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Abstract

Established techniques for deterministically creating dark solitons in repulsively interacting atomic 

Bose-Einstein condensates (BECs) can only access a narrow range of soliton velocities. Because 

velocity affects the stability of individual solitons and the properties of soliton-soliton interactions, 

this technical limitation has hindered experimental progress. Here we create dark solitons in highly 

anisotropic cigar-shaped BECs with arbitrary position and velocity by simultaneously engineering 

the amplitude and phase of the condensate wave function, improving upon previous techniques 

which explicitly manipulated only the condensate phase. The single dark soliton solution present 

in true one-dimensional (1D) systems corresponds to the kink soliton in anisotropic three-

dimensional systems and is joined by a host of additional dark solitons, including vortex ring and 

solitonic vortex solutions. We readily create dark solitons with speeds from zero to half the sound 

speed. The observed soliton oscillation frequency suggests that we imprinted solitonic vortices, 

which for our cigar-shaped system are the only stable solitons expected for these velocities. Our 

numerical simulations of 1D BECs show this technique to be equally effective for creating kink 

solitons when they are stable. We demonstrate the utility of this technique by deterministically 

colliding dark solitons with domain walls in two-component spinor BECs.

Localized excitations such as vortices and kink solitons in atomic Bose-Einstein condensates 

(BECs) have attracted much attention. Solitons are long-lived shape-preserving solitary 

waves typically stabilized by a balance between linear and nonlinear effects [1–5]. 

Experiments with dark solitons in repulsively interacting systems first identified different 

regimes of stability for solitons [6–8] before exploring effects including soliton interactions 

[9] and diffusion [10]. For all their success, these experiments could deterministically 

produce solitons within only a narrow range of velocities. Inspired by Ref. [11], we 

demonstrate a straightforward technique for creating dark solitons that provides full control 

over their position and velocity.

The propagation velocity of dark solitons in quasi-one-dimensional (1D) systems determines 

many of their properties; indeed, their maximum speed is bounded by the local speed of 

sound c in their host BEC. A pair of colliding dark solitons will, long after the collision, 

have unchanged shape and velocity, with the effect of interaction being only in a 

displacement in their asymptotic trajectories [12]. For sufficiently small relative velocities 
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the collision can be viewed as if the two solitons reflect from each other like equal-mass 

hard spheres [13], giving the same asymptotic velocity and shapes as if they had passed 

through each other. This is sometimes referred to as a “noninteracting” collision.

A dark soliton manifests as a moving density depletion in a BEC (we call a stationary 

density depletion a “black soliton”), whose width increases with velocity and whose depth 

decreases with velocity. Across a soliton, the underlying BEC wave function has a phase 

difference that determines its velocity. In anisotropic three-dimensional (3D) systems such 

as ours, this overall longitudinal phase drop can be accompanied by transverse structure, 

leading to a host of distinct dark solitons. The single dark soliton solution present in true 1D 

systems, for which a transverse structure is absent, corresponds to the kink soliton in 

anisotropic 3D systems. The solitonic vortex is another example of a solitonic excitation 

present in 3D systems; although its velocity-dependent longitudinal phase drop and density 

profile are qualitatively similar to those of kink solitons, as a vortex, it also has a phase 

singularity where the density vanishes. In three-dimensional traps, kink solitons are stable 

only for a range of velocities that depend on the trap geometry [1]. In regimes where kink 

solitons are unstable, solitonic vortices are stable. For our system, the kink soliton is 

predicted to be unstable except for velocities very close to c, and for almost all parameters, 

the solitonic vortex is predicted to be the only stable solitonic excitation [14].

There is no single and universally agreed upon definition of a solitonic vortex in the 

literature. One definition hinges on the fact that a vortex in a channel whose transverse size 

is much smaller than its length and has the same asymptotic phase profile as a soliton in the 

longitudinal direction [15]. While the other definition notes that when the transverse 

harmonic oscillator length becomes comparable to the healing length, the vortex density 

profile is reminiscent of a kink soliton [16]. In this paper we remain agnostic about the 

choice of definition, but our experiment corresponds to the first definition.

