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Abstract—Reconstructing the phylogenetic relationships between species is one of the most formidable tasks in evolutionary
biology. Multiple methods exist to reconstruct phylogenetic trees, each with their own strengths and weaknesses. Both
simulation and empirical studies have identified several “zones” of parameter space where accuracy of some methods can
plummet, even for four-taxon trees. Further, some methods can have undesirable statistical properties such as statistical
inconsistency and/or the tendency to be positively misleading (i.e. assert strong support for the incorrect tree topology).
Recently, deep learning techniques have made inroads on a number of both new and longstanding problems in biological
research. In this study, we designed a deep convolutional neural network (CNN) to infer quartet topologies from multiple
sequence alignments. This CNN can readily be trained to make inferences using both gapped and ungapped data. We show
that our approach is highly accurate on simulated data, often outperforming traditional methods, and is remarkably robust
to bias-inducing regions of parameter space such as the Felsenstein zone and the Farris zone. We also demonstrate that
the confidence scores produced by our CNN can more accurately assess support for the chosen topology than bootstrap
and posterior probability scores from traditional methods. Although numerous practical challenges remain, these findings
suggest that the deep learning approaches such as ours have the potential to produce more accurate phylogenetic inferences.

[Supervised machine learning; convolutional neuronal network; phylogenetics.]

Reconstructing the historical relationships among
biological sequences remains one of the most important
challenges in evolutionary biology. To reconstruct a tree,
it is first necessary to acquire orthologous (Koonin 2005)
and/or paralogous (Hellmuth et al. 2015) sequences
from a sample of species or populations. Generally,
the next step involves producing a multiple sequence
alignment (MSA) to compare orthologous sequence
characters, although inrecent years anumber of methods
that bypass explicit orthology and alignment searches
have been proposed (Hohl and Ragan 2007; Bonham-
Carter et al. 2014). Finally, any one of a plethora of
tree reconstruction methods can be employed to infer
a tree from an MSA. Determining the topology of
a tree has been shown to be NP-hard for at least
some formulations of the problem (Roch 2006), and the
space of possible solutions grows double-factorially with
increasing numbers of sequences (Felsenstein 1978b). We
are thus limited to methods that utilize various heuristics
and/or make assumptions about the process of sequence
evolution to efficiently traverse tree space, including
maximum parsimony (MP: Farris 1970; Fitch 1971),
distance-based approaches such as neighbor-joining
(NJ: Saitou and Nei 1987), maximum likelihood (ML:
Felsenstein 1981), and Bayesian inference (BI: Rannala
and Yang 1996; Li et al. 2000; Huelsenbeck and Ronquist
2001). Although none of these methods are guaranteed
to produce the true tree topology, one can evaluate and
compare their effectiveness.

Supervised machine learning algorithms represent
an alternative framework for drawing inferences
from data, including sequence data. These methods

have been successfully applied to various areas of
biological research (Tarca et al. 2007), and have recently
been introduced to evolutionary biology—population
genetics in particular (reviewed in Schrider and Kern
2018). In brief, given some multivariate observation x
that is associated with a response variable y, supervised
machine learning seeks to create a function f(x) that
predicts y. This is achieved through a process called
training, wherein a “training set” of observations
with known response variables are examined by an
algorithm that creates and tunes the function f to
minimize the disparity between f(x) and y on this
set. Typically, x is summarized by a vector of values,
or features. Convolutional neural networks (CNNs:
Lecun et al. 1998), a class of deep learning algorithms
(Goodfellow et al. 2016), are able to learn to extract
informative features from data arranged in a matrix or
higher-dimensional tensor to make a prediction; thus
CNNs do not require a predefined feature vector. CNNs
have proved extremely effective in analyzing image data
(Krizhevsky et al. 2012) and have recently been shown
to achieve impressive accuracy on a number of tasks
in population genetic inference when applied to MSAs
(Chan et al. 2018; Flagel et al. 2018). CNNs and other
deep learning methods may thus prove to make sizeable
gains in a number of inference tasks involving biological
sequence data.

In this study, we propose a novel approach applying
CNNs to phylogenetic inference. We show that CNNs
can be trained to extract phylogenetic signal from an
MSA and use it to accurately reconstruct unrooted
gene tree topologies (i.e. here our y is a tree topology)
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when given an alignment of four sequences. We
adopt a classification approach, wherein the CNN is
trained to discriminate among discrete data classes
which in this case correspond to the three possible
tree topologies. We find that our CNN approach
is highly accurate on simulated data, can naturally
include indel information, is fairly robust to classical
biases affecting tree reconstruction and has several
other benefits over existing methods. Below, we
describe our methodology and the CNN'’s performance
in detail before concluding with a brief discussion
of limitations, potential extensions, and outstanding
practical challenges for adapting deep neural networks
to phylogenomics.

