With this approach, we could make more 

detailed evaluation of the heat-related premature deaths caused by climate change.
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CONCLUSIONS

The association between high temperature and mortality in six South Korean cities is 

statistically significant, implying that the heat-related mortality may be accelerated by 

climate change in the future. Estimated impacts of climate change on heat-related mortality 

based on projected future temperature under RCPs, estimated mortality risks, and projected 

population will be profound and vary by city. Excess mortality rate due to future climate 

change is higher in cities located at lower latitudes than those at higher latitudes, while the 

absolute value of excess mortality is high in city with high population and mortality 

incidence. The estimated mortality attributable to climate change based on the fossil fuel-

intensive emission scenario is much greater than that based on the low to medium emission 

scenario. This implies that efforts to mitigate climate change can bring about substantial 

health benefits by reducing the heat related mortality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We wish to thank Climate Change Information Center of Korea (CCIC) for providing the simulated weather data. 
The work of Kim and Liu was supported by the Centers for Disease Control and Prevention (CDC) (5 U01 
EH000405) and by the National Institutes of Health (NIH) (1R21ES020225).

REFERENCES

Anderson GB, and Bell ML (2009). Weather-related mortality: how heat, cold, and heat waves affect 
mortality in the United States. Epidemiology 20, 205–213. doi: 10.1097/EDE.0b013e318190ee08 
[PubMed: 19194300] 

Anderson GB, and Bell ML (2011). Heat waves in the United States: mortality risk during heat waves 
and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health. 
Perspect 119, 210–218. doi: 10.1289/ehp.1002313 [PubMed: 21084239] 

Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, et al. (2008). Heat effects on 
mortality in 15 European cities. Epidemiology 19, 711–719. doi: 10.1097/EDE.0b013e318176bfcd 
[PubMed: 18520615] 

Baek HJ, Lee J, Lee HS, Hyun YK, Cho CH, Kwon WT, et al. (2013). Climate change in the 21st 
century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pacific J. 
Atmos. Sci 49, 603–618. doi: 10.1007/s13143-013-0053-7

Basu R, and Malig B (2011). High ambient temperature and mortality in California: exploring the roles 
of age, disease, and mortality displacement. Environ. Res 111, 1286–1292. doi: 10.1016/
j.envres.2011.09.006 [PubMed: 21981982] 

Bell ML, Goldberg R, Hogrefe C, Kinney PL, Knowlton K, Lynn B, et al. (2007). Climate change, 
ambient ozone, and health in 50 U.S. cities. Clim. Change 82, 61–76. doi: 10.1007/
s10584-006-9166-7

Boo KO, Kwon WT, and Baek HJ (2005). Change of extreme events of temperature and precipitation 
over Korea using regional projection of future climate change. Geophys. Res. Lett 33, L01701. doi: 
10.1029/2005GL023378

Braga AL, Zanobetti A, and Schwartz J (2002). The effect of weather on respiratory and 
cardiovascular deaths in 12 U.S. cities. Environ. Health. Perspect 110, 859–863. doi: 10.1289/
ehp.02110859

Climate Change Information Center (CCIC), and Korean Meteorological Administration (KMA). 
(2012). Climate Change Database. Available online at: http://www.climate.go.kr/index.html

Kim et al. Page 13

Front Environ Sci. Author manuscript; available in PMC 2021 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.climate.go.kr/index.html


Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, and Patz JA (2002). Temperature and mortality 
in 11 cities of the eastern United States. Am. J. Epidemiol 155, 80–87. doi: 10.1093/aje/155.1.80 
[PubMed: 11772788] 

Dessai S (2003). Heat stress and mortality in Lisbon Part II: an assessment of the potential impacts of 
climate change. Int. J. Biometeorol 48, 37–44. doi: 10.1007/s00484-003-0180-4 [PubMed: 
12750971] 

Fann N, Lamson AD, Anenberg SC, Wesson K, Risley D, and Hubbell BJ (2012). Estimating the 
national public health burden associated with exposure to ambient PM2.5 and ozone. Risk. Anal 
32, 81–95. doi: 10.1111/j.1539-6924.2011.01630.x [PubMed: 21627672] 

Gasparrini A, and Armstrong B (2011). The impact of heat waves on mortality. Epidemiology 22, 68–
73. doi: 10.1097/EDE.0b013e3181fdcd99 [PubMed: 21150355] 

Gosling SN, McGregor GR, and Lowe JA (2009). Climate change and heat-related mortality in six 
cities. Part 2: climate model evaluation and projected impacts from changes in the mean and 
variability of temperature with climate change. Int. J. Biometeorol 53, 31–51. doi: 10.1007/
s00484-008-0189-9 [PubMed: 19052780] 