The established technique for producing dark solitons simply consists of laser-imprinting a 

longitudinal phase difference onto the BEC wave function. A soliton at rest typically has a 

density profile width of about 0.5 μm, while its phase profile is a step function. Imaging 

systems used to optically imprint the phase change typically have resolution limits of 1.5 μm 

or more. Furthermore, the established technique does not reduce the density in a controllable 

way at the soliton position. Instead, the optical dipole force resulting from intensity change 

at the soliton position changes the density in a way that is not generally consistent with the 

imprinted phase difference. All these features give poor overlap with the desired soliton 

wave function [6,7,10]. As a result, these experiments have only successfully produced 

solitons moving at a substantial fraction of the sound velocity. We overcome this limit by 

simultaneously engineering the BEC density and phase. This control allows us to improve 

the spatial mode-matching between the applied potential and the desired soliton wave 

function. This allows us to create solitons with speed ranging from zero to half the velocity 

of sound.

This manuscript is organized as follows: First, we summarize the essential properties of dark 

solitons in repulsively interacting 1D BECs, which still captures the essential physics for 

dark solitons in anisotropic 3D systems; second, we describe our experimental methods for 
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imprinting and detecting solitons; third, we demonstrate our protocol and explore its range 

of applicability; and lastly, we exhibit the utility of this approach by colliding a dark soliton 

with a domain wall in a two-component spinor BEC.

I. DARK SOLITONS IN REPULSIVE BECS

Bose-Einstein condensates well below their transition temperatures, i.e., with negligible 

thermal fraction, are well described by the Gross-Pitaevskii equation (GPE). Solitons are 

exact solutions of the one-dimensional GPE [17,18],

iħ ∂
∂t Ψ(z, t) = − ħ2

2m
∂2

∂z2 + U(z) + g1D Ψ(z, t)
2

Ψ(z, t), (1)

for particles of mass m, which approximately describes highly anisotropic systems where 

transverse motion is frozen out by strong confinement, leaving behind only longitudinal 

dynamics. For harmonic transverse confinement with transverse trapping frequencies ωx and 

ωy, the 1D interaction constant is g1D = 2ħa ωxωy
1/2, where a is the 3D s-wave scattering 

length. In the GPE, Ψ(z, t) is interpreted as the condensate wave function whose magnitude 

gives the local 1D atomic density n(z, t) = |Ψ(z, t)|2. An infinite homogeneous system is 

characterized by the chemical potential μ = g1Dn and has low-energy phonon excitations 

with speed of sound c = g1Dn/m [19].

A dark soliton appears as a moving depletion in the background BEC; for an infinite and 

homogeneous system a dark soliton with velocity v is exactly described by

Ψs(z, t) = n iv
c + 1 − v2

c2

× tanh 1 − v2

c2
(z − vt)

ξ exp − iμt
ħ .

(2)

The healing length ξ = ħ/mc is the typical minimum length scale on which the condensate 

wave function can appreciably change. This soliton solution can be characterized by ϕ, the 

change in the condensate phase across the soliton. The soliton velocity, characteristic density 

profile width ws, and depth ns are all derived from the phase via

v
c = cosϕ

2 , (3a)

ws
ξ = cscϕ

2 = 1
1 − v2/c2 , (3b)

ns
n = sin2ϕ

2 = 1 − v2

c2 . (3c)
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The phase change across a stationary black soliton, i.e., with zero central density, is 

therefore π. This result further shows that as the soliton velocity approaches that of sound, 

its wave function smoothly connects to the ground-state wave function.

Like most experiments with solitons, ours takes place in a highly elongated system with ωz 

≪ ωx,y, but with ωx,y < μ/ħ, requiring the 3D GPE for a proper description. The 3D GPE 

supports many solitonic solutions [14], from kink solitons—the analog to dark solitons in 

1D—to vortex rings and solitonic vortices. Reference [1] showed that with sufficient 

transverse confinement, kink solitons can be unconditionally stable in anisotropic 3D 

systems; however, our system is in a regime where only rapidly moving kink solitons with v/

c ≳ 0.9 are stable.

The most common method to create solitons writes the phase drop ϕ associated with the 

soliton wave function onto initially homogeneous BECs. In practice, this phase is imprinted 

by briefly applying an external potential V (z), for example, a step function, that changes the 

wave-function phase by ϕ = V (z)tp/ħ, where tp is the duration of the applied pulse. 