METHODS

MSA Simulations

For the 4-taxon case, there exist exactly three possible
unrooted tree topologies: ((A,B),(C,D)), ((AC),(B,D)),
and ((A,D),(B,C)) in Newick notation. We simulated an
equal number of MSAs from each of these topologies
using INDELible (Fletcher and Yang 2009), which
allows for the inclusion of indels. The MSA length
was set to 1000 sites unless stated otherwise. To
construct a training set consisting of trees with a
variety of branch-length configurations we sampled
uniformly from a “branch-length space” (BL-space) that
encompasses a wide array of branch lengths and nodal
rotations (see Supplementary Text and Fig. S1 available
on Dryad at http://dx.doi.org/10.5061/dryad.ct2895s).
Tree branch lengths are expressed in expected number
of substitutions per site.

With the tree topology and branch lengths in
hand, sequences were generated under a randomly
assigned Markov model of nucleotide substitution
using INDELible. We used five nested models of
increasing complexity: JC (Jukes and Cantor 1969), TIM,
TIMef (Posada 2003), GTR (Tavaré 1986), and UNREST
(Yang 1994) accommodating rate heterogeneity along
the sequence by drawing the shape parameter of a
continuous gamma distribution (+I') from U(0,4). We
also allowed the proportion of invariable sites (p;,,) in
an MSA to vary, drawing this parameter (+I) from U(0,1).
We note that the average expected substitutions per site
(i.e. the branch length) is specified for variable sites only,
not for the entire MSA. For example, when simulating
an MSA with p;,,,= 0.5, the specified branch lengths refer
only to the 50% of sites that are free to vary whereas the
remaining sites have branch lengths of zero. Substitution
rate parameters and nucleotide frequencies were drawn
from U(0,3) and a four-category Dirichlet distribution
(a = 30), respectively. Finally, when including indels in
the simulation, we used identical fixed insertion and
deletion rates (Aj= Ap= 0.01) and drew indel lengths
from a Zipf distribution with a = 1.5, similar to empirical
estimates (Vialle et al. 2018), and a maximum indel
size of 50. For each topology class, we simulated either

5 x 10%, 1.5 x 10°, or 3 x 10° MSAs for training and

1.5 x 10* MSAs for the validation and test data sets.
In addition, we simulated test sets consisting of 3000
trees from each of 13 regions of the tree-shape space
that may potentially cause biased or more erroneous tree
topology inference, including the Farris and Felsenstein
zones that have long been known to negatively affect
performance of classical methods (Swofford et al. 2001).
The simulation parameters for each of these were the
same as those stated above with branch lengths drawn
from the distributions shown in Table 1. In addition,
we simulated trees within so-called “twisted” Farris
zone (McTavish et al. 2015) with asymmetrical branch
lengths as well as trees from different regions that may
potentially cause tree estimation to be less accurate.
Throughout this article, we denote sister branches or
their branch lengths on the left side of the tree as Bg
and By, those on the right side as B3 and By, and the
internal branch as Bs. The overall pipeline is summarized
in Figure 1.

The internal branch length (Bs) for the Farris and
Felsenstein zones was drawn from U(0, 0.05) (Table
1). To investigate effect of internal branch length on
each method’s performance in more detail, we also
created variants of the Farris and Felsenstein zones,
called “extended” where Bs was drawn from the
interval U(0, 0.5). Previous simulation studies suggest
that methodological biases primarily arise when an
internal branch appears to be very short, i.e. internal
branch length <0.05 (Swofford et al. 2001). However,
as these studies followed overly simplified simulation
approaches (e.g. MSA simulation under JC model only;
Siddall 1998), this conclusion may not hold for MSA
data sets generated using more complex simulation
strategies that incorporate various substitution models,
rate heterogeneity, varying proportions of invariant sites
and indels as we do in this study.

CNN Architecture and Training

This section describes the structure of our neural
network and training procedure, and thus many of
the concepts, herein, may be foreign to some readers.
We refer those interested in an accessible overview of
CNNss in the context of sequence alignments to Flagel
et al. (2018). We implemented our CNN in Python using
version 2.2.4 of the Keras API (https:/ /keras.io/) with
TensorFlow 1.12.0 (Abadi et al. 2016) as the backend.
To extract phylogenetically informative features from
an MSA, we used a 1D convolution-pooling strategy.
We represented each MSA as a matrix with rows
corresponding to sequences and columns to sites in the
alignment, and with each character in the alignment
encoded as a number (“A”:0, “T":1, “C":2, “G":3,
“-:4), and encoded the MSA’s associated topology as a
numeric class label. As indels result in MSAs of varying
lengths and our CNN requires all input matrices to
have equal size, shorter alignments were extended by
“padding” the MSA with additional columns wherein
each value was arbitrarily set to —15 until the MSA’s


https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz060#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz060#supplementary-data
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FIGURE 1. Summary of the simulation and testing procedures. The top branch of the diagram represents the steps that were used to simulate
data sets with various branch-length configurations (Table 1) to test each method’s performance. The bottom branch of the diagram represents
the steps that were used to simulate training and validation data sets to train the CNN, and the initial test data set was used to estimate accuracy
for each method. The training, validation and test data sets were simulated using the procedure described in Supplementary Text. BI = Bayesian
inference; BS = bootstrap; CNN = convolutional neuronal network; CPP = class membership posterior probability; ML = maximum likelihood;
MP = maximum parsimony; MSA = multiple sequence alignment; NJ = neighbor-joining; PP = posterior probabilities. The tree shows the branch
labeling convention that was used throughout the article, where numbers in circles correspond to branches By, By, B3, B4, and Bs.

