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Recent studies have provided insights into the pathology of and immune response to 

COVID-19[1,2,3,4,5,6,7,8]. However, a thorough investigation of the interplay between infected 

cells and the immune system at sites of infection has been lacking. Here we use high-parameter 

imaging mass cytometry[9] that targets the expression of 36 proteins to investigate the cellular 

composition and spatial architecture of acute lung injury in humans (including injuries derived 

from SARS-CoV-2 infection) at single-cell resolution. These spatially resolved single-cell data 

unravel the disordered structure of the infected and injured lung, alongside the distribution of 

extensive immune infiltration. Neutrophil and macrophage infiltration are hallmarks of bacterial 

pneumonia and COVID-19, respectively. We provide evidence that SARS-CoV-2 infects 

predominantly alveolar epithelial cells and induces a localized hyperinflammatory cell state that is 

associated with lung damage. We leverage the temporal range of fatal outcomes of COVID-19 in 

relation to the onset of symptoms, which reveals increased macrophage extravasation and 

increased numbers of mesenchymal cells and fibroblasts concomitant with increased proximity 

between these cell types as the disease progresses—possibly as a result of attempts to repair the 

damaged lung tissue. Our data enable us to develop a biologically interpretable landscape of lung 

pathology from a structural, immunological and clinical standpoint. We use this landscape to 

characterize the pathophysiology of the human lung from its macroscopic presentation to the 

single-cell level, which provides an important basis for understanding COVID-19 and lung 

pathology in general.

SARS-CoV-2 is the coronavirus that causes COVID-19, which has become a global 

pandemic: as of February 2021, over 100 million people have been infected and there have 

been more thanover 2 million fatalities[10,11]. A growing body of evidence indicates that 

the severity of COVID-19 is driven by an inflammatory syndrome caused by hyperactivation 

of the immune system[8,12] in an attempt to clear the virus. Persistent inflammation can 

result in damage to lung tissue[13], the exudation of pulmonary-oedema fluid that leads to 

dyspnoea, and acute respiratory distress syndrome (ARDS)[14,15]. Immune profiling in 

peripheral blood[1,2,3,5,7,16] or bronchoalveolar lavage fluid[17] have revealed major 

changes in the immune system; excessive neutrophil activation[18], lymphopenia[3] and 

aberrant responses of the adaptive immune system[2] are among the most prominent 

changes. However, thorough analysis of infected tissue and the immune system in a spatial 

context has only recently been started[4,19,20,21] and is currently lacking for most infected 

organs, including the lung. Although most patients with severe COVID-19 develop ARDS, 

administering routine clinical supportive care as for other ARDS does not entirely aid in 

patient recovery. The degree to which SARS-CoV-2 infection and the immune response to 

COVID-19 resemble or differ from other insults in the lung is therefore unclear. To elucidate 

the cellular composition, spatial context and interplay between immune and structural cell 

types during SARS-CoV-2 infection in the lung, we performed imaging mass cytometry 

(IMC) in post-mortem lung tissue from patients with COVID-19 or with other lung 

infections that cause ARDS, and in otherwise-healthy individuals.

Pathophysiology of lungs in patients with COVID-19

We investigated a cohort of 23 patients that included individuals who died with ARDS after 

influenza (n = 2) or bacterial infection (n = 4), with acute bacterial pneumonia (n = 3) or 
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with COVID-19 respiratory distress syndrome (n = 10), as well as individuals who died 

without lung disease (n = 4) and from whom post-mortem lung tissue was available (Fig. 1a, 

Extended Data Fig. 1a, b, Supplementary Table 1). To better understand and capture 

anatomical manifestations of the progression of lung disease, we divided patients with 

COVID-19 into those with ‘early’ and ‘late’ disease, depending on whether death occurred 

before or after 30 days from the start of respiratory symptoms, respectively (Supplementary 

Table 1). To comprehensively investigate the cellular environment and spatial organization 

of the lung, we designed a metal-labelled antibody panel for IMC that was composed of 36 

biomarkers, and used it to generate 237 highly multiplexed images at 1-μm resolution: in 

total, we profiled 332 mm2 of tissue and identified 664,006 single cells across all specimens. 

IMC leverages laser ablation based on inductively coupled plasma mass spectrometry of 

lanthanide-metal-tagged antibodies from tissues for the quantitative detection of epitope 

abundance in a spatially resolved manner (Fig. 1a, Supplementary Table 2). Our panel 

included phenotypic markers of endothelial, epithelial, mesenchymal and immune cells, 

functional markers (activation, inflammation and cell death), and an antibody specific to the 

spike (S) protein of SARS-CoV-2. We used the IMC data to quantify the histopathology of 

the lung under infection (Methods), as we observed that the post-mortem lungs showed a 

considerable increase in weight across all pathologies (Fig. 1b). Consistent with the gain of 

weight during infection, the lacunar space of infected lungs was significantly reduced from 

41.1% in the healthy lung to median ranges of 28.72% and 15.3% in the lungs of individuals 

with influenza and late COVID-19, respectively (Fig. 1c, e); the most pronounced change 

was seen in the alveolar epithelium (Extended Data Fig. 1c, d). As collagen deposition is a 

known mediator of both normal and dysregulated tissue repair during recovery from 

infection[22], we quantified the extent and intensity of collagen deposition into a fibrosis 

score that was inspired by the Ashcroft score[23] (Methods). The fibrosis score was 

significantly higher for lung pathologies than for the healthy lung, especially for the two 

COVID-19 groups (Fig. 1d, f, Extended Data Fig. 1e–g). We constructed a spatially resolved 

single-cell atlas to understand the cellular composition of the lung during various insults 

(Methods). We projected the 664,006 single cells from all disease groups into a two-

dimensional space (Fig. 1g, Extended Data Fig. 1h) and clustered them on the basis of their 

phenotype (Fig. 1h, Extended Data Fig. 2a), which resulted in a single-cell phenotypic atlas 

for the human lung. We identified 36 clusters, which we organized into 17 metaclusters on 

the basis of predominant markers, overall phenotypes and proximity to lung structures (Fig. 

1h, Extended Data Fig. 2a). This atlas was dominated by abundant structural cell types, 

including KRT8+KRT18+ alveolar epithelial cells, α-smooth muscle actin+ (αSMA) cells 

that line the vasculature and immune cells such as CD15+CD11b+ polymorphonuclear 

neutrophils and CD68+ macrophages (Extended Data Fig. 2c). Although the broad 

compartments of lung structural cells and immune cells did not show large changes in 

absolute numbers between the patient groups, the specific internal composition of the 

structural cells of the lung and the immune system differed extensively (Extended Data Fig. 