Typically, V (z) is generated by a far-detuned laser, and tp should be shorter than tc = ħ/μ, 

the time it takes an excitation moving at the speed of sound to traverse a single healing 

length, so the density remains unchanged over the pulse duration. Ideally, the imprinted 

phase would determine the initial soliton velocity; however, the phase imprinting system 

always has a finite resolution limiting the lowest possible soliton velocity. In our experiment 

c ∼ 2mm/s giving ξ ∼ 0.4 μm, so that a slowly moving soliton with velocity 0.1c will have a 

width ws ∼ 0.4 μm, which is much smaller than our resolution of 2.8 μm.1 This rightly 

suggests that a BEC following such a phase imprinting process will differ significantly from 

the desired soliton wave function.

Our improved method overcomes this limitation by first depleting the density at the desired 

soliton location with two important outcomes: (1) the imprinted phase profile can better 

match that of a soliton because decreasing the density locally increases the healing length, 

thereby increasing the soliton width ws; and (2) the density depletion is better mode matched 

to the density depletion at a soliton’s center.

II. EXPERIMENTAL SYSTEM

Our experiments begin with 87Rb BECs having N = 2.4(2) × 105 atoms2 in the |f = 1, mf = 

0〉 internal state in a time-averaged crossed optical dipole trap of wavelength λ = 1064 nm. 

One of the beams is rastered along ez, with maximum displacement of about one waist, 

painting an elongated trap with frequencies (ωx, ωy, ωz) = 2π × [94.5(6), 153(1), 9.1(1)] Hz. 

The measured (see below) longitudinal Thomas-Fermi (TF) radius of our BEC is 

RTF
z = 55(1)μm, and the chemical potential is μ = h × 1.1(1) kHz. We create arbitrary 

repulsive potentials V (z) using far blue-detuned laser light of wavelength λ = 777.6 nm, 

spatially patterned by a digital micromirror device (DMD, Texas Instruments DLP 

LightCrafter Module, DLP3000).3 The light reflected by the DMD is imaged onto the atoms 

1Defined as the distance between the central peak and the first minimum of the Airy disk.
2All uncertainties herein reflect the uncorrelated combination of single-sigma statistical and systematic uncertainties.
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(the DMD surface is focused at the BEC) using an imaging system that demagnifies (×12) 

the pattern as schematically shown in Fig. 1(a). There we illustrate the situation where the 

DMD is programmed to reflect half of the laser profile.

We engineer the local BEC density with a dimplelike potential created by programming the 

DMD to reflect the light in a stripe which, after demagnification, is about 270 μm wide 

along ey and 1.8 μm along ez, as shown in the first inset to Fig. 1(b), including the impact of 

finite resolution. We ramp the optical potential from zero to h × 0.78(4) kHz in 15 ms, 

reducing the local atomic density by about 70%. Next, the light is extinguished for td = 100 

μs, while the DMD is updated4 to display a step function, illuminating the BEC to one side 

of the dimple. The step potential is applied for a time tp up to 170 μs, which, for our 

potential of magnitude V = h × 5.5(3) kHz, results in an accumulated relative phase up to 

1.9(1) π. To avoid abrupt changes in the BEC density after phase imprinting, we reapply the 

dimple potential and ramp its magnitude to zero in 3 ms. The times to ramp the dimple up 

and down were chosen to be slow enough to be reasonably adiabatic and fast enough so that 

the soliton does not propagate very far during the ramp down. For comparison we create 

solitons without density engineering by applying the same time sequence with the dimple 

potential set to zero.

After a variable evolution time, the dipole trap potential is removed, allowing the BEC to 

expand for a 15 ms time of flight (TOF), after which time the BEC is imaged using standard 

absorption imaging [20]. A typical image of a TOF-expanded BEC with no soliton imprinted 

is shown in Fig. 1(c); each dark soliton appears as a local dip in the density as in Fig. 1(d). 

Note that because of the trap geometry, the cloud in the ey direction expands faster than in 

ez, such that the two directions have similar sizes at this particular expansion time. Because 

the BEC expands so slowly in the ez direction, our analysis of the TOF images assumes that 

the z positions in TOF correspond to the z positions in trap at the time of release.

We experimentally calibrate the phase imprinting and density engineering potential by 

adiabatically loading the BEC into the steplike potential usually used for phase imprinting 

described above. From the time-of-flight images and the Castin-Dum scaling theory of BEC 

expansion [21] we determine the difference in the mean-field energy, i.e., the local chemical 

potential μ(z) between the two sides of the steplike potential. This calibrates the step 

potential. For more details and discussion about the approximation involved, see Appendix 

A.