TaBLE 1.  Branch-length distributions for test sets designed to assess accuracy and the presence of bias in topology inference
Region B By Bs By Bs
Truncated exponential All TExp(10,0,0.5)

Farris zone U(01,05 U(0.1,05) U(@©,0.05)  U(O,0.05) U(0, 0.05)
Twisted Farris zone u(.1,0.5) B;+Bs Bs 2Bs u(o0, 0.05)
“Extended” Farris zone u(.1,05) U(.1,0.5) U(,0.05) U(0,0.05) u(o, 0.5)
Felsenstein zone u(.1,0.5) U(0,0.05) U(0.1,05) U(0,0.05) (o0, 0.05)
“Extended” Felsenstein zone  U(0.1,0.5) U(0,0.05) U(0.1,0.5) U(0,0.05) u(o, 0.5)
Long branches u(.1,05) U(.1,05) U@©105) U(@O10.5) u(o, 0.5)
Extra-long branches u(.5,1) u(.5,1) u(.5,1) u.5,1) u, 1)
Single long branch u(.1,05) U(,0.05) U(,0.05) U(0,0.05) u(o, 0.5)
Short branches u(,0.05) U(0,0.05) U(0,0.05) U(0,0.05) u(o, 0.5)
Extra-short branches Al U(0, 0.01)

Single short branch u(,0.05) U(.1,0.5) U(@O.1,05) U@10.5) u(o, 0.5)
Short internal branch u(o, 0.5) u(o, 0.5) u(o, 0.5) u(o, 0.5) U(0,0.05)

BL-space Sampled from wiBeta(a=p = 0.1) + wpBeta(a=p = 0.5) + w3Beta(a=p = 1) as described in Supplementary Text

Notes: B1 and B, and B3 and B4 denote sister branches on the left and right sides of a tree, respectively, whereas Bs denotes the internal branch.
TExp denotes truncated exponential distribution. Beta denotes beta distribution. A mixture of beta components with equal weights (i.e. wi=
wr= w3 = 1/3) was used to generate the space from which samples were drawn as described in the Supplementary Text. U denotes uniform
distribution. B1+Bs is a sum of two uniform random variables which follows the Irwin-Hall distribution.

length matched that of the longest alignment in our
simulated data. Our CNN consisted of eight convolution
layers with ReLU activation (Nair and Hinton 2010) and
each followed by an average-pooling step, one 1024-
node fully connected layer with ReLU activation and
an output layer with three nodes corresponding to
the three possible topology classes. We used softmax
as the activation function for our output layer to
assign a class membership probability to each of the
three classes. We used categorical cross-entropy as
our loss (i.e. error) function. During training we used
the adaptive moment estimation (Adam) optimizer
(Kingma and Ba 2014).

We set the filter size for the first convolution operation
to 4 x 1, reasoning that it would potentially capture
a phylogenetic signal by striding across the MSA and
examining one column of the alighment at a time.
The total number of filters was set to 1024 for the
first and second convolutional layer and set to 128 for
the remaining convolutional layers. We decided upon
1024 filters because this number is greater than the
number of possible columns in an MSA with four
DNA sequences allowing gap characters, and we had
decided (arbitrarily) to limit these values to powers of
two. Additional network hyperparameters were chosen
somewhat arbitrarily after assessing performance of
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several different network architectures. We also used
average-pooling rather than the more common max-
pooling operation given that Flagel et al. (2018) found
this approach to be effective when applied to population
genetic alignments. The first average-pooling operation
size was set to 1 x 1 (i.e. no pooling), then all the
subsequent convolution steps had equal sizes of 1 x 2
and pooling stepshad equal sizesof1 x 4,1 x 4,1 x4,1 x
2,1 x2,and 1 x 1. We had also experimented with fewer
layers but noticed that “deeper” CNN architectures, i.e.
with more convolutional layers, showed better accuracy.
To avoid possible internal covariate shift and model
overfitting, we used batch normalization (loffe and
Szegedy 2015) followed by dropout regularization with
a rate of 0.2 for each convolution layer as well as
for the hidden layer. During training in most of the
cases, we used a minibatch size of 150 MSAs. The
detailed network architectures along with the training
time are in Supplementary Text available on Dryad. The
training procedure was run for a number of iterations
determined by the stopping criterion (improvement in
validation loss of the current iteration over the best
prior iteration <0.001) and patience value (the number
of consecutive iterations that must satisfy the stopping
criterion before halting training). We observed that the
results of our training runs were fairly stable, with a
given CNN architecture consistently achieving the same
final accuracy on the validation set. To further examine
performance during training, we visualized the surface
of the loss function and training trajectories across
the CNN’s parameter space (i.e. the possible values of
all weights in the network) as described below. This
revealed that there appear to be many readily reachable
local minima of the loss function that all have roughly
equivalent values (Supplementary Fig. S2 available on
Dryad), lending further support to the notion that
training results should be fairly stable, at least for the
data sets and architectures examined here.