2d). We observed increased immune infiltration in the lungs of patients with COVID-19 as 

compared to the healthy lung, but to a degree that was comparable with other lung infections 

(Extended Data Fig. 2d). Within the specific immune components, we observed a prominent 

increase in infiltration of myeloid cells in the lungs of patients with COVID-19 (as 

compared with the healthy lung), but to a lesser extent than was seen in the lungs of patients 
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with bacterial pneumonia (Fig. 1i, Extended Data Fig. 3a, b). We performed a more detailed 

examination of the phenotypic diversity of myeloid cells in respect to their location in the 

lung (Extended Data Fig. 3c–e), which revealed that CD14+CD16+CD206+CD163+CD123+ 

interstitial macrophages—which were probably recruited from peripheral blood—displayed 

the greatest increase in the lungs of patients with COVID-19 (particularly in the late 

COVID-19 group) as compared with the healthy lung (Fig. 1j), and the highest expression of 

IL-1β in monocytes in the lungs of patients in the early COVID-19 group (Extended Data 

Fig. 3d). Although neutrophil levels are similar between the lungs of patients in the early 

COVID-19 group and healthy lungs, they are present in significantly lower absolute numbers 

in late COVID-19 (Fig. 1j, Extended Data Fig. 3a, b); this is in stark contrast to the lungs of 

individuals with bacterial pneumonia, which contain the highest numbers of neutrophils 

across all disease groups. Populations of macrophages were particularly increased in the 

lungs of patients with COVID-19, as compared to all other disease states (Fig. 1j, Extended 

Data Fig. 3a, b). We also observed that CD8+ T cells were significantly increased in lungs of 

individuals with ARDS not associated with COVID-19, but depleted in bacterial pneumonia, 

in comparison with the healthy lung (Extended Data Fig. 3a, b). To further functionally 

characterize the immune system in healthy lungs and the lungs of individuals with 

COVID-19, we performed IMC with an immune panel of 39 markers on a subset of samples 

(2 healthy lungs and 4 lungs from patients with COVID-19) (Extended Data Fig. 4). In 

comparison with healthy lungs, we observed increased levels of the alarmin calprotectin 

(S100A9) across several cell types in the lungs of individuals with COVID-19—most 

prominently, in macrophages and neutrophils, but also in alveolar epithelial cells (Extended 

Data Fig. 4d–f). Alveolar epithelial cells also expressed increased levels of HLA-DR in 

COVID-19. Beyond the immune compartment, we observed a shift in the stromal 

compartment of the lung in COVID-19, with a significant reduction in absolute numbers of 

endothelial cells and an increase in mesenchymal cells and fibroblasts in lungs of patients in 

the late COVID-19 group (Fig. 1k, Extended Data Fig. 3a, b). The increase in fibroblast 

abundance with COVID-19 is consistent with the increased fibrosis score that we observed 

in the lungs of patients with COVID-19 (Fig. 1d, Extended Data Fig. 5a). To orthogonally 

validate our findings, we performed immunohistochemical staining of lung tissue from the 

same donors for two markers and found excellent agreement between the relative frequency 

of cells that were positive for the markers in IMC and immunohistochemistry (Fig. 1l, 

Extended Data Fig. 5b–h), as well in the ability to estimate the size of the lacunar space of 

lungs in the various disease states (Extended Data Fig. 5i–k). We also observed good 

agreement between the changes in cell-type composition between disease groups using 

targeted spatial transcriptomics[2,4], both for matched samples in the same cohort (Fig. 1m, 

Extended Data Fig. 6a–d) and samples in an independent study[25] (Fig. 1m, Extended Data 

Fig. 6e–h).

Tissue damage by widespread inflammation

Our phenotypic single-cell atlas of the lung contains clusters that are defined by cell-identity 

markers and markers of cell state across all of the diseases that we evaluated. We developed 

an unsupervised classification of cells according to the abundance of each marker as a 

complementary approach (Extended Data Fig. 7a), and observed a high concordance with 
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the phenotypic clusters (Extended Data Fig. 7b). Using this approach, we observed a high 

specificity of our SARS-CoV-2 S antibody to tissue samples from patients with COVID-19 

(Fig. 2a, Extended Data Fig. 7c). Among all cell types, alveolar epithelial cells displayed the 

highest rate of SARS-CoV-2 S positivity (Fig. 2b). These alveolar epithelial cells were also 

highly positive for the phosphorylated signal transducer and activator of transcription 3 

(pSTAT3), the receptor tyrosine kinase and proto-oncogene KIT and contained increased 

levels of interleukin 6 (IL-6), arginase 1, the apoptosis marker cleaved caspase 3 (CASP3) 

and the assembled complement membrane attack complex C5b–C9 (Fig. 2c, d). Given that S

− alveolar epithelial cells in the same regions showed no increase in the levels of functional 

markers, this probably indicates viral-specific alterations of the cellular state. Increased IL-6 

and pSTAT3 levels were also seen in the lungs of individuals with influenza and pneumonia 

as compared with healthy lung, but were not seen in ARDS that was not associated with 

COVID-19 (Extended Data Fig. 7d). However, high levels of cleaved CASP3 and C5b–C9 

were exclusive to S+ alveolar epithelial cells from individuals with COVID-19, and indicate 

the initiation of apoptosis and complement-mediated host immune defence, respectively, 

which led to increased damage to the alveolar lining. Although the alveolar epithelium was 

the predominant cell type that was positive for S, we also found that a mean of 7.8% and 

2.7% of macrophages and neutrophils, respectively, were positive for S across all images of 

lungs of patients with COVID-19; some regions were up to 38.6% and 43.6% S+, 

respectively (Extended Data Fig. 7e, f). Consistent with our observations in S+ epithelial 

cells, both macrophages and neutrophils exhibited higher levels of cleaved CASP3, pSTAT3 

and IL-6 but—unlike the alveolar epithelial cells—these cells showed no positive staining 

for C5b–C9 (Extended Data Fig. 7g–j). However, KIT was specifically upregulated in 

macrophages and not in neutrophils (Extended Data Fig. 7g, h). This non-epithelial cell 

marker profile phenotype seen in S+ cells was also seen in other cell types, albeit at a much 

lower frequency (Extended Data Fig. 7k). We also observed high heterogeneity in the 

localization of S+ cells, often within the same 1-mm2 tissue region (Fig. 2e). Although we 

observed interactions between S+ epithelial cells and immune and nonimmune cells (Fig. 2e 

top right), other S+ cells did not interact with these cells at all or seemed to be encapsulated 

in structures that precluded interactions with other cell types (Fig. 2e bottom right). To 

generate a quantitative map of cellular interactions, we quantified proximal interactions 

between and within cell types for each image and generated disease-specific interaction 

maps (Extended Data Fig. 8a–c, Methods). Comparing interactions between the healthy lung 

and lungs from patients with COVID-19, we observed increased interactions between 

neutrophils and macrophages and decreased interactions within macrophages; in late 

COVID-19, the intra-cell-type interactions in macrophages, fibroblasts and CD4+ T cells 

decreased further, and were accompanied by an increase in interactions between 

macrophages and fibroblasts or dendritic cells (Fig. 2f, g). When spatially contextualizing 

these interactions, we observed that macrophages preferentially interacted with fibroblasts in 

the alveolar walls, which suggests a contribution to fibrosis and the thickening of the 

alveolar wall in late COVID-19 (Fig. 2h). As epithelial cells as a whole did not show any 

particular change in interactions in the lungs of patients with COVID-19 as compared with 

healthy lung, we investigated whether S+ epithelial cells differed in cellular interactions to 

their S− counterparts in the lungs of patients with COVID-19 (Extended Data Fig. 8d–i). 