We measure the sound velocity in the BEC by intentionally inducing density perturbations in 

the condensate launched by abruptly turning on the dimple potential at the trap center, 

3Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure 
adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and 
Techreflected nology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the 
purpose.
4This DMD can refresh every 250 μs, which includes about 150 μs of signal and/or electronics delay and about 100 μs for the 
mechanical response of the mirrors. Therefore, we command the DMD to change 150 μs before extinguishing the dimple light, and we 
wait another 100 μs while the mirrors change mechanically before applying the phase imprinting light. We leave the phase imprinting 
light on for the desired time. We anticipate reapplying the dimple by commanding the DMD to change to the dimple configuration at 
an appropriate time sufficiently long before reapplying the dimple light. The light is turned on/off in much less than 1μs using an 
acousto-optic modulator.
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creating a pair of density waves traveling in opposite directions at the speed of sound [22]. 

We associate the average speed of these waves with a 1D speed of sound, giving c = 

1.65(5)mm/s, which is related to the 3D speed of sound by c = c3D/√2, as is appropriate for 

highly elongated 3D BECs such as ours [19]. This speed is consistent with the 3D speed of 

sound derived from the chemical potential c3D = 2.2(1)mm/s, which would imply c = 

1.58(7)mm/s.

Even our improved protocol does not result in the perfect soliton wave function, resulting in 

undesired excitations that manifest as density modulations propagating at the speed of 

sound. These reach the extremes of the BEC and dissipate in less than 100 ms. We therefore 

take our earliest data 150 ms after phase imprinting to obtain a clean background for 

tracking solitons.

III. RESULTS

Here we compare the standard phase imprinting protocol with our improved protocol for 

creating solitons. Figure 2 illustrates our main result: (a) the standard protocol can only 

create solitons with a velocity so large that they have an oscillation amplitude comparable to 

the Thomas-Fermi radius; (b) the improved protocol can create solitons with no discernible 

motion, i.e., black solitons. In this section, we quantitatively compare the ability of these two 

techniques to create solitons on demand.

We first turn to a more detailed discussion of the data presented in Fig. 2, for which the 

phase imprinted was ϕ = 1.8(1) π. Both (a) and (b) include 1D cross-sectional slices of our 

BEC after TOF as a function of time, illustrating the representative density profiles from 

which we obtain the soliton position by fitting the dip to a Gaussian function. These 

positions, for three repetitions of the experiment, are displayed by the semitransparent 

symbols in the accompanying panel and follow approximately sinusoidal trajectories. This 

raw data shows key differences between solitons created via these two protocols: the 

shallower solitons created using the standard protocol oscillate with larger amplitude, 

implying a higher peak velocity. This is consistent with our expectations that more rapidly 

moving solitons are associated with a shallower density depletion.

In Fig. 2, when fewer than three symbols are displayed, no soliton was observed in one or 

more of the trials at that time. Our data therefore indicates that fast solitons, created using 

the standard protocol, have shorter lifetimes than the stationary solitons. We suspect that this 

results in part from friction dissipation mechanisms, leading to a more rapid destabilization 

of fast-moving solitons similar to those discussed in Refs. [10,23,24]. In the latter two 

references, diffusion and damping resulted from the interaction with a dilute background of 

impurities. In the present case, the computation of the collision integral would result from 

the reflection of phonons rather than impurities.

For harmonically trapped 1D BECs, solitons follow sinusoidal trajectories described by z(t) 
= A sin(ωst + ϕ), with predicted oscillation frequency ωsol = ωz/√2, which is also valid for 

kink solitons in 3D. The factor of √2 is often described in terms of the ratio between the 

“inertial” and “physical” (or “bare”) masses of a dark soliton, η = min/mph, ωsol = ωz/√η, 
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with ηk = 2 for a kink soliton. The bare mass is related to the number of missing particles, 

and the inertial mass is related to the response to an external force. We measure an 

oscillation frequency of ωs = 2π × 3.0(1) Hz. This differs significantly from the expected 

ωz /√2 = 2π × 6.4(1) Hz for a kink soliton. Therefore, we consider the possibility that we are 

observing a solitonic vortex. The mass ratio for solitonic vortices exhibiting small-amplitude 

oscillations depends on the chemical potential and transverse trapping frequency ω⊥ [14], 

which for our case gives ηsv ≈ 9. For ηsv ≈ 9 the computed oscillation frequency is ωs ≈ 2π 
× 3 Hz, consistent with the observed frequency. Because our transverse frequencies are 

unequal, it is not a priori clear how to average them, or if averaging is suitable at all. Table I 

displays the transverse trapping frequencies and possible averages; we find both the 

geometric and arithmetic averages to be consistent with the observed soliton oscillation 

frequency.