Testing Procedures

We sought to compare the performance of CNN
vs. conventional tree inference methods, namely MP,
NJ, ML, and BI using our simulated test data sets.
MP reconstructions were performed using PHYLIP’s
dnapars program v3.696 (Felsenstein 1989) in the
interface provided by SeaView v4.7 (Gouy et al
2010). ML analysis was implemented in IQ-TREE v1.6.5
(Nguyen et al. 2015) restricting model selection to only
the models that were used to simulate MSAs, i.e. JC, TIM,
TIMef, GTR, and UNREST (equivalent to the 12.12 model
in IQ-TREE) with +I and/or +I", where the continuous
rate gamma distribution was approximated by discrete
gamma with eight categories (G8). For each MSA, ML
search was performed exhaustively evaluating each of
the three possible unrooted topologies. The NJ trees
were generated using the distance function of the best-
fit model in IQ-TREE. Note that ML and NJ approaches
infer a rooted tree under the UNREST model, thus
every such estimated tree was unrooted for further

comparisons. Bayesian tree reconstruction was carried
out in ExaBayes v1.4.1 (Aberer et al. 2014) under default
parameters starting with a random initial topology.

Three independent MCMC chains were run for 10°
generations each with two coupled chains. Tree support
was assessed by standard nonparametric bootstrap
(Felsenstein 1985) for MP, NJ, ML, and CNN, and by
posterior split probability for BI. We also assessed tree
support from the CNN by simply using the estimated
posterior class membership probabilities emitted by
the output layer. Then, for each method we calculated
topological accuracy as the number of correctly returned
topologies divided by the total number of inferences
performed. See Supplementary Text available on Dryad
for exact commands that were used to infer topologies.

RESULTS AND DISCUSSION

CNNs Are More Accurate Than Standard Methods on
Gapped and Ungapped MSAs within BL-Space

Initially, we trained our CNN on gapped and
ungapped training sets each comprised of 15 x 10* MSAs
(5 x 10* MSAs for each of our three possible topologies,
with each MSA having 1000 sites prior to adding indels).
Next, for our initial evaluation, we assessed the CNN's
accuracy on an independent test set generated in the
same manner as our training data. We compared the
accuracy of our CNN on simulated test data (1.5 x 10*
MSAs per topology) to that of several other standard
tree estimation methods, namely MP, NJ, ML, and BI.
Strikingly, the CNN was substantially more accurate
than the other methods (McNemar test, P<1 x 10710
for each comparison with the CNN) when applied
to gapped MSAs (Fig. 2). However, this was not the
case when testing methods on ungapped MSAs: here
accuracy of the CNN (0.765), which was in this case
also trained on ungapped MSAs, was nearly identical
to the best performing method, BI (accuracy = 0.765,
McNemar test, P = 0.918). Nevertheless, the CNN’s
accuracy improved with increasing amounts of training
data and obtained higher accuracy (0.777; Fig. 2) than all
other methods when trained on either 1.5 x 10° or 3 x 10°
ungapped MSAs per topology. The difference with the
next best method (BI) was not significant (McNemar test,
P=0.08) with 1.5 x 10° training examples but significant
(McNemar test, P=0.013) with 3 x 10° training examples.
Although the results of this initial evaluation within our
BL-space are encouraging, we must bear in mind that
accuracy can vary within this space. Moreover, our BL-
space was constructed in part to expose CNN to many
branch-length configurations including some extreme
configurations which one may not expect to commonly
encounter in real data sets. Thus in the next section, we
test each method on a number of more narrowly defined
tree branch-length configurations to gain a more detailed
picture of our method’s strengths and weaknesses.
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FIGURE 2. Accuracy of tree topology inference within the test set. The violin plots show the accuracy for different tree estimation methods

achieved on gapped and ungapped (15,000 MSAs each) data sets. The distribution shown in each violin plot is obtained by bootstrap resampling
from the test data set and calculating accuracy on each bootstrap replicate. The white dots represent the accuracy point estimate (across the
complete test set) whose value is indicated above each violin. The number after CNN (i.e. 50, 150, or 300k) indicates number of MSAs per topology
that were used to in training. BI = Bayesian inference; CNN = convolutional neuronal network; ML = maximum likelihood; MP = maximum

parsimony; NJ = neighbor-joining.

We also investigated the relationship among several
simulation parameters and inference accuracy. When
sequences are very closely related, the MSA may consist
largely of invariant sites, which are phylogenetically
uninformative. One of the parameters of our simulations
was the fraction of sites that were not allowed to vary
(Pinw; see Methods section). We found that for each
method, misclassified MSAs from the gapped test set
had a larger value of p;,;, on average (Wilcoxon rank
sum test, P< 1 x 10710 for each standard method and
P = 6135 x 107° for the CNN), but this difference is
far less pronounced for the CNN (Fig. 3a). However, in
the case of the ungapped test set, MSAs misclassified
by all methods including the CNN showed a similar
bias toward larger values p;,;;, on average (Wilcoxon rank
sum test, P<1x10"10 for each method; Fig. 3b). The
gamma shape parameter, a, which governs mutation rate
heterogeneity across the MSA does notimpact the CNN'’s
ability to infer the correct topology (Wilcoxon rank sum
test, P = 0.91) whereas for all other methods misclassified
MSAs had elevated values of o (Wilcoxon rank sum test,
P <1 x 107 for all standard methods; Fig. 3c). Again, in
the case of ungapped data each method showed a similar
bias, with larger a in misclassified versus correctly

classified examples (Wilcoxonrank sum test, P <1 x 10~>
for all methods; Fig. 3d). Together these results suggest
that CNNs are more robust to higher values of p;;;, and a
than traditional methods for gapped MSAs. In addition,
we note that the DNA substitution model does not affect
any method’s performance (Fisher’s exact test, P> 0.05
for all methods).