Across all cell types, there was a trend for S+ cells to have reduced cellular interactions 
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(Extended Data Fig. 8d–f). S+ alveolar epithelial cells in particular lacked interactions with 

other cell types, as compared with S− cells (Extended Data Fig. 8g–i). We observed 

progressively more cells with markers of cell death (particularly macrophages and 

neutrophils with cleaved CASP3) (Fig. 2i), whereas epithelial and endothelial cells 

preferentially had C5b–C9 (Fig. 2j, k)—which probably indicates alveolar damage. Using 

spatial transcriptomics data, we observed that pathways of inflammatory response (such as 

interferon and interleukin signalling) were increased in the lungs of patients with COVID-19 

as compared with healthy lung—particularly in the alveolar and airway compartments in 

early COVID-19 (Extended Data Fig. 9a–e). However, pathways related to angiogenesis, 

myogenesis and the epithelial-to-mesenchymal transition were increased in the lungs of 

individuals with COVID-19 as compared with healthy lungs, which increased progressively 

in late COVID-19 (Extended Data Fig. 9b). In accordance with the IMC data, we also 

observed that coagulation, complement activation and apoptosis pathways were upregulated 

in alveolar areas and in blood vessels in late COVID-19 (Extended Data Fig. 9c). This 

suggests that, after an early period of disease that is dominated by inflammatory responses to 

SARS-CoV-2, late COVID-19 in the lung may be driven by pathogen-independent 

mechanisms that are a consequence of an immune response with an aberrant resolution.

An interpretable lanscape of lung pathology

Building on the cell types we identified, their functional status and their interactions, we 

sought to define a landscape of lung pathology from the data to form an unbiased view of the 

multicellular architecture of lung tissue during infection (Fig. 3a, Extended Data Fig. 9f–j, 

Methods; available at http://covid-imc.eipmresearch.org/). The major axes of this landscape, 

which is based on a principal component analysis, demonstrate the distribution of samples 

and the major drivers of the establishment of the landscape. This confers biological 

interpretability to the landscape, as the underlying cellular composition at each given point is 

readily identifiable. Although the landscape was determined in an unsupervised manner 

(without knowledge of sample groups), it largely recapitulates the disease ontogeny of the 

samples: it is dominated by the difference between samples of healthy lung and lungs of 

patients with COVID-19 who succumbed after prolonged disease (Fig. 3a). This is 

exemplified by the abundance of immune cell types such as macrophages or neutrophils 

(which are most abundant in the lungs of patients with COVID-19 or pneumonia, 

respectively), but also by collagen deposition in lungs from patients with COVID-19 (Fig. 

3b). We largely recapitulated the structure of this landscape when using complementary 

methods (Extended Data Fig. 9h–j). To add a layer of clinical interpretability to the 

landscape, we performed an association analysis between its axes and known demographic, 

clinical and pathological factors of patients with lung infections (Fig. 3c, Extended Data Fig. 

10a–d, Methods). We observed strong associations primarily between clinical factors and the 

first principal component (Extended Data Fig. 10a): specifically, a significant positive 

association between the distribution of samples in the first principal component axis with the 

presence of alveolar type 2 cells with fibroblasts, organizing pneumonia, the number of days 

that elapsed since beginning of symptoms, hospitalization and intubation, and lung weight at 

death (Fig. 3c, Extended Data Fig. 10a). We also observed a significant association between 

a reduction in white blood cell counts and the major axis associated with disease progression 

Rendeiro et al. Page 6

Nature. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://covid-imc.eipmresearch.org/


(principal component 1) (Fig. 3c, Extended Data Fig. 10a). The values of clinical factors 

overlaid with their respective images in the landscape confer a convenient way of 

interpreting the associations, effectively rendering a landscape annotated with clinical 

information both biologically (Fig. 3a) and clinically interpretable (Fig. 3d, Extended Data 

Fig. 10e). To develop the clinical interpretation of the landscape, we further related the 

associated clinical, demographic and pathological variables by how similar they are in 

explaining the IMC data (Fig. 3e, Extended Data Fig. 10b). We found that variables were 

organized into three large blocks: (1) high C-reactive protein and white blood cell count at 

presentation, as well as pathology characterized by acute inflammation of the alveolar wall; 

(2) high values of IL-6, erythrocyte sedimentation rate and D-dimer at presentation, 

comorbidities such as obesity and hypertension, lung pathology characterized by 

microthrombi and chronic alveolar inflammation with macrophages, and haemorrhagic 

stroke as the cause of death; and (3) prolonged disease and associated interventions such as 

intubation and treatment, with pathology characterized by squamous hyperplasia, large 

thrombi, organizing pneumonia and alveolar type-2 cells associated with fibroblasts. These 

groups probably represent a progressive range of pathology that is associated with extremely 

acute disease that results in early death (1) to a chronic manifestation of prolonged disease 

(3). Beyond these dominant clusters, we found that demographic and behavioural variables 

(such as age, gender or smoking) did not strongly associate with the larger groups, which 

suggests they have little influence in the pathology of lethal disease associated with SARS-

CoV-2 lung infection. The similarity between variables in the IMC data differs considerably 

from that obtained from simple co-occurrence of the variables (Extended Data Fig. 10c, d), 

which provides evidence for the added value of high-content multiplexed imaging of lung 

tissue in infectious disease.

Discussion

Our spatially resolved single-cell analyses of post-mortem lung tissue from patients with 

COVID-19 or other lung infections provides a comprehensive examination of the response 

of the human lung to infection, from the macroscopic to the single-cell level. Across all 

diseases, we observed a significant reduction in alveolar lacunar space, increased immune 

infiltration and cell death by apoptosis, as compared with healthy lungs. We also noted that 

neutrophil infiltration—although it is increased in the lungs of patients with ARDS or early 

COVID-19 compared with normal lung—is a hallmark of bacterial pneumonia, and that a 

high degree of inflammation, infiltration of interstitial macrophages, complement activation 

and fibrosis is particular to the lungs of individuals with late COVID-19. Our analysis agrees 

with recent reports that indicate that the type of pathophysiological response to SARS-

CoV-2 infection may not be entirely different from ARDS that is unrelated to 

COVID-19[14], but contradicts reports that suggest that the hyperinflammatory phenotype 

(as assessed by cytokine levels in peripheral blood) is not specific to COVID-19[15]. Our 

observation that S+ alveolar epithelial cells do not differentially interact with cells of the 

immune system (despite extensive immune infiltration in the lung) potentially highlights the 

lack of an ‘on-target’ immunological response, and the high amount of complement 

activation in lung tissue from patients with COVID-19 probably results in indiscriminate 

‘off-target’ tissue damage—exacerbating COVID-19 and continuing the cycle of 
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inflammation. The increased presence of IL-1β+ monocytes in the lungs of patients with 

early COVID-19 suggests a mechanism for neutrophil recruitment to the lung. Neutrophil 

recruitment was highest in the lungs of patients with bacterial pneumonia (the only group 

that we studied with an active disease of bacterial pathogen origin). The differential 

pathogen recognition between viral and bacterial infection in the lung could explain the 

differences in chemokine secretion in the ensuing immune response. However, despite 

sharing a viral pathogenic origin with influenza, COVID-19 (specifically the expansion of 

mesenchymal cells and fibroblasts, particularly in late COVID-19) probably reflects a 

response to the extensive tissue damage from complement activation. Despite this, the high 

mortality rate of COVID-19 is at odds with productive recovery from tissue damage and 

healing, which suggests the need for further investigation into complement-activation-

induced damage to the lung, additional immunological factors (such as neutrophil 

extracellular traps) and microthrombi formation[19]. This raises the possibility that early 

immunological interventions that suppress excessive complement activation could have a 

therapeutic benefit. Our biologically interpretable and clinically annotated landscape of lung 

pathology provides a framework for a data-driven, spatially aware understanding of lung 

pathology, and will be an important resource for the study of COVID-19 and other lung 

infections.