Figure 3(a) plots the TOF soliton oscillation amplitude, obtained from a sinusoidal fit 

(except for imprinting time 160 μs, where we used the procedure described in Appendix C), 

as a function of the imprinting phase, and compares our experimental data (filled symbols) 

to results of 1D GPE simulations (solid curves, see Appendix B), which we expect to 

provide only qualitative guidance for solitonic vortices. This figure shows that the standard 

protocol (orange) creates solitons within a very narrow window of amplitudes, all 

comparable to RTF, while the improved protocol (green) can tune the oscillation amplitude 

from this large value through zero. We observe experimentally that visible solitons are not 

created for phase imprints below about π, while above 2π, multiple solitons are created. 

Figure 3 therefore focuses on phase imprinting within this interval. The velocities, extracted 

from the sinusoidal fits and normalized by our measured sound velocity, are plotted in Fig. 

3(b). This data shows that when standard phase imprinting is used (orange squares), solitons 

can only be created with velocities around 0.4c, which is consistent with previous works 

[9,25]. In contrast, when the improved method is used (green circles) we acquire almost full 

control over the soliton velocity, including the ability to generate nearly stationary solitons. 

In this case, the oscillation amplitude is AI = 0(2) μm, resulting in a peak velocity of 

0.00(4)c, which corresponds to a stationary soliton within our experimental uncertainty (see 

Appendix C).

IV. SOLITON–DOMAIN WALL COLLISIONS

We conclude with an application of our technique, deterministically colliding a dark soliton 

with a domain wall formed at the interface between the spin components of an immiscible 

binary BEC. The latter can be seen as a solitonic excitation in the sense that it is localized 

and long-lived magnetic excitation in a two-component BEC. The addition of the spin 

degree of freedom enriches the physics of solitons, both introducing new localized solitonic 

objects as well as altering the physics of dark solitons. For example, dark-bright solitons—a 

dark soliton in one component whose core is filled with the other component—have been 

created and collided [9]. This is also similar to earlier experiments creating vortices in spinor 

BECs in which the vortex core was filled with atoms in a different internal state [26].

To create a domain wall, we apply a radio frequency π pulse to our |f = 1, mf = 0〉 BEC, 

putting each atom into an equal superposition of |f = 1, mf = +1〉 and |f = 1, mf = −1〉. The 
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small, negative spin-dependent scattering length a2 in 87Rb, with a2/a ≈ −0.005 makes this 

binary mixture immiscible [27–29], leading to the formation of stable domain walls with 

size given by the spin-healing length ξs = ξ a/a2 ≈ 5μm. The BEC is held for 2s in the 

presence of a small magnetic field gradient to initialize a domain wall between the two spin 

states.5 After the soliton creation and a chosen propagation time, we perform spin-sensitive 

imaging by applying a magnetic field gradient (≈0.6 mT cm−1) during TOF so that atoms in 

different magnetic states separate before absorption imaging. Figure 4(a) we plot the 

theoretical expected local density n±1(r) of each spin component in a ground-state BEC 

containing a domain wall, where n+1(r) is displayed in red and n−1(r) is displayed in blue. In 

Fig. 4(b) we plot the magnetization mz(r) ≡ n+1(r) − n−1(r) of such a system after TOF in a 

color scale normalized by the total density nT(r) ≡ n+1(r) + n−1(r).

We create solitons on one side of the domain wall by offsetting the optical potential, 

patterned by the DMD, from the BEC center. Typical absorption images with solitons on 

either side of the domain wall are shown in Figs. 4(c) and 4(d). In Fig. 4(e) we show a 

sequence of normalized magnetization slices at different times as the solitons cross the 

domain wall. Figure 4(f) shows the soliton position averaged over three different 

experimental realizations. From these images we can see that the soliton oscillates as in Fig. 

2 and is transmitted through the domain wall with no perceptible reflection or change in its 

trajectory, suggesting that the submicrometer scale soliton travels undistorted through the 

much thicker domain wall.