Overall these results suggest that our CNN can
effectively extract phylogenetic signal. This is especially

so for the CNN trained on gapped MSAs, which easily
outcompeted the other methods, all of which treat
gaps as missing data. Despite their potential to provide
unambiguous phylogenetic information (Rokas and
Holland 2000; Dessimoz and Gil 2010) due to reduced
homoplasy relative to substitutions (Ashkenazy et al.
2014), approaches incorporating indels are controversial
and not generally utilized in practice (Ogden and
Rosenberg 2007; Warnow 2012). When our CNN is
trained on gapped data it learns to detect phylogenetic
signal from both indels and substitutions present in an
MSA. To further examine this property of the CNN, we
simulated MSAs of length 1000 using trees with branch
lengths drawn from U(0, 0.5) with no substitutions (i.e.
Piny =1) allowing only indels. Under these conditions, all
standard methods fail to achieve consistency (Warnow
2012; Truszkowski and Goldman 2016), and MP, NJ,
ML, and BI all had accuracy of ~0.33 or lower—no
better than random guessing. In contrast, the CNN'’s
accuracy on this set was 0.927. To test a scenario toward
the opposite extreme wherein every site is informative,
we simulated MSAs of length 1000 allowing all sites to
vary (pinp=0) under the JC model, including indels, and
using trees with all branch lengths drawn from U(0, 0.5).
Under these conditions, all methods exhibited very high
accuracy (MP: 0.962, NJ: 0.976, ML: 0.975, BI: 0.978, and
CNN: 0.959).

These results further suggest that our CNN, when
trained on gapped MSAs, is in principle able to
incorporate indel information into its phylogenetic
inference. Because the CNN implicitly constructs
substitution and indel process models by examining
the simulated training data, alignment error could
impact inference in practice. This could be handled



226

SYSTEMATIC BIOLOGY

VOL. 69

a) |Invariant sites (+| model)

correct incorrect

b) Invariant sites (+ model)

1.00 1.00
0.75 1 0.751
0.251 0.251
0.00 1 . . 0.001 '

BI CNN CNN

€) Gamma (+I' model) d) Gamma (+I" model)
5 5-
4- Wm@m m@m 4- W@@@@@@m
" BI CNN " CNN

FIGURE 3.

Differences in parameter values between correct and incorrect classifications for each method. The distribution of the parameter

governing the fraction of invariable sites (p;,) for correctly and incorrectly inferred trees for a) gapped and b) ungapped MSAs. The distribution
of gamma rate parameter (o) for correctly and incorrectly inferred trees for c) gapped and d) ungapped MSAs. The black dots of each violin plot
indicate median of the distribution. These results were obtained using 15,000 simulated MSAs from BL-space. BI = Bayesian inference; CNN =
convolutional neuronal network; ML = maximum likelihood; MP = maximum parsimony; NJ = neighbor-joining.

in one of two ways: 1) by incorporating alignment
errors into the training set (e.g. by running a sequence
aligner on training data prior to training), or 2) judging
the reliability of indels within the MSA and masking
particular sites or omitting entire MSAs appearing to
be unreliable (e.g. following Castresana 2000; Misof and
Misof 2009; Ashkenazy et al. 2014; Fujimoto et al. 2016).
Another potential problem is model misspecification:
accuracy could suffer if indel rates/lengths differ
dramatically between simulated training data and real
data sets. Future work will have to investigate strategies
to train a network that is robust to such misspecification,
perhaps by incorporating a variety of indel models into
training; additional steps to train neural networks to be
insensitive to the proclivities of empirical data may also
be necessary (discussed in Concluding Remarks section
below).

Topology Estimation under Branch-Length Heterogeneity

There exist several regions in the branch-length
parameter space where common methods fail to produce
the correct topology. The bias known as long-branch
attraction (LBA) is the inability of MP (Felsenstein 1978a)
and possibly Bayesian (Kolaczkowski and Thornton
2009; Susko 2015) methods to estimate the correct
topology in the presence of long nonadjacent branches
(i.e. the Felsenstein zone; Huelsenbeck and Hillis 1993);
these methods tend to erroneously place such long
branches together and thus favor an incorrect topology
(Table 1; Figs. 4c and 5c). Another region in the branch-
length space, called the Farris zone (Siddall 1998),
causes ML methods to exhibit reduced accuracy on

topologies that have adjacent long branches and causes
MP to correctly infer trees more often as a result of
LBA which, in this case, biases it toward the correct
topology (Table 1; Figs. 4a and 5a); we note that this
bias will diminish when using longer alignments due
to ML's property of consistency (Swofford et al. 2001). In
addition, we assessed the performance of all methods
in the asymmetrical (“twisted”) Farris zone (Table 1;
Figs. 4b and 5b), where a single incorrect topology is
favored by NJ if the corrected distance function is convex
(McTavish et al. 2015). We also examined trees with
a short internal branch (<0.05) but external branches
lengths varying along the interval [0, 0.5] (Table 1;
Figs. 4d and 5d).

