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Abstract

Excess nitrate in drinking water is a human health concern, especially for young children. Public 

drinking water systems in violation of the 10 mg nitrate-N/L maximum contaminant level (MCL) 

must be reported in EPA’s Safe Drinking Water Information System (SDWIS). We used SDWIS 

data with random forest modeling to examine the drivers of nitrate violations across the 

conterminous U.S. and to predict where public water systems are at risk of exceeding the nitrate 

MCL. As explanatory variables, we used land cover, nitrogen input, soil/hydrogeology, and 

climate variables. While we looked at the role of nitrate treatment in separate analyses, we did not 

include treatment as a factor in the final models, due to incomplete information in SDWIS. For 

groundwater (GW) systems, a classification model correctly classified 79% of catchments in 

violation and a regression model explained 43% of the variation in nitrate concentrations above the 

MCL. The most important variables in the GW classification model were % cropland, agricultural 

drainage, irrigation-to-precipitation ratio, nitrogen surplus, and surplus precipitation. Regions 

predicted to have risk for nitrate violations in GW were the Central California Valley, parts of 

Washington, Idaho, the Great Plains, Piedmont of Pennsylvania and Coastal Plains of Delaware, 

and regions of Wisconsin, Iowa, and Minnesota. For surface water (SW) systems, a classification 

model correctly classified 90% of catchments and a regression model explained 52% of the 

variation in nitrate concentration. The variables most important for the SW classification model 

were largely hydroclimatic variables including surplus precipitation, irrigation-to-precipitation 

ratio, and % shrubland. Areas at greatest risk for SW nitrate violations were generally in the non-

mountainous west and southwest. Identifying the areas with possible risk for future violations and 

potential drivers of nitrate violations across U.S. can inform decisions on how source water 

protection and other management options could best protect drinking water.
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3 Introduction

For more than two decades, nitrate has been one of the top three contaminants in public 

drinking water supplies that exceed the National Primary Drinking Water Regulation 

enforceable maximum contaminant level (MCL).1 The U.S. federally regulated MCL for 

nitrate-N is 10 mg/L for Community Watery Systems (CWS) based on risk to infants below 

six months who could develop blue baby syndrome if they drink water containing nitrate in 

excess of the MCL.2–3 Some non-community water systems have an MCL of 20 mg-N/L 

when approved by the state.4 Any public water system (PWS) that has levels above the MCL 

is considered in violation and is obligated to become compliant.5

Nitrate source contributions to waters vary depending on location. The largest contributor to 

landscape N inputs for the entire conterminous U.S. (CONUS) is through agricultural 

activities, including synthetic fertilizer application,6–10 land application of manures from 

concentrated animal feeding operations (CAFOs), and crop biological N fixation.9 Other 

known drivers of nitrate in surface waters and groundwater include atmospheric deposition,
11 wastewater treatment plants,12 leaking or poorly managed septic systems,13 urban runoff,
14 animal waste,9 and agricultural runoff after rain events.15–16 GW nitrate contamination 

can be especially high in areas with well-drained soils and in places where GW wells are 

shallow or unconfined.17–19 Previous studies show that these factors contribute to both 

elevated GW and SW20 nitrate levels and may also influence nitrate MCL violations.

Almost every state across the CONUS has reported a drinking water nitrate MCL violation 

sometime between 1978 and 2016.1 But some states, ecological regions, and certain 

geological areas or land-use types21 have much greater rates of drinking water violations 

than others. The at risk areas include the Central California Valley, parts of the Great Plains 

from west central Texas to eastern Nebraska, the Piedmont of Pennsylvania, Coastal Plains 

of Delaware and adjacent areas of the Piedmont and Coastal Plains extending to southern 

New Hampshire, and the dairy region of much of central and southern Wisconsin, 

northeastern Iowa, and parts of central Minnesota.1, 21–23 While a national scale model has 

been developed for predicting nitrate concentrations in private drinking water wells,22 there 

have been no models developed for predicting public drinking water nitrate concentrations 

or violations. It is also not known if spatial patterns in nitrate violations are associated with 

specific anthropogenic or natural drivers. A national-scale model could help to prioritize 

resources for management and prevention of violations in public drinking water systems.

Many factors may lead to drinking water nitrate violations. Thus, it is advantageous to use a 

modeling framework that can incorporate many variables and does not require homogeneous 

or linear datasets when attempting to identify unique geospatial patterns for nitrate 

violations. Random Forest (RF) models are such an approach and could prove useful for this 

type of large-scale, multivariate analysis. The RF modeling approach uses many decision 

trees (a forest) for predicting either discrete classes or continuous variables. Each tree is a 

subset of the entire dataset and predictions are made by averaging over the trees.24 RF 

models have a history of use in ecological and water quality studies for spatial predictions.
25–26 However, few studies have applied RF at a national scale.27–28 RF models have been 
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used to predict nitrate concentrations at less than national scales, such as the Central 

California Valley29 or the state of Iowa.26 This work builds on these previous studies, but is 

the first to utilize a model based on data for public drinking water supplies at a national 

scale.

The objectives of this research were to predict the risk of drinking water nitrate violations 

across the CONUS and to determine which drivers are most important, using RF modeling. 

Nitrate violations data from EPA’s Safe Drinking Water Information System (SDWIS).30 are 

used as response variables and land cover, climate, soil/hydrogeology, and socio-economic 

data are used as predictor variables in the models. Specifically, we assessed violation risk for 

areas with 1) PWS that have not yet reported a violation, 2) new or planned PWS, or 3) 

private groundwater wells, in areas without PWS.

Due to incomplete or insufficient information on PWS engineering factors, such as the 

presence of advanced nitrate treatment or actions that water operators take in order to meet 

the MCL (e.g., blending of water or switching water sources), our analysis focuses on 

environmental drivers, rather than the engineering impacts on nitrate violations. Also, a 

relatively small percentage of catchments with PWS had reported nitrate treatment 

technologies (22% of GW and 7.6% of SW catchments with PWS, and the reporting was not 

consistent for each state, see Figure S1), making the use of treatment at a national scale 

potentially unreliable. However, we did include nitrate treatment as a predictor variable in 

separate SW and GW models, to assess the potential role of treatment. It should be noted 

that without treatment or PWS operation information, the national models will tell only part 

of the story (the influence of environmental or other factors the effect source waters) because 

nitrate treatment is known to reduce violation rates when incoming source water is higher 

than the MCL,31 and thus likely plays an important role in regulating nitrate violation rates. 

Consequently, when interpreting the models, the inability to use treatment or other 

engineering factors in the final models may mean either: 1) the model may be more likely to 

produce false positives, predicting high violation risk, due to the presence of environmental 

drivers like agricultural land with greater nitrogen inputs, in areas where observed violation 

rates are low due to treatment or the ability of systems to switch and/or dilute the source 

water, or 2) the models may produce false negatives, predicting low risk in areas even with 

high nitrogen inputs, due to treatment reducing observed violations. The first possibility 

would train models to associate high nitrate violation risk with agricultural lands (higher N 

inputs), while the second possibility would train the models to associate agricultural lands 

with low nitrate violation risk. The latter is hypothesized to be less likely, assuming the use 

of nitrate treatment is proportionally less than the prevalence of land use with high N inputs 

at a national scale.

Based on the literature,8, 22, 26 we hypothesized that the following environmental variables 

would be most important in predicting GW nitrate violations: percent cropland, amount of N 

inputs, soil permeability, and water table depth. For SW nitrate violations, we expected 

precipitation and N inputs to be most important, based on evidence that runoff from 

croplands can increase SW violations.1, 16, 32 Given that the models in this analysis do not 

incorporate information on treatment or managment actions, the goal of this analysis is not 

to predict which systems are or should be in violation or not, but rather to create models that 
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can be used as risk assessment tools, to predict areas most at risk for having drinking water 

nitrate violations, based on natural and anthropogenic landscape factors. Because the models 

are at a national scale, they can be used as a first cut screening tool for identifying areas at 

risk, before focusing in with more specific and costly tools.

4 Methods

4.1 Preprocessing and Data Validation

The EPA has set a maximum contaminant level (MCL) for nitrate/nitrite-N as 10 mg/L. 