Figure 5 shows that the mean soliton trajectory is essentially indistinguishable without (top) 

and with (middle) the domain wall present, even after multiples passages through the 

domain wall. Although the mean trajectories are indistinguishable, the fate of solitons differs 

greatly between these two cases. The bottom panel shows that successive soliton–domain 

wall collisions reduce the soliton’s survival probability. In the presence of the domain wall 

(purple diamonds), the soliton survival probability decays to only 10% after ≈0.7s, which is 

much lower than the survival probability for solitons created in single-component BECs 

(black squares), which is about 70% for the same time.

Our data shows that solitons are able to cross the domain wall at least two times with a high 

probability of survival, suggesting that the effects of the passage accumulate, contributing to 

subsequent decay. We fit (Fig. 5 bottom panel) the survival probability to the cumulative log-

normal distribution,

Ps(t) = 1 − 1
2erfc − ln(t/τ)

2σ , (4)

which describes systems where the probability of decay at time t depends on an 

accumulation of disrupting events. The constant τ is the characteristic time when Ps falls to 

1/2 and σ is the distribution width. In the presence of a domain wall, τdw = 0.51(1) s is 

5The gradient is not strictly necessary to initiate the domain wall, but the addition of gradient along the longitudinal direction of the 
BEC decreases the time for the system to reach equilibrium. We adiabatically apply a bias of the order of 10−4 T along the 
longitudinal direction, which due to imperfection in the alignment is enough to produce the gradient necessary to deterministically 
create the domain wall.
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significantly smaller than for the single-spin case τ = 0.86(2) s. In both cases the BEC is 

prepared with the same trap geometry and at a similar temperature so the thermodynamic 

and transverse instabilities [1] should contribute in the same way. One possible dissipation 

mechanism involves the transfer of energy from the soliton to the domain wall, with each 

interaction incrementally destabilizing the soliton. Furthermore, the lifetime difference 

might be explained by a small thermally driven contamination of the majority spin with the 

minority spin in both domains, as investigated in Refs. [10,24].

Studies with different soliton velocities, soliton sizes, and domain-wall thicknesses might 

find a regime where solitons are reflected rather than transmitted when they impact a domain 

wall.

V. OUTLOOK AND DISCUSSION

We implemented an improved method to create dark solitons in BECs with controlled 

velocity and arbitrary position, combining standard phase imprinting with density 

engineering. The observed soliton oscillation frequency along with the theoretical stability 

diagram for kink solitons [1,14] suggests that we created solitonic vortices; however, our 

direct experimental evidence is not able to resolve the expected vortex structure [30]. Our 

numerical simulations in 1D (which is valid with greater transverse frequency or lower 

chemical potential) show that this technique generates well-controlled kink solitons.

We demonstrated the utility of the improved method by studying solitons incident on a 

domain wall and found that solitons pass through the domain wall and have increased decay 

probability after crossing the domain wall a few times. Even in 1D, collisions between 

solitons and magnetic domain walls have received little attention, but we expect that they 

have much in common with soliton-soliton collisions. When, as in our experiment, the 

magnetic domain wall is large in comparison with the soliton, we would expect the soliton—

an excitation residing in density and phase—to “adiabatically” follow the slowly changing 

magnetization. This suggests that the collision will leave the soliton’s shape unchanged, but 

because atoms displaced by the soliton are of opposite spin after the soliton has traversed the 

domain wall, we expect the domain wall to shift by roughly the healing length in a direction 

opposite to the soliton propagation direction. This is similar to a “noninteracting” collision.

When the soliton and domain wall become comparable in size, the soliton can no longer be 

thought of as a pointlike particle and a number of outcomes are possible, ranging from 

noninteracting to beam-splitter-like, to perfect reflection. Further studies are needed to fully 

understand soliton behavior in the presence of a domain wall.