Methods

Data reporting

No statistical methods were used to predetermine sample size. Image acquisition, 

segmentation, quantification and clustering were blinded to patient identifiers and clinical 

metadata.

Human studies

Tissue samples were provided by the Weill Cornell Medicine Department of Pathology. The 

Tissue Procurement Facility operates under Institutional Review Board (IRB) approved 

protocol and follows guidelines set by Health Insurance Portability and Accountability Act. 

Experiments using samples from human subjects were conducted in accordance with local 

regulations and with the approval of the IRB at the Weill Cornell Medicine. The autopsy 

samples were collected under protocol 20–04021814. Autopsy consent was obtained from 

the families of the patients.

Tissue section preparation

Lung tissues were fixed via 10% neutral buffered formalin inflation, sectioned and fixed for 

24 h before processing and embedding into paraffin blocks. Freshly cut 5-μm sections were 

mounted onto charged slides.

Antibody panel design and validation

We designed an antibody panel to capture different immune and stromal compartments of 

the lung. Antibody clones were extensively validated through immunofluorescence and 

chromogenic staining and verified by a pathologist. Once the clone was approved, 100 μg of 

purified antibody in BSA and azide free format was procured and conjugated using the 
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MaxPar X8 multimetal labelling kit (Fluidigm) as per the manufacturer’s protocol. To 

confirm the antibody binding specificity after conjugation and to identify the optimal 

dilution for each custom conjugated antibody, sections from healthy lung, and bacterial 

pneumonia, non-COVID-19 ARDS and SARS-CoV-2-infected lung were stained. These 

sections were then ablated on Fluidigm Hyperion Imaging System and visualized using 

MCD Viewer for an expected staining pattern and optimal dilution that presented with good 

signal-to-noise ratio for each channel. For channels with visible spillover into the 

neighbouring channels, a higher dilution factor was adopted when staining the cohort 

tissues.

IMC—On the basis of the clinical and pathological characteristics and quality of the 

preserved tissues, suitable representative fresh cut 4-μm-thick FFPE sections were acquired 

from the Department of Pathology of Weill Cornell Medicine for IMC staining. The tissues 

were stored at 4 °C for a day before staining. Slides were first incubated for 1 h at 60 °C on 

a slide warmer followed by dewaxing in fresh CitriSolv (Decon Labs) twice for 10 min, 

rehydrated in descending series of 100%, 95%, 80% and 75% ethanol for 5 min each. After 

5 min of MilliQ water wash, the slides were treated with antigen retrieval solution (Tris-

EDTA pH 9.2) for 30 min at 96 °C. Slides were cooled to room temperature, washed twice 

in TBS and blocked for 1.5 h in SuperBlock Solution (ThermoFischer), followed by 

overnight incubation at 4 °C with the prepared antibody cocktail containing all 36 metal-

labelled antibodies (Supplementary Table 2). The next day, slides were washed twice in 

0.2% Triton X-100 in PBS and twice in TBS. DNA staining was performed using 

Intercalator-Iridium in PBS solution for 30 min in a humid chamber at room temperature. 

Slides were washed with MilliQ water and air-dried before ablation.

The instrument was calibrated using a tuning slide to optimize the sensitivity of the detection 

range. Haematoxylin and eosin-stained slides were used to guide the selection of regions of 

interest (ROIs) containing alveolar parenchyma, airways and thrombotic vessels to obtain 

regions that were representative of the whole range of lung pathology. All ablations were 

performed with a laser frequency of 200 Hz. Tuning was performed intermittently to ensure 

the signal detection integrity was within the detectable range. A total of 240 image stacks 

were ablated. The raw MCD files were exported for further downstream processing.

IHC—Automated IHC on a Leica Bond III instrument was performed on 5-μm tissue 

sections using antibodies for myeloperoxidase (clone 59A5, Leica ready to use antibody, 

without antigen retrieval) and CD163 (clone MRQ-26, Leica ready to use antibody, antigen 

retrieval 20 min, high pH) using 3,3′ diaminobenzidine chromogen. For each slide, a grid (5 

× 5 grid, 0.4-cm × 0.4-cm boxes) was placed on the section and 5 alveolar, 2 vascular and 2 

airway regions were randomly selected using random number-generated x,y coordinates and 

that ROI (using a 20× objective) was photographed.

Targeted spatial transcriptomics using GeoMx

In brief, selected cases of lung injury associated with COVID-19 (4 patients with early 

COVID-19 and 4 patients with late COVID-19), bacterial pneumonia (2) and healthy lung 

(3) from the IMC cohort were evaluated using the GeoMx[24] COVID-19 Immune 
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Response Atlas with approximately 1,850 RNA targets. Spatial transcriptomics analysis 

included up to 24 ROIs per tissue. Alveolar, airway and vascular compartments were 

analysed.

For GeoMx DSP slide preparation, we followed the GeoMx DSP slide preparation user 

manual (MAN-10087–04). In brief, tissue slides were baked in a drying oven at 60 °C for 1 

h and then loaded to Leica Biosystems BOND RX FFPE for deparaffinization and 

rehydration. After the target retrieval step, tissues were treated with proteinase K solution to 

expose RNA targets followed by fixation with 10% NBF. After all tissue pretreatments were 

done, tissue slides were unloaded from the Leica Biosystems BOND RX and incubated 

overnight with RNA probe mix (COVID-19 Immune Response Atlas; a pool of in situ 

hybridization probes with UV photocleavable oligonucleotide barcodes). The next day, 

tissues were washed and stained with tissue visualization markers: CD68–647 at 1:400 

(Novus Bio, NBP2–34736AF647), CD45–594 at 1:10 (NanoString Technologies), 

panCK-532 at 1:20 (NanoString Technologies) and/or SYTO 13 at 1:10 (Thermo Scientific 

S7575).

For GeoMx DSP sample collections, we followed the GeoMx DSP instrument user manual 

(MAN-10088–03). In brief, tissue slides were loaded on the GeoMx DSP instrument and 

then scanned to visualize whole-tissue images. For each tissue sample, a board-certified 

pathologist selected 24 total ROIs from 3 types of functional tissue: vascular zone, large 

airway and alveoli zone. Each ROI was subdivided into compartments on the basis of 

fluorescent cell-specific markers, and serial UV illumination of each compartment was used 

to sequentially collect the probe barcodes from the different cell types.

Each GeoMx DSP sample plus nontemplate controls (NTCs) was uniquely indexed using the 

i5 × i7 dual-indexing system of Illumina. Four μl of a GeoMx DSP sample was used in a 

PCR reaction with 1 μM of i5 primer, 1 μM i7 primer and 1× NSTG PCR Master Mix. 

Thermocycler conditions were 37 °C for 30 min, 50 °C for 10 min, 95 °C for 3 min, 18 

cycles of 95 °C for 15 s, 65 °C for 60 s, 68 °C for 30 s, and final extension of 68 °C for 5 

min. PCR reactions were purified with two rounds of AMPure XP beads (Beckman Coulter) 

at 1.2× bead-to-sample ratio. Libraries were paired-end sequenced (2 × 75) on a NextSeq550 

generating up to 400 million aligned reads in total.