Approximately 16% of drinking water systems measure nitrate+nitrite and the others 

measure only nitrate. We included violations for either nitrate or nitrate+nitrate and 

henceforth, nitrate violations refer to either nitrate or nitrate+nitrite violations. Systems in 

violation of the nitrate MCL must be reported in the EPA’s Safe Drinking Water Information 

System (SDWIS). We downloaded data on all PWS which have exceeded the nitrate MCL 

from EPA’s SDWIS database.30 SDWIS only lists the PWS and their concentrations when 

they exceed a contaminant MCL. A violation is determined based on whether the average of 

the original and confirmation sample exceeds the MCL. Note that violations are based on 

“finished” water ready to be distributed, not raw water. We included violations from all PWS 

types: community water systems (CWS), transient non-CWS, and non-transient non-CWS. 

We imported data into the R statistical program33 for preprocessing, following methods of 

Pennino, et al. 1 In brief, we filtered the data to only keep MCL violations data for nitrate 

and nitrate+nitrite and only states in the CONUS, as most of the predictor variables are 

limited to those states. We then determined the number of quarters per year a PWS violated 

the nitrate MCL. We limited our analysis to nitrate violations between 2013 and 2017, 

because inventory data on the number of active systems was only available for those years, 

at the time of this analysis.

Each PWS is made up of one or more facilities (i.e., well(s), treatment plant(s), etc.) and we 

used the location(s) of each facility to associate a PWS with one or more of the 2.6 million 

National Hydrography Dataset Plus Version 2 (NHDPlusV2, hereafter referred as NHD)34 

catchments in the CONUS. It should be noted that catchments are not synonymous with true 

watersheds within which all surface and/or ground water drains to a particular point. They 

comprise both true watersheds (i.e., headwater catchments) and portions of watersheds but 

provide a useful framework of polygons to assess associations among spatial characteristics 

and water quality.35 Details on how we filtered out facilities and associated catchments with 

PWS are found in supporting information.

Of the 2.6 million catchments, 57,096 catchments are associated with 117,450 GW PWS and 

4,692 catchments are associated with 5,741 SW PWS (Figures 1a–b, S2–S6). Between 2013 

and 2017, 748 or 1.3% of the 57,096 GW system catchments had nitrate violations (Figures 

1a, S6) and 62 or 1.3% of the 4,692 SW system catchments had nitrate violations (Figures 

1b, S6). Note that, 0.8% of all active PWS and 10% of the SW PWS in violation used for the 

model are designated as GW systems under direct influence of SW (GWUDI).
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4.2 Model Development

4.2.1 Model Response Variables—The model response variables were based on 

nitrate health-based MCL violations data from SDWIS, between 2013 and 2017. For the RF 

classification approach, a binary response variable was used, i.e., whether the catchment had 

a violation or not. For the regression approach, a continuous response variable was used, 

which either was the mean violation concentration above the MCL (mg/L) or the percent of 

systems in violation per catchment. SDWIS only provides concentration data for PWS that 

are in violation (≥10 mg N/L).

We calculated the average nitrate concentration above the nitrate MCL, between 2013 and 

2017, for each catchment by selecting all violations with a concentration (72.5% of all 

violations reported the concentration above the MCL) and removing outlying concentrations 

(two GW systems with concentrations listed above 48,000 mg nitrate-N/L, with the 

remaining concentrations ≤362 mg nitrate-N/L). Some catchments that had one or more 

PWS in violation also contained PWS without violations; in such cases, we assigned a value 

of 5 mg nitrate-N/L (half of the MCL) to each system without violations. This was the case 

for only 14 of the 748 catchments with GW systems in violation and none of the 62 

catchments with SW systems in violation. To calculate the percent of systems in violation 

per catchment we took the 2013-2017 average of the number of systems in the catchment 

with a violation per year divided by the average number of active systems in that catchment 

each year.

4.2.2 Model Predictor Variables—Information on the violations were paired with 

StreamCat36 landscape variables associated with each catchment. EPA’s StreamCat database 

contains landscape metric information for all 2.6 million NHD catchments and watersheds 

(upstream drainage area for a particular catchment) in the CONUS, including data from the 

national land cover database (NLCD), census population density, nitrogen inputs, soil 

characteristics, and hydrologic characteristics. StreamCat data have previously been used for 

making spatial predictions, such as for biotic condition or phosphorus concentrations, across 

the CONUS.24, 28, 37–39 Approximately 210 of the StreamCat variables which were expected 

to influence N in drinking water sources, based on literature and authors’ judgement, were 

included in our analysis (Table S1).

We also calculated additional variables not previously included in StreamCat, but are now 

included (Table S2); these variables include: percent of agricultural land with artificial 

drainage (i.e., tile drainage), average hillslope, surplus precipitation (precipitation minus 

potential evapotranspiration), nitrogen surplus10, 40 (total nitrogen inputs minus nitrogen 

outputs from crop removal), net anthropogenic nitrogen inputs (NANI),41–42 percent of 

systems with nitrate treatment technologies, and several Census variables (race, income, and 

education level per catchment). Note that information on treatment for nitrate removal is not 

complete within SDWIS; also, due to costs, nitrate treatment is not implemented by all 

PWS. Consequently, treatment was not used in the final models, but used as a supplemental 

comparison. For our treatment analysis, nitrate treatment was defined as any systems that 

used reverse osmosis, ion exchange, electrodialysis, or distillation. Also, note that PWS 

consist of both consecutive (systems that purchase water from other systems) and non-
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consecutive (systems that obtain their own water) systems and this analysis does not 

distinguish between these types. That should not impact the analysis much because 

consecutive systems only make up 3-4% of GW or SW violations.

All additional variables, except Census, treatment, and PWS type, were summarized for each 

catchment and watershed using the same accumulation and zonal statistics approach as used 

for the StreamCat variables and have subsequently been added to StreamCat. The supporting 

information provides further details on the methods for how these variables were calculated. 

When reporting the results, we placed all variables into one of five different categories: 

nitrogen inputs (i.e., fertilizer), N Deposition, human land use characteristics (e.g., % 

cropland), climate/hydrology (e.g., precipitation), natural watershed/geologic factors (e.g., 

slope, aquifer type) and socio-economic factors (e.g., Census) (Tables 1S & 2S). Note that 

precipitation during this period was between two and 13 cm above the average for the last 

100 years, with 2015 being the wettest year.43

4.2.3 Random Forest (RF) Modeling—RF models44 were used to spatially predict the 

risk of drinking water nitrate levels exceeding the 10 mg N/L MCL and to determine what 

landscape, geologic, climate, etc. factors best explained the spatial patterns. We modeled 

GW and SW system violations separately, as the potential causes for the source water 

violations may differ. RF models use an ensemble or “forest” of many classification trees.44 

We chose to use a RF model because they are non-parametric and are known to work well 

for non-linear datasets,24, 27–28 can handle large numbers of predictor variables that may be 

correlated, and are insensitive to overfitting.28–29

Because of the ability of RF models to handle multiple variables collinear in space,25 we 

were able to keep all variables in the initial models and for the final models only kept the 

most important variables that provided the most accuracy (while still potentially keeping 

collinear variables if model accuracy was improved). The RF model is able to keep collinear 

variables because each tree is made from only a portion of the predictor variables and thus 

the variable importance is based on trees made of different variables (see supporting 

information for more details).25 Also, a previous study showed that RF performs better when 

multiple correlated variables are kept in the model than when variable selection methods are 

used.24 The top 10 variables are reported in this paper and all other variables in the final 

models are reported in supplemental tables. Additionally, a Pearson’s correlation matrix was 

created for the top 10 variables in each model (Tables S3–S5).