Our capability for creating solitons with tunable velocities, including stationary solitons, 

enables the study of many phenomena, including dissipative dynamics [23,24], soliton 

stability and decay in different trap geometries [1,14], and soliton-soliton collisions in both 

the “reflection” and “transmission” regimes [13,25]. Furthermore, high-resolution non-

destructive imaging techniques could be used to track the in situ soliton position and better 

understand their behavior [31]. Lastly, our technique could be used to study the predicted 

velocity-dependent spin structure of solitons in spin-orbit coupled BECs [32].
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APPENDIX A: CALIBRATING POTENTIALS

Our time-of-flight images give a 2D (y − z) column density distribution having been 

integrated along x. We separately integrate along z the density distributions on either side of 

the step, giving us two distributions along y. We fit these two distributions to find the two TF 

radii. We apply the Castin-Dum procedure as if the two sides were separately expanded from 

our 3D harmonic trap, ignoring the steplike potential. We believe this procedure is justified 

because the confinement, and hence the expansion, is much stronger in the transverse x, y 
directions than in the longitudinal z direction. From the in-trap TF radii we extract the 

chemical potential for each side of the step. In the spirit of the local density approximation 

we identify the difference between these two chemical potentials as the difference of the 

local chemical potential on either side of the step. According to the Thomas-Fermi 

approximation, this is the height of the external step potentials.

APPENDIX B: NUMERICAL SIMULATIONS

We simulate the standard and improved phase imprinting methods using a 1D GPE assuming 

a transverse profile of the inverted-parabola Thomas-Fermi form, with width given by the 

local chemical potential. This approach correctly produces the 3D collective mode 

frequencies when the transverse dynamics are fast, allowing the transverse wave function to 

adiabatically follow the “chemical potential” derived from the time-changing 1D density. 

This gives the 1D GPE-like equation

iħ ∂
∂t Ψ(z, t) = − ħ2

2m
∂2

∂z2 + U(z) + g1D′ Ψ(z, t) Ψ(z, t), (B1)

where g1D′ = 2ħ aωxωy
1/2, and is related to the usual g1D = a1/2g1D′ .

The time evolution of the GPE is performed through the split-step Fourier method [33] in 

steps of 0.2 μs, and the ground state is found using imaginary time propagation. We simulate 

2.6 × 105 87 Rb atoms, which for our trap frequencies leads to a chemical potential of μ = h 
× 1.1 kHz and RTF = 56.4 μm. The grid ranges from −70 to 70 μm in steps of Δz = 0.025 

μm.

We account for the finite resolution of the lens system by using potentials with smoothed 

edges, generated by removing Fourier components above the maximum optical resolution. 

The patterns used to engineer the density and step potential to imprint the phase are shown 

in Fig. 1, along with the resolution-limited intensity profile. We allow the simulated BEC to 

expand in TOF for 15 ms after the soliton oscillation time while quenching the interaction 
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strength to model the rapid Castin-Dum transverse expansion in this 1D simulation. We 

analyze numerical results in the same way as we analyze the experimental data.

The results for the numerical simulations shown in Fig. 3 were obtained using a step 

potential of magnitude Vt = h × 5.5 kHz and a dimple Vdt = h × 0.78 kHz. Both potentials 

have the same magnitude used in the experiment. We attribute the small difference between 

numerical and experimental data to our numerical 1D simulation not fully describing the 

dynamics in our 3D system.

APPENDIX C: DISTINGUISHING BETWEEN SLOWLY MOVING AND 

STATIONARY SOLITONS

Our experimentally observed soliton positions have uncorrelated shot-to-shot noise on the 

scale of a few micrometers. Because most of our solitons oscillate with amplitude much 

larger than this noise, it generally contributes minimal uncertainty to our fits. This is not the 

case for our nearly stationary solitons.

Solitons created with nonzero velocity have a characteristic oscillation frequency. In 

contrast, solitons created at rest do not oscillate but still are susceptible to displacements due 

to shot-to-shot variation, and a fitting procedure with frequency as a free parameter will 

misidentify stationary solitons as moving solitons with frequency set by the noise spectrum. 

To distinguish between these cases we implemented a Fourier spectral analysis. Because our 

signal undergoes only about three oscillations in our time window of duration T, the δω = 

2π/T transform limit makes conventional Fourier methods inapplicable.

For our spectral analysis, we fit the soliton dynamics to z(t) = A′sin ωs′t + ϕ , with the 

frequency held constant at ωs′ for each fit. The fit-amplitude A′ provides the spectral weight 

for that frequency; we then repeat the fitting procedure for different values of ωs′, ranging 

from ωs′ = 2π × 1.0 to 2π × 6.0Hz to obtain spectrograms.