Gouveia N, Hajat S, and Armstrong B (2003). Socioeconomic differentials in the temperature-
mortality relationship in São Paulo, Brazil. Int. J. Epidemiol 32, 390–397. doi: 10.1093/ije/dyg077 
[PubMed: 12777425] 

Guo Y, Barnett AG, Pan X, Yu W, and Tong S (2011). The impact of temperature on mortality in 
Tianjin, China: a case-crossover design with a distributed lag nonlinear model. Environ. Health. 
Perspect 119, 1719–1725. doi: 10.1289/ehp.1103598 [PubMed: 21827978] 

Hajat S, and Kosatky T (2010). Heat-related mortality: a review and exploration of heterogeneity. J. 
Epidemiol. Community Health 64, 753–760. doi: 10.1136/jech.2009.087999 [PubMed: 19692725] 

Hajat S, Armstrong B, Baccini M, Biggeri A, Bisanti L, Russo A, et al. (2006). Impact of high 
temperatures on mortality: is there an added heat wave effect? Epidemiology 17, 632–638. doi: 
10.1097/01.ede.0000239688.70829.63 [PubMed: 17003686] 

Hajat S, Armstrong BG, Gouveia N, and Wilkinson P (2005). Mortality displacement of heat-related 
deaths: a comparison of Delhi, Sao Paulo, and London. Epidemiology 16, 613–620. doi: 
10.1097/01.ede.0000164559.41092.2a [PubMed: 16135936] 

Ha J, Shin YS, and Kim H (2011). Distributed lag effects in the relationship between temperature and 
mortality in three major cities in South Korea. Sci. Total. Environ 409, 3274–3280. doi: 10.1016/
j.scitotenv.2011.05.034 [PubMed: 21683987] 

Harville DA (1977). Maximum likelihood approaches to variance component estimation and to related 
problems. J. Am. Stat. Assoc 72, 320–338. doi: 10.1080/01621459.1977.10480998

Honda Y, Kabuto M, Ono M, and Uchiyama I (2007). Determination of optimum daily maximum 
temperature using climate data. Environ. Health. Prev. Med 12, 209–216. doi: 10.1265/
ehpm.12.209 [PubMed: 21432083] 

Intergovernmental Panel on Climate Change (IPCC). (2012). Climate Change 2007: Synthesis Report. 
Available onlie at: http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf

Kim YM, Kim S, Cheong HK, and Kim EH (2011). Comparison of temperature indexes for the impact 
assessment of heat stress on heat-related mortality. Environ. Health. Toxicol 26:e2011009. doi: 
10.5620/eht.2011.26.e2011009 [PubMed: 22125770] 

Kim YM, and Joh S (2006). A vulnerability study of the low-income elderly in the context of high 
temperature and mortality in Seoul, Korea. Sci. Total. Environ 371, 82–88. doi: 10.1016/
j.scitotenv.2006.08.014 [PubMed: 17007909] 

Knowlton K, Lynn B, Goldberg RA, Rosenzweig C, Hogrefe C, Rosenthal JK, et al. (2007). Projecting 
heat-related mortality impacts under a changing climate in the New York City region. Am. J. 
Public Health 97, 2028–2034. doi: 10.2105/AJPH.2006.102947 [PubMed: 17901433] 

Koo GS, Boo KO, and Kwon WT (2009). Projection of temperature over Korea using an MM5 
regional climate simulation. Clim. Res 40, 241–248. doi: 10.3354/cr00825

McCullagh P, and Nelder J (1989). Generalized Linear Models. London: Chapman and Hall. doi: 
10.1007/978-1-4899-3242-6

Kim et al. Page 14

Front Environ Sci. Author manuscript; available in PMC 2021 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf


Moss RH, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, et al. (2008). Towards New 
Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies: IPCC 
Expert Meeting Report. Geneva: IPCC.

Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, et al. (2010). The next 
generation of scenarios for climate change research and assessment. Nature 463, 747–756. doi: 
10.1038/nature08823 [PubMed: 20148028] 

National Institute of Environmental Research, Ministry of Environment, Korea. (2010). Korean 
Climate Change Assessment Report 2010: Technical Summary. Seoul: National Institute of 
Environmental Research, Ministry of Environment.