We used the “randomForest” R package45 to implement RF classification and regression 

models on our data. Details on the mechanics of the RF model can be found in the 

supporting information. In this analysis we use RF classification to classify a binary 

response variable (violations or no violations) and we use RF regression to model the 

following continuous response variables: mean violation concentration per catchment and 

percent of PWS in violation per catchment. Our approach was to first use the RF 

classification model, using catchments with (748 GW or 62 SW) and without (56,348 GW 

and 4,630 SW) verified violations, to predict which catchments are in violation. Then, for 

those catchments predicted to be in violation, we applied the RF regression model to predict 

the continuous responses (i.e., mean violation concentration or percent PWS in violation). 
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This was done to avoid the difficulty of modeling the continuous predictor variables with a 

highly zero-inflated dataset, and to model only catchments already predicted to be in 

violation and not extrapolate to catchments without violations when using the RF regression 

models. Our approach to deal with zero-inflated data in the classification models is 

described further in the next section. The same set of candidate predictors was used for both 

the RF classification and RF regression models, even though final predictors varied.

The RF classification models were used to extrapolate the probability of a violation to all 2.6 

million CONUS catchments using the landscape predictors. Note that the catchments to 

which these predictions are applied may or may not contain PWS (only 93,359 of 2.6 

million have a PWS). A catchment is classified as at risk of violating the nitrate standard if 

the probability of violation exceeds 50%. The maps derived based on the RF classification 

models can be interpreted as predicting whether a catchment is expected to be at risk for 

three different conditions: 1) catchments that currently contain at least one PWS, 2) if a 

PWS were added to a catchment without a PWS, or 3) catchments with private groundwater 

wells and no PWS, assuming these respond to GW and/or SW conditions similarly to one or 

more PWS. The maps based on the RF regression models (based only on catchments with 

violations) represent the predicted concentrations or % of PWS in violation for the 

catchments previously predicted to be in violation from the RF classification model.

4.2.4 Addressing Imbalanced Data—Due to the highly imbalanced dataset (where 

catchments with violations are underrepresented statistically, with ~99% of the catchments 

without violations), we employed two methods to validate the model and ensure it was 

accurate when applied to both balanced and unbalanced datasets. Method One reports results 

for the standard 10-fold cross validation technique45 and Method Two reports results based 

on a holdout dataset (a subset of the full dataset that is not used to build the model, but used 

when testing the model). For both methods, the first step was to pre-balance the dataset 

using approaches similar to those of Anand, et al. 46 and Dal Pozzolo, et al. 47 Specifically, 

prior to training the models, we randomly under sampled the majority class (catchments 

with zero violations) so that we ran each RF classification model with an equal number 

(N=748 for GW and 62 for SW) of catchments with and without violations. This randomized 

pre-balancing was done 10 separate times for each of the 10-fold cross validations.

For Method One, after the pre-balance step, we performed 10-fold cross validations with 

training and test datasets. Even though the RF algorithm can calculate error rates using out-

of-bag data (data automatically held out when training the RF model),28, 45 we chose to use 

cross validation to facilitate comparison with other models in the literature. For the 10-fold 

cross validation, the RF model was run 10 times, each on a different 90% portion of the 

dataset, while the remaining 10% of the data was used as a test dataset, ensuring all samples 

were systematically included as training and test sets separately. The 10 different models 

created with the training sets were then used to make predictions on their 10 corresponding 

test sets, and the model results were averaged.

For Method Two, we created a holdout (independent) dataset with 20% of the original 

samples, representing the original unbalanced dataset, similar to previous studies.24, 29 

These data were not used in training the model, but used as a means to validate the ability of 
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the trained models to predict on an unbalanced dataset. With the remaining 80% of the 

original data, we first did the pre-balancing of the dataset and performed 10-fold cross 

validations with the 90/10 training and test datasets, as described above for Method one. 

Then the 10 different models were each used to make predictions on the holdout dataset.

4.2.5 Model Validation, Error Estimation, and Bias Correction—To assess the 

performance of the RF classification model, we calculated the percentage of correctly 

classified (PCC) catchments as having violations or no violations, the percentage of 

catchments with violations correctly classified (sensitivity), and the percentage of 

catchments without violations correctly classified (specificity).25 Another performance 

metric, called area under the receiver operating characteristic curve(AUC), was also used.48 

We also calculated the Gmean metric (square root of (sensitivity × specificity)) because it 

can be a useful performance measure for unbalanced datasets.46–47 Additionally, when 

applying each trained model on each 10% test or 20% holdout dataset, we applied a bias 

correction calculation to correct for this undersampling in the RF classification model, using 

equation nine from Dal Pozzolo, et al. 47:

p′ =
β ∗ ps

β ∗ ps − ps + 1

Where p′ = bias corrected probability, ps = predicted probability, β = ratio of number of 

samples in the positive class to the number of samples in negative class.

The accuracy of the RF regression models was assessed by calculating the R2, root mean 

squared error (RMSE), and model bias.49 These accuracy measures were calculated for all 

10-fold cross validations estimates and holdout datasets and then averaged. RMSE is 

calculated as the square root of the squared difference between model predictions and 

sample observations. The model bias is calculated as the sum of the model predictions minus 

the sum of the sample observations, divided by the number of samples.

Once the prediction accuracy was optimized for the RF classification and regression models, 

a final model was run on 10 pre-balanced datasets and then these 10 models were used to 

make predictions on the original full, unbalanced dataset. Final models were based on 

ranking the most important variables and then selecting the top predictor variables which 

provided the highest Gmean for RF classification or R2 values for RF regression models.

Maps of the classification errors or residuals were produced for each model. For the 

classification models, the prediction class error was calculated to show which of the 

catchments were correctly classified as true positive (catchments with violations that were 

classified correctly), correctly classified as true negative (catchments without violations 

classified correctly), classified as false positive (catchments without violations that were 

classified incorrectly), or classified as false negative (catchments with violations that were 

classified incorrectly). For the concentration and percent in violation regression models, the 

residuals were calculated as the predicted values minus the observed values. As a result, 

these maps will indicate which of the observed violations were correctly or incorrectly 

classified or how close the regression models came to the actual observed concentrations or 
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% in violation values. Note that these maps are risk assessment tools to predict areas most at 

risk of having drinking water nitrate violations; they only incorporate environmental 

variables and are not based on nitrate treatment or system management practices.

4.2.6 Variable Importance and Partial Dependence Plots—The final RF models, 

applied to the full dataset, were used to determine the relative importance of each predictor 

variable. For RF classification models, variable importance is calculated as mean decrease in 

model accuracy for each variable, and for the RF regression models, variable importance is 

calculated based on the increase in mean squared error (MSE).27 Both measures are 

calculated and then plotted using the “out-of-bag” data, based on average changes in model 

accuracy or MSE with and without the variable of interest.45, 50 For the top predictor 

variables, partial dependence plots were used to determine the direction and magnitude of 

the relationship between response and predictor variables.

4.3 Model Comparison

We compared our SW and GW models predictions to other studies that predicted SW or GW 

concentrations. In order to show how well our model can make predictions to catchments 

without PWS, but possibly with private wells, we compared our GW concentration model 

with the Nolan and Hitt 22 Ground-Water Vulnerability Assessment for Drinking Water 

(GWAVA-DW) model, which was based on private drinking water wells. To do this, we 

summarized the GWAVA-DW model predictions for groundwater nitrate concentrations in 

private drinking water wells to the catchment scale and categorized areas as being in 

violation if the concentrations exceeded the 10 mg nitrate-N/L MCL. Similarly, we 

compared our model’s predicted SW violations to the SW concentration data used by 

Bellmore, et al. 20, based on the U.S. Environmental Protection Agency’s (EPA) National 

Rivers and Streams Assessment (NRSA) concentration data, collected in 2008–2009. This 

comparison utilized observed (not modeled) concentration data associated with 1966 NHD 

stream catchments.

4.4 Separate Model Analyses

While the final RF models did not include nitrate treatment as a predictor variable, we also 

created RF models using the same above methods, but with nitrate treatment included as an 

additional predictor variable. This analysis helped assess the potential role of treatment by 

ranking the importance of treatment with other variables and assessing the partial 

dependence of treatment with violations. Nitrate treatment was calculated for each 

catchment as the proportion of systems in each catchment having nitrate treatment. 

Similarly, we analyzed the impact of PWS type, and PWS population served in separate 

models. These last two variables were also not included in the final models because not all 

PWS have this information available, reducing sample size significantly.