Figure 6 shows the results of this technique, applied to solitons produced using our improved 

method. The top panel shows the amplitude in a color scale, while the bottom panel depicts 

the data for different applied phases displaced vertically to avoid overlapping the curves.

This figure clearly reveals the oscillation frequency at around 2π × 3 Hz for all but the 

smallest oscillation, where no motion is resolvable above the noise. For the phase imprint of 

1.8π there is no distinguishable feature at the expected oscillation frequency. From the fit we 

obtain A′ = 0(2) μm at ωs′ = 2π × 3Hz. This is the argument underlying our statement that we 

have created dark solitons with no discernible motion within our experimental uncertainties.
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FIG. 1. 
Experimental concept. (a) Far-detuned laser light illuminates the surface of a DMD, which is 

programmed to reflect the light with the desired pattern. The DMD patterns are demagnified 

and imaged onto the atoms, which are represented as the red cloud. The trap laser beams are 

not shown in this figure. (b) Time sequence used to create solitons with the DMD pattern. 

The laser power during each phase of the experiment (vertical axis) was controlled using an 

acousto-optic modulator. The insets depict the potential resulting from the DMD patterns, 

accounting for the 2.8 μm (see footnote 1) resolution of our imaging system (because of the 

finite aperture, but neglecting any aberrations). (c) Absorption image of a typical BEC after 

TOF without solitons. (d) A BEC created with similar experimental conditions including a 

soliton.
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FIG. 2. 
Oscillation of dark solitons created using a 1.8(1) π phase imprint showing: (a) the standard 

protocol and (b) the improved protocol. In both cases, the top panel plots 1D longitudinal 

slices taken through our TOF-expanded BECs as a function of soliton evolution time for a 

single realization of the experiment at each time. The bottom panels plot the resulting soliton 

positions (symbols), with three realizations of the experiment for each time. The curve in (a) 

is a sinusoidal fit to the data described in the main text. Because the data in (b) reveals a 

stationary soliton, we used the procedure described in Appendix C to plot a sinusoidal 
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oscillation with amplitude A = 0.19 μm and ωs = 2π × 3.0 Hz. Dashed lines represent the 

edges of our BECs.
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FIG. 3. 
Soliton oscillation amplitude (a) and velocity (b) for different imprinted phases. The 

imprinted phase (top axis) is related to the imprinting time (bottom axis) by our calibration 

of the DMD potential. Solid curves show the results of numerical simulations, and filled 

symbols are experimental data for the standard (orange) and improved (green) protocols.
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FIG. 4. 
Soliton crossing a domain wall. (a) Domain wall formed by atoms in different spin states. 

Absorption images of two-component BECs: (b) without a soliton present, (c) with a soliton 

in the |f = 1, mf = −1〉 component, and (d) with a soliton in the |f = 1, mf = +1〉 component. 

(e) Cross-sectional images resolving the domain wall and the soliton motion. (f) Extracted 

soliton and domain position averaged over three repetitions of the experiment.
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FIG. 5. 
Solitons oscillating in condensates including a domain wall. Position of solitons oscillating 

in a single-spin condensate (top) and a condensate with a domain wall present (center). For 

each time there are ten realization of the same experiment, and fewer points indicate that no 

soliton was observed in one or more realization. Solid curves are fits to eγ sin(ωt + ϕ), 

where γ accounts for the possibility that soliton decay is associated with change in the 

oscillation amplitude (if these were kink solitons and if the decay mechanism were to 

involve reduction in the soliton depth, this would increase the soliton velocity and hence its 
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oscillation amplitude). Dashed lines represent the edges of our BECs. The survival 

probability obtained from these ten realizations is shown in the bottom panel. Solid curves 

are the fit to the survival probability function.
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FIG. 6. 
Spectral analysis for solitons created using our improved protocol. Top panel shows in a 

color scale the amplitude for each frequency ωs′ vs the imprinted phase. Vertical red line is 

placed at the imprinted phase that creates stationary solitons. Bottom panel shows the 

individual plots with a vertical displacement to avoid overlapping the curves.
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TABLE I.

Transverse trapping frequencies ω⊥ and typical averages and the associated solitonic vortex mass ratio.

Expression ω⊥ Value ηsv ≈

ωx 2π × 94.5(6) Hz 13

ωxωy 2π × 120.2(5) Hz 9

(ωx + ωy)/2 2π × 123.8(6) Hz 9

ωy 2π × 153(1) Hz 7
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