Processing and filtering of the raw next-generation sequencing data was performed on the 

DNA sample libraries that were sequenced, producing about 1.3 billion reads. NextSeq-

derived FASTQ files for each sample were compiled for each compartment using the 

bcl2fastq program of Illumina, and then demultiplexed and converted to digital count 

conversion (DCC) files using the GeoMx DnD pipeline (v.1) of Nanostring. These DCC files 

were then converted to an expression count matrix using a custom Python script. A 

minimum of 10,000 reads were required for each non-NTC sample (2 compartments 

removed). Probes were checked for outlier status by implementing a global Grubb’s outlier 

test with alpha set to 0.01. The counts for all remaining probes for a given target were then 

collapsed into a single metric by taking the geometric mean of probe counts. A count of 1 

was added to any probe that yielded 0 counts before the geometric mean was taken. For each 

sample, an RNA-probe-pool-specific negative probe normalization factor was generated on 
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the basis of the geometric mean of negative probes in each pool. To ensure good data quality, 

we calculated the 75th percentile of the gene counts (that is, geometric mean across all 

nonoutlier probes for a given gene) for each ROI, and normalized to the geometric mean of 

the 75th percentile across all ROIs to give the upper quartile (Q3) normalization factors for 

each ROI. The distribution of these Q3 normalization factors were then checked for outliers 

defined as any ROI greater than two s.d. from the mean log2-transformed Q3 normalization 

factor. This criterion removed 15 ROIs that fell below the range and 1 ROI that fell above 

the range.

Preprocessing IMC data

IMC data were preprocessed as previously described[26] with some modifications. In brief, 

image data were extracted from MCD files acquired with the Fluidigm Hyperion instrument. 

Hot pixels were removed using a fixed threshold, the image was amplified two times, 

Gaussian smoothing was applied and, from each image, a square 500-pixel crop was saved 

as a HDF5 file for image segmentation. Segmentation of cells in the image was performed 

with ilastik[27] (version 1.3.3) by manually labelling pixels as belonging to one of three 

classes: nuclei (the area marked by signal in the DNA and histone H3 channels), cytoplasm 

(the area immediately surrounding the nuclei and overlapping with signal in cytoplasmic 

channels) and background (pixels with low signal across all channels). Ilastik uses the 

labelled pixels to train a random forest classifier using features derived from the image and 

its derivatives. Features used were the Laplacian of the Gaussian, Gaussian gradient 

magnitude, difference of Gaussians, structure tensor eigenvalues and the Hessian of 

Gaussian eigenvalues, each of which had Gaussian kernels of widths from 0.3 to 10 (37 

features in total). The outputs of prediction are class probabilities for each pixel, which were 

used to segment the image using CellProfiler[28] (version 3.1.8) with the 

IdentifyPrimaryObjects module. This was followed by the IdentifySecondaryObjects 

module, in which the identified nuclei are used to seed an expansion of the cell area to the 

area with the sum of the nuclear and cytoplasmatic probability map, and finally gaps in the 

identified cells are filled.

We assessed the quality of each acquired channel by computing a set of metrics for each 

channel across all images: the mean and squared coefficient of variation of each channel in 

the whole image and, in the area with cells, a difference between those values in the cells 

and the whole image (foreground versus background signal), an estimate of noise 

variance[29], a robust wavelet-based estimator of Gaussian noise s.d.[29,30], the fractal 

dimension (Minkowski–Bouligand approximation using the box counting method) and 

lacunarity of the image[31]. Across all 240 ablated images three were discarded based on 

these metrics and visual inspection.

Computing lacunarity and fibrosis score

To identify lacunae in the images, we used the mean of all channels in each image stack after 

performing histogram equalization per channel (skimage.exposure.equalize_hist). Images 

were thresholded with Otsu’s method (skimage.filters.threshold_otsu), successively dilated 

and closed (ski.morphology.binary_dilation/ski.morphology.closing) with a disk of 5-μm 

diameter to remove objects without holes and—for the objects with holes—objects within 
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the hole were removed on the negative image (scipy.ndimage.binary_fill_holes) and only 

objects with area larger than 625 pixels (252) were kept 

(skimage.morphology.remove_small_objects). To provide biological context for the single-

cell clusters we identified, we further classified each of the lacuna of healthy lungs into one 

of three classes: blood vessels (arteries and veins), airways and alveoli. Vessels showed a 

very thin lining of endothelial cells, followed by a thick layer of smooth muscle cells that are 

α-SMA+; the airway epithelium is lined by KRT8+KRT18+ cells; and alveoli are covered in 

alveolar epithelial cells that have various degrees of CD31, vimentin, KRT8 and KRT18. On 

the basis of this, we developed a semisupervised strategy for lacuna classification that had 

two stages: first each of the lacuna objects was dilated by a 15-pixel disk and the mean 

intensity of the channels above was quantified only in the dilated area, and these values were 

Z-score-transformed per image. We used these values in three ways, in which each provided 

a vote towards a lacuna being one of the three classes: absolute intensity, Z-score-

transformed intensity, ratio of α-SMA to KRT8 and KRT18. For each, a set of rules was 

enforced in which lacunae with higher values in α-SMA and low in KRT8 and KRT18 were 

labelled as vessels, and those with higher KRT8 and KRT18 were labelled as airways; the 

remaining lacunae were labelled as alveoli. Essentially, absolute and relative intensity of the 

markers determine the class, and the ratio of the two is the tiebreaker in case of 

disagreement. In a second phase, the suggested labels were reviewed by an expert and 

overruled if needed. In general, we found that the rules above were accurate with only a 

systematic bias to underclassify vessels (hence the need for supervision).

To develop a score for fibrosis, we were inspired by the Ashcroft score[23] in which the 

fraction of fibrotic tissue that occupies each image is translated into a score in a Likert scale. 

We quantified the fraction of the image occupied by collagen type I as thresholded by the 

Otsu method (skimage.filters.threshold_otsu), but in addition quantified the density of 

collagen per area unit by using the spectral counts given by the IMC data. The final score is 

the mean of a Z-score of the fraction covered by collagen and a Z-score of its intensity.

Cell-type identification

To identify cell types in an unsupervised fashion, we first quantified the intensity of each 

channel in each segmented cell that did not overlap image borders. In addition, for each cell 

we computed the morphological features ‘area’, ‘perimeter’, ‘major_axis_length’, 

‘eccentricity’ and ‘solidity’ (skimage.measure.regionprops_table). Values were Z-scored per 

image and cells with area values above −1.5, solidity above −1 and eccentricity below 1 

were kept. In addition, we calculated the sum of log(1 + x) signals in the IMC channels and 

kept cells with values between 2 and 7. We used Scanpy[32] (version 1.6.0) to perform a 

PCA, compute a neighbour graph on the PCA latent space, compute a UMAP[10] 

embedding (umap package, version 0.4.6) and cluster the cells with the Leiden 

algorithm[33] with resolution 1.0 (leidenalg package, version 0.8.1). Each cluster was 

manually labelled with a broad ontogeny and the channels that were most abundant in each 

cluster. These broad labels formed the basis of the metaclusters used to aggregate clusters on 

the basis of cell type and regardless of cellular state. Clusters without enrichment for any 

particular marker were not aggregated.
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To obtain an easy way to quantify the fraction of cells positive for a given marker, we used 

univariate Gaussian mixture models using scikit-learn[34] (version 0.23.0). For each 

channel, we performed model selection with models with two to six mixtures, selected the 

model on the basis of the Davies–Bouldin index[35] and labelled a cell as positive for a 

given channel if its value was in the top mixture (in cases in which the selected model had 

only two mixtures) or the top two mixtures (if the selected model had more). The analysis of 

the immune-centric IMC panel was performed in the same manner as the larger dataset, with 

the exception that the thresholds for cell filtering based on area, DNA intercalator intensity 

and solidity were performed automatically with Gaussian mixture models as described in the 

previous paragraph. Differential marker abundance was tested with a two-sided Wald test 

between healthy lung samples and samples from patients with COVID-19, and adjusted for 

multiple comparisons with the Benjamini–Hochberg FDR.