We primarily focused on these four regions of
known bias (Figs. 4 and 5) but also examined several
other regions of potential bias on test sets of gapped
(Table 1; Supplementary Fig. S3 available on Dryad) and
ungapped (Table 1; Supplementary Fig. S4 available on
Dryad) MSAs. The accuracy estimates for each region
are summarized in Table 2. In most of these regions, our
CNN exhibited accuracy roughly matching or exceeding
that of the best performing traditional method, whereas
each other method failed catastrophically in at least one
of these regions (Figs. 4 and 5 and Supplementary Figs.
53, 54 available on Dryad). The two exceptions where
the CNN exhibited markedly reduced accuracy were
the Felsenstein zone (Figs. 4 and 5; Table 2) and the
“extra-short branches” region where all branch lengths
vary uniformly along [0, 0.01] (Table 2; Supplementary
Figs. S3 and S4 available on Dryad). Specifically, in the
Felsenstein zone, the CNN’s accuracy is 0.464 (gapped)
and 0.461 (ungapped), above the random expectation of
1/3, and well below that of ML [0.723 (gapped) and 0.719
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length configurations, and the second row shows accuracy of each method’s performance in each zone (with violins representing accuracy on
bootstrap replicates from the test set). Panels three through seven show the locations (gray dots) and densities (heat map) of incorrectly inferred
topologies for each method plotted in two-dimensional space with Bs length on the x-axis and B1+B; (labeled as “B1,”), B1+B2 (“B142”), B1+B3
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tree branch-length configurations, and the second row shows accuracy of each method’s performance in each zone (with violins representing
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(ungapped); Figs. 4c and 5c]. However, CNN's accuracy
could be notably improved by adding additional MSAs
simulated from the Felsenstein zone or the “extra-
short branches” region: performing additional training
iterations on 1000 MSAs per topology from these regions
boosted the CNN's accuracy to 0.753 for gapped MSAs
and to 0.771 for ungapped MSAs for the Felsenstein
zone, and to 0.882 (gapped) and 0.904 (ungapped) for
the “extra-short branches” region, respectively (Table 2).
This suggests that it is possible to fix a known “blind
spot” of the CNN by simply simulating additional
relevant training data and performing more iterations
of the training algorithm. The CNN shows superior
accuracy in each of the remaining regions of potential
bias (Supplementary Fig. S3 available on Dryad) for
gapped MSAs compared with all other methods. Overall,
on ungapped data, the CNN’s performance roughly
matched that of Bl across zones (Supplementary Fig. S4
available on Dryad), with the exception of the regions
mentioned above. These two methods both exhibit
acceptable but not exceptional accuracy in each of these
different zones (Table 2), perhaps with the exception
of the Felsenstein zone where all methods other than
ML have low accuracy (<0.57 vs. 0.719 for ML), unless
the CNN is provided with additional training data as
described above.

In addition, we tested performance of all methods
on shorter gapped and ungapped MSAs of length
500 within each region specified in Table 2 (see
Supplementary Table S1 available on Dryad for
accuracy estimates). Overall, accuracies were lower for
all methods, but with qualitatively similar rankings
across methods. Further, we showed that accuracy
increases with increasing MSA size for the CNN
which is potentially indicative of statistical consistency
(Supplementary Table 52 and Text available on Dryad),
though we do not prove this here.

Although we find that overall the CNN performs quite
well on the test sets examined above, it is important
to stress that a method’s overall utility is not fully
captured by a single accuracy estimate from one test
set, or even a suite of test sets as we have done here.
Each of the test sets we examined is a subspace of the
BL-space that we defined in the Supplementary Text
available on Dryad, and there are an infinite number of
such sets that one could examine. Moreover, partitioning
this space into a number of equally sized sets small
enough to comprehensively assess how performance
varies across the entire BL-space is a monumental task.
For example, if one defined a BL-space and discretized
it into 1% increments for all five branches, one would
need to simulate 100° data sets with all possible branch-
length combinations to traverse the entire parameter
space. The unfeasibility of such an experiment was
previously acknowledged by (Huelsenbeck, 1995), thus
we cannot rule out the possibility that our CNN'’s
performance is compromised in certain regions of
parameter space especially if examples from such
regions were underrepresented during training phase.
Indeed, this appears be the cause of our initially poor

performance on the Felsenstein and the “extra-short
branches” zones, which was rectified through targeted
additional training.