5. Results

5.1 Random Forest Classification

Overall, both the GW and SW RF classification models showed a relatively high percent of 

catchments correctly classified across the CONUS, with similar classification rates for the 
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percent of sites with and without violations correctly classified (indicating balanced models). 

The RF classification model for GW systems yielded a PCC of 78.7%, a sensitivity of 75.8% 

(for sites with violations), and specificity of 81.5% (for sites without violations), based on 

the 10-fold cross-validation test datasets (Table 1). On the unbalanced holdout dataset, the 

RF GW model obtained a 77.9% PCC, 78.3% sensitivity, and 77.9% specificity (Table 1). 

The RF classification model for SW systems yielded a PCC of 90.3%, 91.9% sensitivity, and 

88.6% specificity for the test datasets. For the unbalanced holdout dataset, the SW model 

obtained a PCC of 85.7%, a sensitivity of 83.6%, and a specificity of 85.7% (Table 1). An 

80% PCC means that the model is able to correctly predict catchments 80% of the time, 

while incorrectly calculating whether a catchment is likely to have a violation 20% of the 

time. The similar classification rates between the sensitivity and specificity indicates a 

balanced model that can predict catchments with or without violations, respectively, equally 

well. The high and similar classification rate for the unbalanced holdout datasets helps 

support that the model can do well even when the data is unbalanced (zero inflated), 

indicating little bias. The SW model performed a little better than the GW model, possibly 

due to the smaller sample size, with fewer sites to misclassify.

The GW classification model shows a high predicted probability (>0.5) of potential 

violations in the following regions: 1) The Central California Valley; 2) The Columbia 

Plateau in Washington; 3) The Snake River Plain in Idaho; 4) The Southern Great Plains 

from west central Texas to southern Nebraska; 5) Parts of the Northern Great Plains from 

northern Montana to western North Dakota; 6) Scattered parts of the Upper Midwest 

centered on the dairy region of much of central and southern Wisconsin, northeastern Iowa, 

and parts of central Minnesota (1978 and 2012 Census of Agriculture)21, 23, 51–52; and 7) 

The Piedmont and Coastal Plain of Delaware (Figure 1c). The SW classification model, 

while also highlighting the Central California Valley as a region at risk of violations, shows 

the other major regions at risk to be the Southern Great Plains from the U.S./Mexico border 

to western Kansas and eastern Colorado, and the mostly semi-arid to desert regions of the 

Madrean Archipelago in Arizona, Sonoran Basin and Range, and Southern California/

Northern Baja Coast (Figure 1d).

Of the 2.6 million catchments, 475,890 (19.1 %) are predicted to be at risk of violation for 

GW systems. We defined risk as a >50% probability of violation. Of the 88,083 catchments 

with GW PWS, 12,869 or 14.6% have a high risk (>50%) of being in violation. Most 

catchments (463,021 or 97.3%) predicted to be in violation do not have groundwater PWS 

currently, though they may have private wells or be potential locations for installing future 

PWS, due to their current absence of PWS (Figure 1e). Similarly, 390,100 (15.7%) of all 

catchments are predicted to have a high risk for SW violations and most of these catchments 

(389,453) do not have surface PWS. On the other hand, 647 (9.3%) of the 6,934 catchments 

with SW PWS do have high risk of being in violation (Figure 1f).

The proportion of catchments predicted to be in violation for GW (i.e.,14.6%) and SW (i.e., 

9.3%) systems is much higher than the observed proportion of systems in violation for GW 

(0.8%) and SW (0.4%). Regions where the classification models overpredicted (false 

positives) were mostly in the western states for both models and upper Midwest and Mid-

Atlantic for the GW model (Figure 2a,b). These false positive predictions for the final model 
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are due to the model having a specificity (percent of non-violators correctly classified) at 

78.8% for GW and 85.4% for SW, indicating that 22.2% and 14.6% of GW and SW 

catchments, respectively (100 minus specificity) were classified as violators when they were 

not (Table 1). Depending on the required application of the model, having false positives is a 

conservative way of seeking which locations are at risk. Also, this model could be 

considered a screening tool to use for first finding regions with the highest risk and then 

users of the model could zoom in further with more local scale models to look in depth for 

distinguishing which locations are at highest risk. It also may be that regions with false 

positives are due to the presence of nitrate treatment technologies helping to reduce the 

violation rate in the presence of environmental factors that create high risk. The most 

important categories of predictor variables for GW violations were land use, followed by 

climate/hydrology, and then N inputs, while for SW violations they were climate/hydrology, 

then land use, and N input variables (Figure 3, Table S6). Based on variable importance 

rankings and partial dependence plots for the top 10 predictor variables in the RF 

classification model, the likelihood of a catchment having a GW system in violation 

increases with % cropland, irrigation-to-precipitation ratio, N surplus, and pesticide use, but 

decreases with agricultural drainage, surplus precipitation, and mean precipitation (Figures 

3a, 4). For SW systems, catchments are more likely to have systems in violation with a 

greater % shrubland, pesticide use (associated with agriculture), intermediate levels of 

fertilizer use, irrigation-to-precipitation ratio, and canal/ditch/pipeline density, but are less 

likely with increased surplus precipitation and mean precipitation (Figures 3b, 5).

Many of these important variables show inflection points where a small change in the 

variable results in a rapid increase in N violations. For example, there is a rapid increase in 

GW violations when irrigation-to-precipitation ratio goes from 0 to >1, N surplus gets above 

7,500 kg N/km2/yr, or >30% cropland, pesticide use is >100 kg/km2, or if surplus 

precipitation <0 mm (Figure 4). There are greater SW violations if surplus precipitation is < 

−25 mm, irrigation-to-precipitation ratio >1 and <50, pesticide use >10 kg/km2, mean 

precipitation <750 mm, and % shrub/scrubland >25% (Figure 5).

While not included in the final model, three attributes for each PWS in SDWIS (PWS Type, 

Treatment, and System Size) were used as predictor variables in separate models to 

determine their effect on nitrate violations. When nitrate treatment was included as a 

predictor variable in the RF models, treatment was found to not be important for predicting 

SW violations, but partial dependence plots show that violations decreased with increasing 

% of PWS, specifying nitrate reduction as a treatment (Figure S7a). For GW systems, 

treatment was found to be within the top 5 important variables in the RF model, but 

violations increased with greater % of PWS having treatment technology for nitrate (Figure 

S7b). For SW systems, violations decreased as the size of the population served by the 

system increased and had higher violation probability with transient non-CWS (Figure 

S7c,e). GW systems had similar patterns with population served, and was lowest for 

community water systems (CWS) and highest for transient non-community water systems, 

despite the higher 20 mg/L alternative MCL for some non-community water systems4 

(Figure S7d,f).
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5.2 Random Forest Regression Model

The RF regression models can explain 43% and 52% of the variation in mean nitrate 

concentration per catchment for GW and SW PWS, respectively, based on cross-validation 

test datasets. When applied to the unbalanced holdout dataset the model explained 35% and 

99% of the variation in GW and SW violation concentrations, respectively (Table 2, Figure 

S8a,b). Potential sources of variability in the data not explained by the model could be due 

to the concentration data being limited to values above 10 mg-N/L and to the lack of 

information on nitrate treatment or system operation, as described elsewhere. The RF 

regression models explained 28% and 21% of the variation in the percent of GW and SW 

PWS in violations per catchment, respectively, based on cross validation test datasets, and 

17% and 40% of the variation in percent GW and SW violations, respectively, for the 

holdout dataset (Table 2, Figure S8c,d).

Based on the RF concentration model for GW systems, the region with the highest predicted 

nitrate concentrations is the southern California Valley. Other regions with relatively high 

predicted nitrate concentrations are the remainder of the California Valley, the Southern 

California/Northern Baja Coast, the Sand Hills of Nebraska, the southern Edwards Plateau 

of Texas and some adjacent semi-arid areas to the south and west, and a portion of the 

Western Loess Hills and Plains of western Iowa (Figure 6a). The RF regression SW model 

for nitrate concentration predicted the highest values in the Central California Valley as well 

as relatively high concentrations in the Basin and Range ecoregions from western Arizona to 

northern Nevada, the Snake River Plain in Idaho, and the Columbia Plateau in Washington 

(Figure 6b). Regions where the models overpredicted (false positives) the nitrate 

concentrations were mostly in the Great Plains, semi-arid to arid western states, scattered 

areas in the Upper Midwest, and a region centered on southeastern Pennsylvania and the 

Delmarva peninsula for the GW model and in the semiarid to arid parts of the western U.S. 

for the SW model (Figure 2c,d).