Quantification of cellular interactions

To quantify the degree and importance of intra- and inter-cell-type interactions, we started 

by constructing a region adjacency graph representing the interactions between cells, in 

which the edges are weighted by the Euclidean distances between cells, using scikit-

image[36] (version 0.17.2). A pairwise adjacency matrix between cell clusters was 

computed using networkx[37] (version 2.5). To get a degree of confidence on cellular 

interactions given the cell type abundance in each image, we permuted the cell cluster 

assignments 1,000 times and computed the difference between the log-normalized frequency 

of cell-type interactions in the real data versus the permuted (interaction scores). For 

visualization, we generated chord plots by aggregating the interaction scores of the images 

from each disease group or subgroups by the fraction of images with an interaction score 

was higher than 1. To discover differential interactions specific to a subgroup, we tested 

whether the distribution of interaction scores between disease groups or subgroups for each 

pairwise cell-type combination was different as described in ‘Analysis of IHC data’.

Analysis of IHC data

IHC images were segmented with Stardist[38] (version 0.6.1) with the 2D_versatile_he 

pretrained model and normalization to the unit space after capping the intensity to the 3rd 

and 98th percentiles. The image was decomposed into a haematoxylin and diaminobenzidine 

intensity channels using a preset colour space for the stains from the scikit-image 

package[36] (skimage.colour.hdx_from_rgb) and the intensity of each nuclei in both 

channels was calculated by a mean reduction. As the H-DAB and IHC signal in general does 

not linearly reflect the molecular stoichiometry of chemical reactions, we discretized the 

signal into positive and negative fractions per image by using Gaussian mixture models with 

model selection in the same way as for the IMC data. Cells were declared positive for a stain 

if they belonged to the group with highest signal. For the quantification of image lacunarity 

in IHC data we first normalized illumination in YCrCb colour space by applying a Gaussian 

blur with 5 pixels of s.d. per 300 × 300 size image and subtracting this background from the 

brightness channel (Y or luma). Images were converted back to RGB colour space and the 

inverted mean of the channels was segmented using the Otsu method. The lacunarity of the 

image is the fraction of the image covered in background. This was performed only for 

MPO-stained images within the alveolar space and not with airways or vessels.
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Analysis of targeted spatial transcriptomics data using GeoMx

To transform the gene set space into a cell-type space that would be compatible with the cell 

types identified in the IMC dataset, we performed single-sample gene set enrichment 

analysis (ssGSEA) using GSEAPY (version 0.10.2). For each ROI, gene set signatures used 

were from the molecular signatures database (MSigDB, version 7.2); in particular, the cell-

type signature gene sets (group C8) were used. ssGSEA enrichment values were Z-scored, 

and signatures containing the keywords ‘Epithelial’, ‘Mesenchym’, ‘Fibroblast’, 

‘Smooth_muscle’, ‘Club’, ‘CD4_T’, ‘CD8_T’, ‘NK_cell’, ‘Macrophage’, ‘Monocyte’, 

‘Neutrophil’, ‘B_cell’, ‘Mast’ and ‘Dendritic’ were grouped and averaged, generating an 

enrichment score for each ROI in each cell type. If a group was composed of less than three 

signatures it was discarded. For the pathway-based functional analysis of lung tissue, 

ssGSEA was performed on the Hallmark group of gene set signatures from MSigDB (group 

H) without further aggregation.

PCA of lung pathology and association with clinical parameters

To create the unsupervised landscape of lung pathology, we used PCA on a matrix of cell 

counts per cell cluster (features) and per image (observations), after previous normalization 

by total, scaling and centring, using the Scanpy implementation. The feature loadings were 

plotted on the same dimensions as the observations by scaling them by a constant factor of 

20. The correlation coefficient between each principal component and the continuous 

clinical variables was used as a relative measure of direction and strength of association. 

However, the significance of association was assessed by permuting the clinical variables 

106 times and using the mean and s.d. of the correlation coefficients from the permuted data 

as location and scale parameters, respectively, of a normal distribution, from which the 2 × 

CDF(|x|) was calculated as a two-tailed empirical P value. All principal components and 

clinical factors were permuted and the empirical P values were adjusted with the Benjamini–

Hochberg FDR method. We used the signed empirical, FDR-corrected P values as an 

effectively regularized measure of association between principal components and clinical 

factors. To project the clinical parameters into the PCA space, we fit Gaussian kernel density 

estimator functions to the distribution of the images in the first principal components, in one 

case without and another with the numeric values of the clinical variables as weights. The 

difference in predicted densities in the two-dimensional space between the weighted and 

unweighted kernels was used as a visual aid to identify regions in the latent space with 

relatively higher or lower fraction of samples with that clinical parameter.

Statistics and reproducibility

Unless otherwise stated in the figure legends, statistical testing was performed pairwise 

between groups with a two-sided Mann–Whitney U test, and adjusted for multiple 

comparisons with the Benjamini–Hochberg FDR method using pingouin[39] (version 0.3.7). 

Estimated values of central tendency, effect sizes and P values are provided in 

Supplementary Tables 3, 4. In the box plots in all figures, the box is the interquartile range 

(25th to 75th percentiles) and the centre line is the median (50th percentile). Experiments 

were not repeated independently, owing to the use of unique autopsy material.
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The following software versions were used: Python, version 3.8.2; numpy[40], version 

1.18.5; scipy[41], version 1.4.1; scikit-image[36], version 0.17.2; networkx[37], version 2.5; 

Scanpy, version 1.6.0; pingouin[39], version 0.3.7; CellProfiler[28], version 3.1.8; and 

Stardist[38], version 0.6.1.

Extended Data

Extended Data 1: 
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a) Heatmap depicting the values of each individual for all acquired clinical and demographic 

variables. Grey color indicates missing or non-applicable values. b) Time of death relative to 

start of symptoms in COVID-19 patients. c-d) Percentage of lacunar space attributed to a) 

vessel or b) epithelial space per image grouped by disease. e) Collagen type I in images from 

lungs of healthy individuals, or lung pathology patients and the associated fibrosis score. 

Images with lowest, median and highest fibrosis scores are depicted. f) Percentage of image 

covered in Collagen type I for each image grouped by disease group. g) Mean intensity of 

Collagen type I in lung IMC images grouped by disease group. h) UMAP projection of all 

single-cells where cells are colored by the intensity of each channel. For panels c), d), f), and 

g): ** p < 0.01; * p < 0.05, two-sided Mann-Whitney U-test, pairwise between groups, 

Benjamini-Hochberg FDR adjustment.
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Extended Data 2: 
a) Hierarchically clustered heatmap of discovered clusters (rows) and the mean intensity of 

each channel (columns) for each. The histogram on the left represents the absolute 

abundance of each cluster across all images. The dot-plot represents the relative abundance 

of each cluster in each disease group. b) Classification of lung lacunae. Representative 

images of healthy lung images with the mean of all channels and channels important to 

discern between vessels, airways and alveoli. The last column represents the final 

classification of lacunae into each of the three classes of structures. c) Representative spatial 
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context of three meta-clusters (rows). The column on the left displays the spatial distribution 

of the most predominant marker for each meta-cluster, while the column on the right 

represents segmented cells colored by the meta-cluster they were assigned to. d) Global 

abundance of structural and immune cells. Absolute (first row) and relative (second row) 

abundance of groups of cells dependent on disease group. ** p < 0.01; * p <0.05, two-sided 

Mann-Whitney U-test, pairwise between groups, Benjamini-Hochberg FDR adjustment.