National Institute of Meteorological Research, Korea. (2011). Report on Climate Change Scenario for 
the Fifth IPCC Report. Available onlie at: http://www.climate.go.kr/home/cc_data/
scenario_report.pdf

O’Neill MS, and Ebi KL (2009). Temperature extremes and health: impacts of climate variability and 
change in the United States. J. Occup. Environ. Med 51, 13–25. doi: 10.1097/
JOM.0b013e318173e122 [PubMed: 19136869] 

Pattenden S, Nikiforov B, and Armstrong BG (2003). Mortality and temperature in Sofia and London. 
J. Epidemiol. Community. Health 57, 628–633. doi: 10.1136/jech.57.8.628 [PubMed: 12883072] 

Peng RD, Bobb JF, Tebaldi C, McDaniel L, Bell ML, and Dominici F (2011). Toward a quantitative 
estimate of future heat wave mortality under global climate change. Environ. Health. Perspect 119, 
701–706. doi: 10.1289/ehp.1002430 [PubMed: 21193384] 

Post ES, Grambsch A, Weaver C, Morefield P, Huang J, Leung LY, et al. (2012). Variation in estimated 
ozone-related health impacts of climate change due to modeling choices and assumptions. 
Environ. Health. Perspect 120, 1559–1564. doi: 10.1289/ehp.1104271 [PubMed: 22796531] 

Rainham DG, and Smoyer-Tomic KE (2003). The role of air pollution in the relationship between a 
heat stress index and human mortality in Toronto. Environ. Res 93, 9–19. doi: 10.1016/
S0013-9351(03)00060-4 [PubMed: 12865043] 

Ren C, Williams GM, Morawska L, Mengersen K, and Tong S (2008). Ozone modifies associations 
between temperature and cardiovascular mortality: analysis of the NMMAPS data. Occup. 
Environ. Med 65, 255–260. doi: 10.1136/oem.2007.033878 [PubMed: 17890300] 

Ren C, Williams GM, and Tong S (2006). Does particulate matter modify the association between 
temperature and cardiorespiratory diseases? Environ. Health. Perspect 114, 1690–1696. doi: 
10.1289/ehp.9266 [PubMed: 17107854] 

Rogelj J, Meinshausen M, and Knutti R (2012). Global warming under old and new scenarios using 
IPCC climate sensitivity range estimates. Nat. Clim. Chang 2, 248–253. doi: 10.1038/
nclimate1385

Schwartz J (2005). Who is sensitive to extremes of temperature? A case-only analysis. Epidemiology 
16, 67–72. doi: 10.1097/01.ede.0000147114.25957.71 [PubMed: 15613947] 

Son JY, Lee JT, Anderson GB, and Bell ML (2011). Vulnerability to temperature-related mortality in 
Seoul, Korea. Environ. Res. Lett 6:034027. doi: 10.1088/1748-9326/6/3/034027 [PubMed: 
23335945] 

Son JY, Lee JT, Anderson GB, and Bell ML (2012). The impact of heat waves on mortality in seven 
major cities in Korea. Environ. Health. Perspect 120, 566–571. doi: 10.1289/ehp.1103759 
[PubMed: 22266672] 

Statistics Korea. (2012). Estimation of Future Population by City and Province: 2010-2040. Seoul: 
Statistics Korea.

Tagaris E, Liao K, DeLucia AJ, Deck L, Amar P, and Russell AG (2009). Potential impact of climate 
change on air pollution-related human health effects. Environ. Sci. Technol 43, 4979–4988. doi: 
10.1021/es803650w [PubMed: 19673295] 

Viechtbauer W (2010). Conducting meta-analyses in R with the metaphor Package. J. Stat. Softw 36, 
1–48.

Wood SN, and Augustin NH (2002). GAMs with integrated model selection using penalized regression 
splines and applications to environmental modeling. Ecol. Model 157, 157–177. doi: 10.1016/
S0304-3800(02)00193-X

Kim et al. Page 15

Front Environ Sci. Author manuscript; available in PMC 2021 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.climate.go.kr/home/cc_data/scenario_report.pdf
http://www.climate.go.kr/home/cc_data/scenario_report.pdf


FIGURE 1 ∣. Location of six major cities in South Korea included in this study.
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FIGURE 2 ∣. Penalized regression splines for all-cause mortality on daily mean temperature for 
summer (June to September in 2001–2008).
Each figure shows the spline curve (the solid line) with a 95% confidence interval (dashed 

line); In each graph, X-axis indicates temperature (°C) and Y-axis indicates temperature-

mortality relative risk (RR); Vertical dotted lines indicate 75th percentile of temperature for 

each city.
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FIGURE 3 ∣. Heat-related mortality attributable to climate change under RCP 4.5 and RCP 8.5.
Top graph (A) presents absolute values of death count and bottom one (B) presents values of 

death count with adjustment of projected future population scale. (White square and triangle 

indicate results from “shitted” and “added” effect based on RCP 4.5 scenario and black 

square and triangle indicate results from “shitted” and “added” effect based on RCP 8.5, 

respectively; vertical bars indicate 95% confidence intervals).
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