Unlike the RF regression model for violation concentration, the RF regression model for 

percent of GW PWS in violation of the nitrate MCL showed higher values in parts of the 

Great Plains, over the southern two-thirds of the Ogallala aquifer and adjacent areas to the 

east and south, including much of the Southern Texas Plains, Edwards Plateau, and 

Chihuahuan Deserts, as well as parts of the northern Great Plains of North and South Dakota 

and western Montana (Figure 6c). For percent of SW PWS in violation, the highest values 

were in the Southern Great Plains from northcentral Texas to southwestern Kansas and 

southeastern Colorado, much of which is over the southern part of the Ogallala aquifer 

(Figure 6d). Regions where the GW and SW % in violation models overpredicted nitrate 

violations (false positives) were scattered but mostly concentrated in the southern Great 

Plains (Figure 2e,f). The RF regression models show that the observed to predicted 

relationship has smaller variance around the 1:1 line for SW but is larger for GW nitrate 

concentrations and % in violation. Also, the slope is closer to the 1:1 line for SW than for 

the GW models (Figure S8).

For the GW model, nitrate concentration increased with surface geology iron oxide content, 

stream reach slope, mean temperature, maximum temperature, road-stream crossings, and 

Net Anthropogenic Nitrogen Inputs (NANI), while wetness index, surplus precipitation, and 
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mean depth to bedrock, were negatively related to concentration, and hillslope was 

negatively related at low slopes, then positively related at higher slopes (Figures 3c, S9, 

Table S6). For the SW concentration model, pesticide use, N fertilizer application rate, N 

surplus, and SW withdrawals in agricultural land had a positive relationship, while 

atmospheric wet deposition from sulfur and nitrogen, ammonium, inorganic N, nitrate, 

surplus precipitation, and road density had a negative relationship (Figures 3d, S10, Table 

S6).

For the GW model, % in violation decreased at low levels, then increased at higher levels of 

housing density in the catchment and watershed, population density in catchment and 

watershed, surplus precipitation in the catchment, and density of septic systems, but 

decreased with base flow index within catchment, catchment area, base flow index within 

watershed, and surplus precipitation in watershed (Figures 3e, S11, Table S6). For the SW 

model, % in violation increased with coarse eolian sediment in catchment and watershed, 

soil sulfur content, mean bedrock depth, runoff in watershed and catchment, but decreased 

with baseflow index, impervious surfaces, and road density in catchment (Figures 3f, S12, 

Table S6).

Many of these important variables show inflections points where a small change in the 

variable results in a rapid increase in the response. For GW, higher nitrate concentrations are 

predicted when % surface iron oxide is >25%, mean temperature >16 °C, NANI load 

>1×106 kg, and surplus precipitation < −50 mm (Figure S9). For SW nitrate concentrations, 

steep transitions are predicted when inorganic N deposition is <1 kg N/ha, N surplus 

>22,000 kg/km2/yr, pesticide use >500 kg/km2/yr, road density <1 km/km2, N fertilizer 

application rate >75 kg N/ha/yr, and irrigation-to-precipitation ratio >0.25 km2/cm (Figure 

S10). For GW, there is a rapid decrease for % in violation when housing density per 

catchment is <100 units/km2, baseflow index <30, and surplus precipitation in catchment or 

watershed < −50 mm (Figure S11), while for SW, % in violation steeply rises with baseflow 

index <20%, road density <20 km/km2, and runoff is >600 mm (Figure S12).

6 Discussion

This analysis produced geospatial information to help predict where, at the scale of our 

analysis, there is potential risk of a nitrate MCL violation for 1) existing PWS, 2) new or 

planned PWS, or 3) private groundwater wells. This is the first national study to examine the 

relative importance of a variety of variables that may explain the spatial patterns for both 

GW and SW sourced nitrate violations in PWS. Information from this analysis can help 

managers identify the probability for risk based on the characteristics of the GW or SW 

source and how to focus efforts to reduce violations and, hence, risk to human health.

The models in this analysis predict the locations across the CONUS that have either high or 

low risk for nitrate MCL violations for GW or SW sources and predict the nitrate 

concentrations and percent of systems in violation for sites predicted to have high risk of 

violations. This study also indicates which land use, geology, climate, and other 

environmental factors most influence nitrate violations. The models, however, were unable 

to completely assess the impact of nitrate treatment or PWS operation (e.g., switching or 
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blending with other water sources), due to insufficient information in SDWIS. The lack of 

PWS operation information may be a reason for false positives in the model because sites 

predicted to be at risk, based on environmental drivers like cropland, may not have 

violations due to the presence of treatment or ability of the PWS to change sources. Despite 

this, the models were able show strong prediction accuracy across the entire CONUS, using 

a variety of predictor variables, for both SW and GW systems. The models in this study are 

also able to assess risk for areas with both public and private drinking water sources and for 

both CWS and non-CWS. While this analysis is based on finished water, not raw source 

water, models can detect if source water poses risks. Overall, the false positives could 

represent opportunities where the model output could indicate discrepancies between areas 

where watershed/landscape-based risk differs from actual violations, indicating areas with a 

tendency towards high violations, where PWS operations have prevented it.

It is also foreseeable that not including treatment in the final models would result in models 

that incorrectly predict low violation rates (false negatives) in areas that have high N inputs 

from agriculture, due to widespread use of treatment. We, however, do not believe that not 

including treatment necessarily resulted in our models being trained to predict low violations 

in areas that have high N inputs, for several reasons: 1) at the national scale of the model, the 

environmental and climatic variables were found to be the most dominant predictors, 

reducing the likelihood that the model was trained to associate high N inputs with low 

violations, 2) this is also supported by the partial dependence plots that displayed a positive 

relationship between nitrate violations and N input variables (e.g. Figure 4), 3) a lot of areas 

where false positives occur (Figure 2e,f) were often areas with known nitrate treatment 

(Figure S1), particularly for GW, indicating that areas needing treatment were still predicted 

by the model to likely be at risk for nitrate violations (Figure S7b), and 4) the final GW and 

SW models had no false negatives, meaning that there were not any observed sites without 

violations incorrectly predicted to have a high risk for violations. However, the models used 

on the test and holdout datasets did have 8-24% false negatives, with greater false negatives 

for GW (Table 1), showing the possibility for the models to predict low risk in unknown 

areas that have had nitrate violations. This is not necessarily caused by a lack of treatment 

information in the models, but could also be caused by environmental factors, such as legacy 

N in GW.53 Further exploration with finer scale models that include treatment information 

would likely strengthen the prediction and interpretability of the models.

6.1 Classification Models

GW or SW violations do not occur randomly but are concentrated in specific geographic 

areas. Areas at greatest risk for GW violations (Figure 1), based on the classification model, 

were correlated with landcover, hydrology/climate, and N inputs (Figure 2), similar to Nolan 

and Hitt 22. The importance of surplus precipitation and irrigation-to-precipitation ratio, in 

the GW classification model, indicates that arid landscapes are more vulnerable, particularly 

where irrigation far exceeds precipitation in croplands. This is because arid landscapes may 

have a buildup of N inputs that eventually gets infiltrated into GW with irrigation, whereas 

areas with surplus precipitation may have a dilution of the N inputs, resulting in lower GW 

concentrations. The importance of N surplus in the GW model indicates that accounting for 

both N inputs and removals from the system, as advocated by McLellan, et al. 54, may be 
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better at predicting nitrate/nitrite drinking water violations than fertilizer inputs alone. 