Extended Data 3: 
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a-b) Absolute abundance of a) meta-clusters or b) clusters per image, grouped by disease 

group. c-e) Diversity of myeloid cells in the lung. c) UMAP representation of myeloid cells 

and the prominent markers associated with them. d) Phenotypic markers, spatial context and 

abundance in disease groups for each of the 6 myeloid clusters. e) Abundance of each 

myeloid cluster in the disease groups. Each point represents the abundance of that cluster in 

a given region of interest. For panels a), b), and e): ** p < 0.01; * p < 0.05, two-sided Mann-

Whitney U-test, pairwise between groups, Benjamini-Hochberg FDR adjustment.
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Extended Data 4: 
a) Schematic experimental design of new IMC panel and its application to healthy and 

COVID-19 lung tissue samples. b) UMAP representation of single-cells coloured by the 

intensity of the marker for cell-type defining markers and functional markers. c) Expresion 

of markers for each single-cell grouped by the cell type. d) Differential expression of 

functional markers between COVID-19 and Healthy lung for each cell type. e) Expression 

range represented as violinplots for the selected cell types from b), between COVID-19 and 

healthy lung. ** p < 0.01 two-sided Wald test, Benjamini-Hochberg FDR adjustment. f) 
Representative images of S100A9 and CD15 marker expression in Healthy lung and 

COVID-19. All scale bars represent 100 microns.
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Extended Data 5: 
a) Relationship between fibrosis score and fibroblast meta-cluster abundance visualized as a 

scatter plot. b-c) Immunohistochemistry for two markers across all disease groups. 

Hematoxylin-diaminobenzidine staining of b) CD163 or c) MPO in tissue from healthy and 

diseased lung matching the patients in the IMC cohort. d) Analysis of 

immunohistochemistry data. Example images demonstrating the process of color 

decomposition underlying the separation of the hematoxylin (nuclei) and diaminobenzidine 

(either CD163 or MPO) (H-DAB) in lung tissues. e) Example images demonstrating the 
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process of nuclei segmentation employed. The left column shows the original images in 

RGB space, the middle the resulting segmentation where each nuclei has a random color and 

the background is black, and the right column which overlays the borders of segmented 

nuclei in red over the original image. f) Example image section demonstrating the process of 

quantification of diaminobenzidine stain. The first panel shows the original image in RGB 

space, the second the nuclei segmentation, the thid the numeric value of the DAB stain for 

each nuclei, and the fourth a histogram of nuclei intensity in DAB stain modeled as a 

Gaussian mixture with two components used to discretize nuclei into negative or positive for 

DAB based on a threshold which best separates the two mixtures. g) Percentage of cells 

within an image which is positive for the respective DAB stain in IHC (left columns) or 

positive for the respective marker in IMC data (right column). h) Comparison of the 

estimated effect sizes of change between disease groups estimated from IMC data (x-axis) or 

IHC (y-axis) for the two stains. The Pearson correlation coefficient and its significance are 

indicated. i) Analysis of image lacunarity with IHC data. Representative images of 

lacunarity for healthy and late COVID-19 immunohistochemistry data. For each image the 

original image and the segmented background space is shown along with the lacunarity 

value for the image which is the fraction of the image without cells which represents the 

alveolar/capillary space. j) Quantification of lacunarity across MPO images in IHC. ** p < 

0.01; * p < 0.05, two-sided Mann-Whitney U-test, pairwise between groups, Benjamini-

Hochberg FDR adjustment. k) Comparison of the estimated effect sizes of change in 

lacunarity between disease groups estimated from IMC data (x-axis) or IHC (y-axis). For 

panels a), h), and k): r = Pearson coeffcient; p = its two-tailed p-value.
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Extended Data 6: 
Profiling of lung tissue with targeted spatial transcriptomics (GeoMx). a) Experimental 

design of GeoMx dataset. b) Representation of the procedure to choose regions of interest 

within the lung tissue to capture with GeoMx. c) Enrichment of cell type-specific gene set 

signatures for various cell types matching IMC across disease groups. d) Comparison of the 

estimated changes in cell type abundance with IMC (x-axis) and gene set signatures in 

GeoMx (y-axis). e) Viral load dependent on the time of death since beginning of COVID-19 

symptoms in an independent cohort. COVID-19 samples were categorized into “early” or 
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“late” death depending if death occurred before or after 15 days respectively. f) Schematic 

representation of the cohort of patients for which GeoMx data is available: in total 5 pateints 

and 231 ROIs. g) Estimated fractions of cell type composition by the CYBERSORT 

program between early and late COVID-19 death from the original publication. h) 
Comparison of the estimated changes in cell type abundance with IMC (x-axis) and GeoMx 

(y-axis) between late and early COVID-19 death. For panels d) and h): r = Pearson 

coefficient, p = its two tailed p-value; shaded area indicates 95th confidence interval. For 

panels c) and g): ** p < 0.01; * p < 0.05, two-sided Mann-Whitney U-test, pairwise between 

groups, Benjamini-Hochberg FDR adjustment.
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Extended Data 7: 
a) Percentage of cells positive for each IMC channel as classified by univariate Gaussian 

mixture models per disease group. b) Percentage of channel positive cells per each meta-

cluster. Values represent a column-wise Z-score. c) Absolute (top) and relative (bottom) 

frequency of SARS-CoV-2 Spike+ cells per disease group. d) Proportional abundance of 

SARS-CoV-2 Spike+, IL6+, pSTAT3+ cells across disease groups. e) Proportional amount 

of SARS-CoV-2 Spike+ cells grouped per meta-cluster and disease group. f) Proportional 

frequencies of cells positive for SARS-CoV-2 Spike+ cells per meta-cluster and disease 
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group. g-h) Heatmap of single g) macrophage or neutrophils h) (columns) and functional 

markers (rows) with cells grouped by SARS-CoV-2 Spike positivity. i-j) Intensity of IMC 

channels per single-cell dependent on SARS-CoV-2 Spike positivity for i) macrophages and 

j) neutrophils. k) Mean channel intensity for all metaclusters dependent on SARS-CoV-2 

Spike positivity. For panels c), d), and f): ** p < 0.01; * p < 0.05, two-sided Mann-Whitney 

U-test, pairwise between groups, Benjamini-Hochberg FDR adjustment.