Analysis of Phylogenetic Reliability Measures

Testing phylogenetic hypotheses usually involves
calculation of some reliability measures such as
bootstrap support (BS) for MP, NJ, and ML or posterior
probabilities (PP) in the context of BI. Despite the fact
that their direct comparison is somewhat problematic
due to their fundamental differences, one can ask which
measures are more prone to support false tree topologies
(Douady et al. 2003; Huelsenbeck and Rannala 2004). For
our CNN, we used two confidence measures: BS for the
chosen topology (obtained by applying the trained CNN
to each MSA in a set of bootstrap replicates), and the
class membership posterior probability (CPP) estimates
produced automatically by the CNN which can also be
interpreted as a measure of topological reliability. We
find that high support (BS > 0.95, or PP > 0.95 in the case
of BI) is occasionally assigned to incorrectly classified
trees by several methods: 0.052 of misclassifications by
MP, 0.05 by NJ, 0.003 by ML, 0.042 by BI, and 0.038 by the
CNN for gapped MSAs (Fig. 6a) and 0.056 by MP, 0.054 by
NJ, 0.0036 by ML, 0.048 by BI, and 0.034 by the CNN for
ungapped MSAs (Fig. 6b). Thus, a very high reliability
measure cutoff may be necessary to filter out positively
misleading cases. On the other hand, the CPP estimates
show a larger disparity between scores assigned to
correctly versus incorrectly classified topologies than
do other measures (Fig. 6), and only 0.0004 and
0.0038 of incorrectly classified gapped and ungapped
MSAs, respectively, having a CPP above 0.95. In other
words, the CNN can avoid incorrect classifications even
when imposing a relatively relaxed posterior probability
cutoff, and thus simultaneously recover a large fraction
of correctly classified topologies while producing very
few misclassifications. This is further illustrated by
precision-recall curves (Supplementary Fig. S5 available
on Dryad), which show that compared with other
methods the CNN achieves high sensitivity while
retaining a high positive predictive value on gapped
alignments. Moreover, for our four-taxon topologies
the interpretation of CPP is straightforward: the most
unreliable tree estimates receive CPP of ~1/3, which is
equivalent to randomly picking one of the three possible
topologies.

Concluding Remarks

We used a CNN to infer unrooted quartet topologies
through classification. Our results demonstrate that
CNNss perform this task quite well and have a number
of desirable qualities. First and foremost, under many
scenarios our CNN resolves quartets with higher
accuracy than existing methods (Table 2). The CNN
is also relatively insensitive to regions of the tree
branch-length heterogeneity (e.g. the Felsenstein and
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TABLE2.  Performance accuracy of different topology estimation methods on simulated MSAs of length 1000
Region Accuracy
Gapped Ungapped

MP NJ ML BI CNN MP NJ ML BI CNN
BL-space 0.75 0.77 0.7 0.77 0.89 0.75 0.76 0.7 0.77 0.77
Truncated exponential 0.86 0.88 0.88 0.89 0.89 0.85 0.87 0.88 0.88 0.86
Farris zone 0.96 0.95 0.57 0.87 0.93 0.97 0.95 0.58 0.87 0.87
Twisted Farris zone 0.96 0.95 0.58 0.88 0.89 0.95 0.95 0.59 0.88 0.87
“Extended” Farris zone 0.97 0.97 0.85 0.96 0.99 0.97 0.97 0.85 0.96 0.96
Felsenstein zone 0.18 0.31 0.72 0.57 0.46 (0.75) 0.19 0.33 0.72 0.57 0.46 (0.77)
“Extended” Felsenstein zone 0.8 0.83 0.89 0.86 0.92 0.8 0.83 0.9 0.88 0.85
Long branches 0.8 0.83 0.82 0.81 0.95 0.81 0.83 0.82 0.83 0.82
Extra-long branches 0.66 0.68 0.66 0.67 0.96 0.69 0.71 0.69 0.7 0.69
Single long branch 0.96 0.97 0.92 0.97 0.98 0.96 0.96 0.92 0.96 0.95
Short branches 0.98 0.99 0.98 0.98 0.99 0.99 0.99 0.98 0.99 0.99
Extra-short branches 0.89 0.91 0.9 0.9 0.74 (0.88) 0.89 0.91 0.9 0.9 0.86 (0.9)
Single short branch 0.85 0.85 0.83 0.86 0.95 0.85 0.86 0.84 0.86 0.85
Short internal branch 0.51 0.54 0.56 0.57 0.63 0.51 0.54 0.57 0.55 0.52

Notes: Accuracy estimates obtained from 15,000 (5000 per unrooted topology) sampled from BL-space and from several additional test sets each
consisting of 3000 MSAs (1000 per unrooted topology). The accuracy of CNN can be substantially improved by providing additional MSAs for
training simulated from specific regions. We performed this additional training for the Felsenstein and extra-short branches regions and show
the CNN's improved accuracy in parentheses next to the original accuracy. BI = Bayesian inference; CNN = convolutional neuronal network;
ML = maximum likelihood; MP = maximum parsimony; NJ = neighbor-joining.