Unlike previous studies,8, 22, 26, 29, 55 our GW model did not find water table depth (a 

surrogate for well depth), hydraulic conductivity or aquifer type (e.g., % semiconsolidated 

sand aquifers) as important. We were not able to specifically use well depth as a variable in 

the model, as this information is not provided by SDWIS, and well depth is typically greater 

than water table depth. Soil permeability was a top 20 important variable for the GW 

classification model, corresponding to increased infiltration to GW aquifers,8 However, 

hydrologic conductivity was not as important, possibly due to its heterogeneity across the 

landscape and the greater role that N inputs play in source water nitrate levels than geology 

or soil conditions at the national scale. Only a small number of GW systems were under the 

direct influence of SW (categorized as GWUDI systems) and so this was not likely a factor. 

Also, the presence of semiconsolidated sand aquifers likely was not a dominant factor 

because this and other aquifer types are not evenly distributed throughout the U.S. and so it 

is not as important at the national scale, compared to local scale models.

Based on the SW classification model, regions at greatest risk for SW nitrate violations 

(primarily in the southwestern U.S.) were driven largely by geology, climate, agricultural 

land use. Overall, the regions at risk for SW nitrate violations were specifically associated 

with a combination of factors, such as agriculture and high N fertilizer use on semi-arid 

land, where there is less precipitation, but excess irrigation. This indicates that climate, land 

use, and N inputs all play a key role in governing SW violations. Consequently, optimizing 

the timing of irrigation and fertilizer inputs in these landscapes could improve source water 

quality. For example, because SW violations are most strongly influenced by precipitation, 

one way to manage and reduce SW violations, which may interact with timing of fertilizer, 

would be to ensure that fertilizer is not added prior to large rain events. Our previous work1 

found that while there are more GW systems in violation, SW systems in violation have the 

potential to impact more people; therefore, it is important to understand the factors affecting 

the SW nitrate violations.

6.2 Concentration Models

Regions at risk for the highest nitrate concentrations in GW sourced drinking water (Central 

California Valley, major parts of the Great Plains in Texas and Nebraska, the Columbia 

Plateau, the Snake River Plain in Idaho, and the Piedmont and Coastal Plains of 

Pennsylvania and Delaware) were associated with a combination of anthropogenic N inputs, 

agricultural lands, and geologic factors (low slope, soil type), as found in other studies.
22, 26, 29 The regions at most risk were also driven in part by locations of GW PWS (which 

are not evenly distributed across the U.S.), and which, in turn, are driven by geology, 

climate, and human population. Factors we identified that were not previously found to drive 

nitrate in water supplies included climatic factors (high temperatures, excess 

evapotranspiration) and the presence of high iron oxide. Unlike in the southeast, where high 

temperatures, rainfall, and soil organic matter result in high denitrification rates and 

consequently reduced nitrate contamination,8 the high temperatures, but low rainfall and low 

organic matter content in the arid southwest inhibit denitrification, and the low slopes and 

sandier soils36 likely help foster infiltration of excess nitrate. Also, iron oxide has been 

shown to increase N mineralization (nitrification) and N mobilization at low pH through 
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increased organic matter decomposition;56 based on the USGS’s geochemical soil data of 

the CONUS,36 iron oxide also happens to be high in the xeric Southwest, the Central 

California Valley, upper Midwest, southeastern Pennsylvania and Delaware, where 

violations are highest.

Areas predicted to be at greatest risk of high nitrate concentrations in SW were in parts of 

southern California, the Central California Valley, and Columbia Plateau in western 

Washington that correspond with low precipitation, but high N inputs from agricultural land 

use and where there are high surface water withdrawals for irrigation purposes. Other studies 

also found that N inputs as well as climate variables like precipitation were important in 

predicting surface water nitrate concentrations. For example, Bellmore, et al. 20 found that 

TN input was the best predictor of stream dissolved inorganic nitrogen concentrations, and 

Nishina, et al. 57 found N deposition to be most important followed by slope, temperature, 

and precipitation. Also, similar to Bellmore, et al. 20, who found atmospheric N deposition 

to be the most dominant N source in surface water, our model found N deposition variables 

to be the top four important variables in the SW concentration model. A study by Álvarez-

Cabria, et al. 58 found the most important variables for predicting river nitrate concentration 

were % agricultural land, pasture land, and precipitation. Interestingly, predominantly 

agricultural areas of the Midwest with a few observed SW violations, like in central Ohio, 

did not result in widespread model predictions for SW violations throughout the Midwest. 

Even though, agriculture and N loading are major factors in nitrate concentrations in surface 

source waters,20 the lack of a strong relation to violations might be a result of relatively 

widespread treatment or other engineering solutions, which reduce violation rates. 

Additionally, this may indicate that the national scale patterns for SW nitrate violations are 

more strongly driven by climate and rainfall factors than by land use and N input variables 

and that spikey violation behavior is difficult for the RF model to detect; this may be 

particularly true because monitoring is only required quarterly, increasing the likelihood of 

missing flash rainfall events and subsequent runoff. It may also be that a greater presence of 

tile drainage in areas like central Ohio may contribute to higher observed SW violations that 

were not predicted by the model, due to the more local scale of this issue.8 Consequently, 

regional, smaller scale models likely would help better determine local drivers of violations.

6.3. Percent in Violation Models

A greater proportion of GW systems in violation is predicted to be found in more rural areas 

in semi-arid climates (particularly in much of the western parts of the Great Plains of Texas, 

Oklahoma, and Kansas, southern Nebraska, and eastern Colorado). This is likely driven by 

transient non-community water systems (shown to be associated with the greatest amount of 

GW violations, even though their MCL can be 20 mg-N/L at the discretion of their state4) in 

less populous areas of Western Texas, etc., and by the role of the Ogallala aquifer, which is 

shallow and more susceptible to groundwater contamination.7, 59 Our study also shows that 

violations increase with smaller PWS population served, thus most violations occur in 

smaller systems in more rural and less populous areas. This may be due to these systems 

typically having shallower wells, which are more prone to contamination.8 Allaire, et al. 60, 

looking at all reported contaminants in SDWIS, also found that smaller systems and rural 
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areas tended to have more systems in violation. Similarly, population density was also an 

important driver for the GWAVA drinking water model.22

The percent of SW systems exceeding the nitrate MCL were predicted to be highest in 

regions with arid climates, low baseflow, and sandy soils. These regions are primarily in the 

southwest of the CONUS, areas also predicted to be vulnerable by the other SW and GW 

models. The higher SW nitrate levels in these arid regions may be due to low rainfall, lower 

baseflow with less dilution and low organic matter content inhibiting denitrification. Gentle 

slopes and sandier soils36 also likely help foster infiltration of excess nitrate in surface 

waters.

6.4 Thresholds

The thresholds at which specific variables are associated with violations, as provided by our 

models, can be directly useful for watershed managers when assessing risk. For areas with 

GW systems, knowing that N surplus above 7,500 kg N/km2/yr (75 kg N/ha/yr) or land use 

>30% cropland increases nitrate violation risk can help managers quantify or set restrictions 

on N inputs and land use practices. In terms of what regions or climates are most at risk, 

managers can use the fact that violation risk increases when areas have negative surplus 

precipitation or when irrigation exceeds precipitation. Managers can also use information 

from the GW concentration models, which suggest GW systems are at risk for higher nitrate 

concentrations when surface lithological iron oxide is >50%, due to its stimulation of 

nitrification,56 or where surplus precipitation is < −50 mm, such as in arid climates, mean 

temperature exceeds 16 °C, or NANI from agriculture is >1,000,000 kg per catchment.

For areas with SW systems, climates most at risk are areas with surplus precipitation < −25 

mm (which are areas even more arid than where GW systems are at risk). The risk is also 

high for SW systems if pesticide use (a surrogate for agricultural practices) is >10 kg/km2, 

or if arid plant cover (shrub/scrubland) is >25%. SW systems also become at risk for high 

nitrate concentrations when N fertilizer application rate is >75 kg N/ha/yr, N surplus is 

>22,000 kg/km2/yr (or cropland is approximately >80%), and the location is more rural 

(road density <1 km/km2). This information can help managers pinpoint which locations are 

most at risk and where to prioritize money to improve source water protection and/or adjust 

PWS treatment approaches specific to nitrogen. Many of the predictor variables in the model 

have a non-linear relationship with nitrate/nitrite violations. There are situations where 

catchments that are usually below a certain threshold (e.g., low N surplus or low cropland) 

may be more vulnerable because of a change in land use practices, and situations where 

catchments above a threshold (e.g., high N surplus or high cropland areas) may not show an 

increase in violations even when there is an increase in N inputs.61

6.5 Model Performance

While both classification and regression models performed well compared to previous 

studies, the classification models overall were better at predictions than the concentration 

models, likely due to a lack of concentration data below 10 mg N/L, as mentioned earlier.