Extended Data 8: 
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a) Exemplary description of the derivation of a Region Adjacency Graph (RAG) for a given 

lung IMC image. The leftmost image depicts the DNA channel marking nuclei, the 

centermost the identified meta-clusters, and the rightmost the RAG represented as edges 

between adjacent cells. Scale bar represents 100 microns. b) Observed values of pairwise 

cluster interactions over the expected values for the same cellular interactions for the image 

in a). c) Pairwise interactions between meta-clusters aggregated by the mean value across 

images depending on the disease group. d-f) Pairwise cellular interactions between meta-

clusters dependent on SARS-CoV-2 Spike positivity: d) uninfected cells; e) between SARS-

CoV-2 Spike positive and negative cells; f) between infected cells. g-i) Statistical testing of 

differential interactions of infected cells and other cell types and uninfected cells and other 

cell types, dependent on the SARS-CoV-2 Spike positivity of the second cell type: g) both 

SARS-CoV-2 Spike- and SARS-CoV-2 Spike+ cells; h) only SARS-CoV-2 Spike+ cells; i) 

only SARS-CoV-2 Spike- cells. The rows display a volcano plot where the x-axis display the 

difference in interaction between SARS-CoV-2 Spike+ and SARS-CoV-2 Spike- cells and 

the y-axis the -log10 Mann-Whitney U-test FDR-adjusted p-value.
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Extended Data 9: 
a) Enrichment scores for hallmark pathways in MsigDB across all ROIs in the GeoMx 

dataset. b-e) Enrichemnt score of selected pathways from a) across disease groups but 

dependent on the location within the lung from which they were obtained. ** p < 0.01; * p < 

0.05, two-sided Mann-Whitney U-test, pairwise between groups, Benjamini-Hochberg FDR 

adjustment. f-g) Pairwise Pearson correlation of cell type abundances between f) IMC 

samples g) disease groups. h-j) h) UMAP, i) Diffusion map or j) PCA projection of IMC 

images colored by disease group, subgroup or sample ID.
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Extended Data 10: 
a) Correlation coefficients (left) or FDR-adjusted p-values (center) and signed p-values 

(right) demonstrating the association between demographic, pathologic, and clinical factors, 

and principal components. b) Pairwise correlation of demographic, pathologic, and clinical 

factors across all principal components. Matrix was clustered using average linking and 

pearson correlation as distance metric. Values used were signed FDR-adjusted p-values. c) 
Pairwise correlation of demographic, pathologic, and clinical factors across samples (co-

occurrence). Matrix was clustered using average linking and pearson correlation as distance 
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metric. d) Same as b) and c) where the top triangular matrix is from b) and the lower from 

c). The order of the rows and columns is the same as b). e) Projection of clinical factors onto 

pathology landscape. Kernel density estimation for various clinical and demographic factors 

weighted by the factor values, unweighted, or their difference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Structural and immunological disorder of lung infection. a, Composition of lung-infection 

cohort, and schematic procedure to acquire highly multiplexed spatially resolved data with 

IMC from post-mortem lung samples. b, Total lung weight per disease group measured at 

autopsy. n = 16 biologically independent samples. c, Lacunar space for each acquired IMC 

image as a percentage of image area. d, Fibrosis score for each acquired IMC image. e, 

Representative images illustrating the lacunar and parenchymal structure of healthy lungs, 

and lungs from patients with ARDS or COVID-19. f, Collagen in images from healthy lungs 

and lungs from patients with ARDS or COVID-19 and the associated fibrosis score. Images 

with lowest and highest fibrosis scores are depicted. g, Uniform manifold approximation and 

projection (UMAP) of all cells, and the metacluster of each cell. Centroids are shown as 

squares. h, Mean intensity of each marker in each metacluster. Histogram indicates 

metacluster abundance. Heat maps on left indicate relative proximity to lung structures or 

abundance per disease group. AT2, alveolar type 2 cells; KRT8/8, KRT8 and KRT18; NK, 

natural killer. i, Spatial distribution of immune cells in heathy lungs and lungs from a patient 

with COVID-19. j, Left, abundance of neutrophils (top) and macrophages (bottom) in each 

disease group. Right, macrophages divided into alveolar (top) and interstitial (bottom) 

subsets. k, Abundance of mesenchymal cells (left) and fibroblasts (right) in each disease 
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group. l, Amount of change (effect size) pairwise between all disease groups (n = 15) in 

MPO (left) and CD163 (right) markers between IMC (x axis) and immunohistochemistry 

(IHC) (y axis). m, Amount of change between late and early COVID-19 groups, pairwise for 

each cell type (n = 24), as estimated by IMC (x axis) and targeted spatial transcriptomics (y 

axis) for the same (left) and independent (right) cohorts. For c, d, j, l, m, n, n = 237 images 

from 27 biologically independent samples. **P < 0.01; *P < 0.05, two-sided Mann–Whitney 

U test, pairwise between groups, Benjamini–Hochberg false-discovery rate (FDR) 

adjustment. In o, p, r, Pearson correlation coefficient; P, two-sided P value; shade indicates 

95th confidence interval. Scale bars, 100 μm (e, f, k). Box plots show interquartile range 

(25th to 75th percentiles) with centre line as the median (50th percentile).
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Figure 2: 
Cellular tropism of SARS-CoV-2 infection. a, Absolute abundance of S+ cells for lungs of 

patients without COVID-19 (grey) or with COVID-19 (red). b, Distribution of S+ cells 

across metaclusters in COVID-19. Inset displays intensity of KRT8/18 and S+ for single 

cells from non-COVID-19 (left) and COVID-19 (right) groups. c, Phenotype of alveolar 

epithelial cells in COVID-19, depending on levels of S. d, Intensity of differential markers 

between cells dependent on S levels. e, Distribution of S signal in a spatial context. 

Structural, cell-type-specific and functional markers are displayed alone or in combination. 

For the green channel in the images in the rightmost column, the S channel was multiplied 

with KRT8/18 or CD68 to highlight T cells that are positive for both markers. Scale bar, 200 

μm (main panels), 50 μm (magnified images on right (unless otherwise indicated)). f, g, 

Differential interactions in healthy lung and lungs of patients with COVID-19 (f) or between 

early and late COVID-19 (g). h, Fibroblasts and macrophages from early and late 

COVID-19. Scale bars, 200 μm. i, j, Proportion of cleaved CASP3+ macrophages (left) or 

neutrophils (right) (i), and C5b–C9+ epithelial (left) or endothelial (right) cells (j), for each 

disease group. k, Deposition of C5b–C9 in epithelial cells in healthy lung and lungs from 

patients with COVID-19. Scale bars, 100 μm. In a, i, j, n = 237 images from 27 biologically 

independent samples; **P < 0.01; *P < 0.05, two-sided Mann–Whitney U test, pairwise 
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between groups, Benjamini–Hochberg FDR adjustment. In f, g, P values are from two-sided 

Mann–Whitney U test with Benjamini–Hochberg FDR adjustment. Box plots show 

interquartile range (25th–75th percentiles); centre line is median (50th percentile).
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Figure 3: 
A data-driven and clinically annotated landscape of lung pathology. a, Principal component 

analysis (PCA) of all IMC images. Points represent images, and are coloured by disease 

group. Arrows are vectors for each cell cluster, and indicate the area in which each cell type 

is most abundant. b, Microanatomy and immune content of the disease groups. Scale bar, 

100 μm. c, Volcano plot showing strength of association between clinical parameters and 

principal component (PC)1, and significance. WBC, white blood cell. d, Projections of white 

blood cell count (measured at admission) (top left), days of disease (top right), lung weight 

(bottom left) and alveolar type-2 cells with fibroblasts (bottom right) onto the two-

dimensional PCA space. e, Similarity of landscape of IMC data. Pairwise correlation of 

demographic, clinical and pathological variables in the association with the principal 

components. Matrix rows and columns are the same. Highlighted groups of variables reflect 

hierarchically clustered groups of variables explaining the IMC data. In c–e, an asterisk 

indicates that the clinical parameter was measured at admission.
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