Farris zones) that are known to confound certain
methods, perhaps because the training set included
trees with a variety of branch-length configurations
(see Supplementary Text available on Dryad). Another
advantage of using CNNs is that they produce posterior
probability estimates for each tree topology; these PP
are estimated during the classification process and thus
require no additional computation. Also, we have shown
that our CNN'’s accuracy can be further improved by
adding more training data sets, albeit most likely with
diminishing returns (Fig. 2). Although training on large
data sets can impose a computational burden up front,
this training only needs to be completed once, after
which the CNN can be used to infer tree topologies
very rapidly: the CNN can infer the topologies of 3000
MSAs of length 1000 in ~5 s using an NVIDIA Tesla
V100-SXM2 GPU). Finally, CNNs have the advantage of
being able to incorporate indels into their classification
in a straightforward manner—in principle one need only
include them in the simulated training data—which
can improve accuracy by supplying more information
to the classifier. However, future efforts will have to
examine the robustness of inference to indel model
misspecification, and the extent to which robustness can
be improved by training under a mixture of indel rates
and length distributions. More generally, this problem
underscores the importance of considering ways in
which empirical data may not match simulated data,
and the consequences of such mismatches for inference.
This problem is particularly challenging, as one may
not always be able to predict the manner in which
empirical data may differ substantially from model-
based simulations, but could potentially be addressed
by incorporating empirical data as well into the training
process. For example, the CNN could be trained on
simulated MSAs, and then a data set consisting of real

MSAs for which there is strong consensus around the
true topology can be supplied to the CNN for additional
training iterations. Thus, through this transfer learning
procedure (Pan and Yang 2010), the CNN would first
learn to accurately infer trees from simulated MSA, and
then be tuned to recognize some of the idiosyncrasies of
real MSAs.

Our efforts thus suggest that there is great potential
for the application of deep learning techniques to
inferring trees, which is central to questions in both
phylogenetics (species tree inference) and population
genomics (inferring ancestral recombination graphs
along a recombining chromosome (Rasmussen et al.
2014). Indeed, using the entire MSA as input would be
most useful on recombining sequences—otherwise it is
possible to collapse the MSA down to a vector of statistics
(e.g. the number of occurrences of each distinct possible
MSA column, if the number of sequences is small) that
would sufficiently capture all of the relevant information
from the input. Deep learning methods acting directly on
the MSA could alsobe applied to additional phylogenetic
problems, such as substitution model selection or tree
inference from protein sequence data.

Although our findings are encouraging, additional
advances are required for our approach to match
the practical utility of conventional methods. First,
we have only investigated the ability of a CNN
to produce the correct tree topology but not the
associated branch lengths. Artificial neural networks
are capable of estimating real-valued parameters in
addition to discrete class labels, so future work should
investigate the possibility of using deep learning for
inferring branch lengths in addition to the topology.
Another limitation of our current approach is that it is
limited to a small number of sequences/taxa. Future
extensions could use quartet amalgamation methods
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FIGURE6. Comparisons of reliability measures among tree inference methods on a) gapped and b) ungapped MSAs. The violin plots represent
distribution of reliability measures (BS = bootstrap, PP = Bayesian posterior probability, CPP = CNN topology posterior probability) for correctly
and incorrectly inferred topologies. MP = maximum parsimony; NJ = neighbor-joining; ML = maximum likelihood; BI = Bayesian inference;

CNN = convolutional neuronal network.

(e.g. von Haeseler and Strimmer 1996; Reaz et al.
2014). Although such methods have not matched the
accuracy of standard approaches such as ML in the past,
because our method is able to resolve quartet topologies
with greater accuracy and better calibrated confidence
scores, it may be worth investigating whether quartet
amalgamation combined with our CNN could compete
with standard methods when applied to larger numbers
of sequences. Alternatively, it may be possible to devise
neural networks capable of directly predicting a tree
topology. The latter could in principle be accomplished
by treating the values of the final hidden layer of the
network as entries in a distance matrix and using an
outputlayer that builds a tree from this matrix (e.g. using
NJ), and adopting a tree dissimilarity measure such as
RF distance as the objective function to be minimized.
However, this approach would also have a number of
practical challenges that would have to be overcome
(e.g. how to train networks that can handle different
numbers of input sequences). One possible solution to
this problem is to train a number of CNNs each designed
to handle a fixed number of sequences, and then when
given an input MSA select the CNN corresponding to
the closest number of sequences greater than or equal to

that of the input. The size of input can then be increased
by adding duplicates of one row of the MSA until the
desired number of sequences is reached. After inferring
the topology for this input, the duplicate nodes can be
pruned from the tree to produce the final topology.

Finally, to move from inferring gene trees to inferring
species trees, our approach will have to be extended to
handle tree discordance due to variation in evolutionary
rates across loci, incomplete lineage sorting (Maddison
and Knowles 2006; Degnan and Rosenberg 2009)
and gene flow (Maddison 1997). Supervised learning
approaches may prove to be well suited for this
question, as arbitrarily complicated phylogenetic models
combining multiple sources of discordance can readily
be incorporated into the training process via simulation.
Thus, although additional practical developments are
necessary, applications of deep learning to problems
in tree inference and phylogenomics are likely to be a
fruitful endeavor.

DATA AVAILABILITY

R and Python scripts can be found at GitHub
(https:/ /github.com/SchriderLab/Tree_learning), also
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archived on Zenodo (DOI: 10.5281/zenodo0.3246669).
Training, validation, and test MSA data sets are
deposited on Figshare (https://doi.org/10.6084/m9.
figshare. 8279618.v2).
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