The prediction accuracy of our national scale RF classification and regression GW and SW 

models performed similar to other studies done at local scales. The results of the RF 
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classification model for groundwater was not only comparable to other studies, but had more 

balanced sensitivity and specificities,29, 55 likely due to pre-balancing of our zero-inflated 

datasets. For example, a study which applied a RF classification model to nitrate 

groundwater concentrations in Iowa found a lower sensitivity (67.1%) compared to 

specificity (85.8%).26 Additionally, despite the much larger scale of our study and the 

greater landscape variability of the CONUS, our RF regression GW model for predicting 

nitrate concentration performed similar to studies using this approach at smaller scales and 

in less heterogeneous areas. For example, studies in California,29 and Iowa26 both explained 

~40% of the variation in groundwater nitrate concentration based on test datasets while ours 

explained 43% of the variation.

When comparing our RF classification GW model results (Figure 1e, S13a) with the USGS 

GWAVA-DW model (Figure S13b), 79.9% of the catchments were classified correctly (as 

either in violation or not in violation), 91.7% of the same catchments with violations were 

classified correctly for both models, and 79.9% of the same catchments without violations 

were classified correctly for both models. Additionally, there is a significant positive 

relationship between predicted SDWIS concentrations above 10 mg nitrate-N/L and the 

GWAVA predicted concentrations above 10 mg nitrate-N/L, however, there is a low R2 

(0.16), indicating a large unexplained variance (Figure S13c). This also indicates that it is 

reasonable to use our RF model to predict violation risk to areas with private drinking water 

wells, although our model does not account for all sources of variation.

Our RF regression SW models performed similarly to other studies that have applied this 

approach towards predicting surface water nitrogen concentrations, with an R2 of 0.52. A 

study in Japan57 found a test R2 of 0.59 and a study in Spain58 found a test R2 of 0.71 for 

predicting river nitrate concentrations. This is encouraging since the scale of our model was 

much larger than the other studies and the SW model had a relatively small sample size. 

When comparing the SW model results with the surface water concentration data used by 

Bellmore, et al. 20 we found 79% of the 1966 sites were correctly classified as either 

exceeding or not exceeding the nitrate MCL, but only 20% of the sites with the MCL 

exceedance class were correctly matched, possibly due to the small available sample size.

6.6 Limitations of Study

While our national models performed well and comparable to local scale studies (with 

consistent predictor variables),26, 29 there are some limitations to note. Even though the GW 

and SW models had relatively high prediction accuracies, compared to other similar studies, 

the models still had a bias towards making false positive predictions (about 15% or 22% of 

the time for SW and GW systems, respectively), while making no false negative predictions 

in the final models (Table 1). This may be due to the zero-inflated dataset where only 1% of 

catchments have drinking water violations, while many catchments without PWS or 

violations have similar land, geologic, and climate characteristics. For example, most over 

predictions were in the same regions as catchments with observed violations, particularly in 

areas of the Great Plains above the Ogallala aquifer and in the Central California Valley, and 

this is likely because they share similar climate, geology, and land use with the violating 

catchments. Thus, violations appear to also be driven by additional factors that operate on 

Pennino et al. Page 18

Sci Total Environ. Author manuscript; available in PMC 2021 June 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



smaller scales. For example, better knowledge of “engineered” factors within the drinking 

water treatment plant (e.g., ability of a PWS operator to switch to or mix with other water 

sources, use improved treatment technologies, or use other management strategies) may 

improve model performance. Similarly, more local land cover or geology, not characterized 

at the catchment or watershed scale, would likely help the model. Yet, even though the 

model overpredicted in certain areas, it is still useful for assessing overall risk and could 

apply to areas adding new systems. Additionally, because data reporting and quality can 

differ between states, with 26-38% of health-based violations not reported,60, 62 this could 

mean our model may be “underpredicting” in areas that are underreporting, or that our 

model’s false positives are in fact accurate predictions for the underreported areas (areas 

with higher monitoring and reporting violations1). It also should be noted that it has recently 

been discovered that nitrification of ammonia within the distribution system can potentially 

result in increased nitrite or nitrate concentrations at the point of use63 and thus some MCL 

violations may be missed. Another limitation of the study, due in part to small sample sizes, 

particularly for the SW models, is that we were unable to regionalize the analyses. An issue 

associated with trying to determine relationships on a national scale is that the factors that 

are associated with variation in nitrate in one region often may not be valid in another.64 The 

interrelationships, relative importance, and number of anthropogenic (e.g., road density or 

Census socio-economic characteristics) and natural drivers (e.g., geology, soils, vegetation, 

land cover) are more than likely to be very different from one region to another. Thus, some 

predictor variables that are not important at the national scale may be important at the 

regional scale for certain regions and vice versa. Consequently, regional models may be 

necessary for more fine scale predictions and to determine which variables best explain the 

smaller scale patterns.

Some of the predictor variables had a counterintuitive association with nitrate violations. For 

example, SW concentrations have a negative relationship with N wet deposition variables 

and this likely results from the national scale of the model and the fact that there are more 

observed violations in the southwest, but less N deposition there,11 and more deposition in 

the northeast, but fewer violations. Similarly, while nitrate treatment technologies have been 

shown to reduce nitrate violations at the individual system level,1, 31 it is surprising that the 

RF classification GW model predicted nitrate violations to increase with treatment (Figure 

S7). This may be explained by there being more systems with nitrate treatment in areas 

already known for having nitrate violations, due to environmental factors, and areas with 

naturally less nitrate violations will not need the use of nitrate treatment and will thus have 

less violations. Due to operation costs, not all PWS have advanced nitrate removal treatment 

technologies, which minimizes the sample sites with treatment to areas where there is a 

history of violations. Another factor, missed by our model, is that SW treatment plants 

operate differently under different scenarios, such as during rain events, and that information 

is not captured in SDWIS. Also, SW violations were highest with intermediate fertilizer use, 

instead of the expected linear relationship, and this may be due the use of nitrate treatment 

by PWS in areas with a history of violations. This may also be due to more important 

variables like surplus precipitation dominating the relationship, with intermediate fertilizer 

use found at most negative surplus precipitation (Figure 5). Though other studies have 
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shown strong positive relations between agricultural applications and stream nitrate 

concentrations.65

A limitation of the concentration models is that the dataset did not include nitrate 

concentrations <10 mg nitrate-N/L for non-violating PWS, making it difficult to determine 

which PWS might be close to being at risk for violating the nitrate standard. Also, the 99% 

R2 for the SW concentration model was due to small sample size (Figure S8b) and the range 

of sites with low and some with very high concentrations. The RF model results are helpful 

for finding broader spatial trends for violation risk, but it may not predict intermittent 

behavior well, such as for certain systems that have violations due to more unusual 

circumstances, e.g., a concordance of heavy rain and fertilizer application. For those 

situations, additional information about specific PWS (such as reports of system failures), 

upstream land use, or local weather, may be needed to predict intermittent behavior.

6.7 Conclusions

Given the potential public health concerns from having excess nitrate in drinking water, the 

results of this modeling analysis can be used as a screening tool to inform where source 

waters are most at risk, which can potentially help managers know where to prioritize efforts 

for source water protection and thereby reduce the likelihood of drinking water nitrate 

violations. Information from the models on where to prioritize source water protection 

efforts may particularly be of help to smaller non-CWS, because they more likely lack 

enough funds for nitrate treatment technology. Thus, the model results can be used to inform 

smaller systems where, at the NHD catchment scale, they would be less at risk from 

environmental factors. It may help PWS, with or with nitrate treatment, save money 

knowing where the least risky regions are, based on the environmental variables that less 

likely increase nitrate levels in source waters. Also, because nitrate treatment or the ability to 

change sources are certainly important factors, more local scale models with complete 

treatment or PWS operation information may better assess the relative role of environmental 

variables vs. treatment in controlling violation rates.

The results of this model have implications for protection of the environment in the U.S. and 

beyond. Knowledge of where violation risk is highest due to environmental factors indicates 

regions where source waters are vulnerable and may need better source water protection 

measures, to not only reduce violation risk, but also downstream impacts of high nitrate 

levels, such as coastal eutrophication and harmful algal blooms. Due to our model’s strong 

prediction capability at the large national scale, similar models could be applied to other 

regions across the world of varying scales to assess nitrate violation risk for both 

groundwater and surface water sources.

Because GW violations are most strongly influenced by cropland, irrigation-to-precipitation 

ratio, agricultural drainage, and N surplus, controlling these variables more efficiently could 

play a strong role in addressing GW drinking water violations. The fact that N surplus is 

important indicates that more efficient use of fertilizer into crop harvest could reduce excess 

N in the landscape54 and help prevent GW violations through improved source water quality. 

Also, as soon as N surplus increases, the probability of a GW violation jumps dramatically, 
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whereas, there is a more gradual increase in the likelihood of violations with an increase in 

% cropland, indicating N surplus may have a more direct impact.

While there are significantly more nitrate violations from groundwater systems (95% of all 

violations), surface water system violations typically have the potential to affect more people 

since surface water systems often serve large urban populations,1 and are thus important to 

manage. Though challenging to manage, a number of states have manure timing application 

tools.66–68 SW treatment plant operators are also able to adjust their treatment operations 

during a rain event to reduce violation risk, which is standard practice. Climate plays an 

important role in determining where PWS are most at risk for violations (e.g., more arid 

climates), and while that cannot be directly managed, this study highlights areas where it 

might make sense to prioritize additional funds for managing PWS source water quality by 

improving irrigation and efficient N application. Additionally, in the future there may be an 

even greater risk for nitrate violations in the southwest if climate continues to get drier, with 

more infrequent, but larger storms.69

Overall, this study agrees with previous nitrate modeling results in that cropland and N 

fertilizer application are important drivers of higher nitrate in source waters,22, 26, 29 but 

unlike those studies we found that N surplus is generally more important than fertilizer N 

alone, and that climate factors (like surplus precipitation) are also important for all models. 

To help prevent both GW and SW sourced nitrate violations, further consideration on where 

to prioritize management and source water protection could be for regions predicted to be 

most at risk. Smaller systems may be most vulnerable to risk of nitrate violations, 

particularly if they do not have the resources for nitrate treatment technology or the ability to 

change water sources. Because our models are built using environmental factors, areas 

where nitrogen inputs, land use, or other environmental variables increase nitrogen in source 

water can have greater potential for violations. However, as discussed previously, nitrate 

violations in PWS are not just driven by environmental factors and future analyses and 

improved data collection need to more fully address the role of treatment and operation of 

PWS on nitrate violation risk.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Map of the conterminous U.S. showing a) 88,083 catchments with GW PWS (blue area) and 

748 catchments with GW PWS violations (non-blue circles), b) 6,934 catchments with SW 

PWS (blue area) and 50 catchments with violations (non-blue circles), c) RF classification 

predicted probability of GW violation, d) RF classification predicted probability of SW 

violation, e) RF classification prediction for GW, and f) RF classification predictions for 

SW. Low Risk is < 0.5 probability of violation. High Risk is ≥ 0.5 probability of violation. 

All observations and predictions are for 2013-2017. The maps in panels c) and d) show the 

probability of a region being at risk of violation, which is not the same as the percent of 

systems predicted to be in violation. Also, the maps in panels e) and f) show areas with high 

or low risk of violation but do not predict which areas are in violation. Note, these maps are 

Pennino et al. Page 26

Sci Total Environ. Author manuscript; available in PMC 2021 June 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



risk assessment tools to predict areas most at risk of having drinking water nitrate violations. 

Also, note that these models only incorporate environmental variables and are not based on 

nitrate treatment or system management practices.
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Figure 2. 
Prediction residuals between observed and predicted a) GW violation class, b) SW violation 

class, c) mean GW concentration, d) mean SW concentration, e) % of GW systems in 

violation, and f) % of SW systems in violation per catchment. Prediction Class Error: True 

Negatives are catchments without observed violations that are predicted to not be in 

violation, True Positives are catchments with observed violations that are predicted to be in 

violation, False Positive are catchments without observed violations that are predicted to be 
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in violation. Conc. Residuals and % in Viol. Residuals: the amount of over (positive values) 

or under (negative values) prediction in mg/L or %, respectively.
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Figure 3. 
Variable importance rankings for the top 10 variables based on the RF a) GW classification 

model, b) SW classification model, c) GW concentration model, d) SW concentration 

model, e) % GW systems in violation model, and f) % SW systems in violation model. The 

(+) or (−) symbols on the bars mean there was a positive or negative relationship between 

the predictor and response variables, respectively. And the (− +) symbol indicates there was 

first a negative then a positive relationship, while a (+ −) symbol indicates there was first a 

positive then a negative relationship. Cat = catchment; Ws = watershed.

Pennino et al. Page 30

Sci Total Environ. Author manuscript; available in PMC 2021 June 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 4. 
RF classification partial dependence plots for GW, showing the relationship between the top 

10 important variables and the violation class. The number on each panel represents the 

importance ranking.
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Figure 5. 
RF classification partial dependence plots for SW, showing the relationship between the top 

10 important variables and the violation class. The number on each panel represents the 

importance ranking.
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Figure 6. 
Maps of conterminous U.S. showing a) RF regression predicted concentration for GW, b) RF 

regression predicted concentration for SW, c) RF regression predicted % of systems in 

violation for GW, and d) RF regression predicted % of systems in violation for SW. Note 

that these models only incorporate environmental variables and are not based on nitrate 

treatment or system management practices.
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Table 1.

Random Forest Classification Results

Model PCC SENS SPEC Gmean AUC % False Positives % False Negatives

GW

Test* 78.7 75.8 81.5 78.6 0.85 18.5 24.2

Holdout** 77.9 78.3 77.9 78.1 0.85 22.1 21.7

Final*** 78.1 100 77.8 88.2 0.98 22.2 0.0

SW

Test* 90.3 91.9 88.6 90.2 0.92 13.4 8.1

Holdout** 85.7 83.6 85.7 84.7 0.92 14.3 16.4

Final*** 85.6 100 85.4 92.4 0.99 14.6 0.0

*
Results for 90/10, 10-fold cross validation on pre-balanced training and test datasets

**
Results for applying 90/10 cross validated model on the unbalanced 20% of holdout of original dataset

***
based on applying model on the unbalanced full dataset

PCC = percent correctly classified; SENS = sensitivity or percent of violators correctly classified; SPEC = specificity or percent of non-violators 
correctly classified; Gmean = sqrt(SENS × SPEC); AUC = area under the curve; % False Positives = 100-SPEC; % False Negatives = 100-SENS
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Table 2.

Random Forest Regression Results – Comparing Response Variables

Response Variable R2 Training
RMSE 

Training R2 Test RMSE Test Bias Test R2 Holdout
RMSE 

Holdout Bias Holdout

Conc. GW 0.88 3.6 0.43 7.8 0.20 0.34 10.6 0.34

Conc. SW 0.98 1.7 0.52 3.5 0.16 0.99 1.6 0.13

Percent GW 0.88 7.9 0.28 19.3 0.70 0.17 19.9 3.65

Percent SW 0.35 15.8 0.21 14.6 −0.49 0.40 13.1 3.84

RMSE = Root Mean Squared Error. Training = average of the 10 cross validated model results that used 90% of the balanced dataset for training 
the model. Test = average of the 10 cross validated models applied on each of the 10% portions of the balanced dataset that was held back when 
training the models. Holdout = dataset consisting of 20% of the original zero-inflated and unbalanced dataset that was held back when training the 
models (based on completely separate model runs from the 90/10 training and testing set model runs).
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