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Abstract

CYP11A1, a member of the cytochrome P450 family, plays several key roles in the human body. It 

catalyzes the first and rate-limiting step in steroidogenesis, converting cholesterol to pregnenolone. 

Aside from the classical steroidogenic tissues such as the adrenals, gonads and placenta, 

CYP11A1 has also been found in the brain, gastrointestinal tract, immune systems, and finally the 

skin. CYP11A1 activity in the skin is regulated predominately by StAR protein and hence 

cholesterol levels in the mitochondria. However, UVB, UVC, CRH, ACTH, cAMP, and cytokines 

IL-1, IL-6 and TNFα can also regulate its expression and activity. Indeed, CYP11A1 plays several 

critical roles in the skin through its initiation of local steroidogenesis and specific metabolism of 

vitamin D, lumisterol, and 7-dehydrocholesterol. Products of these pathways regulate the 

protective barrier and skin immune functions in a context-dependent fashion through interactions 

with a number of receptors. Disturbances in CYP11A1 activity can lead to skin pathology.
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1. Introduction to CYP11A1

CYP11A1, also known as cytochrome P450scc, is a member of the cytochrome P450 family 

of heme-containing enzymes and catalyzes the first and rate-limiting step in steroidogenesis 

(Goursaud et al., 2018; Miller and Auchus, 2011; Rone et al., 2012). It is located in the inner 

mitochondrial membrane of steroid producing cells (Goursaud et al., 2018; Strushkevich et 

al., 2011; Tuckey, 2005). CYP11A1 converts cholesterol to pregnenolone through three 

sequential hydroxylation reactions: hydroxylation at the C22 position of the cholesterol side 

chain to produce 22R-hydroxycholesterol, hydroxylation at C20 of 22R-hydroxycholesterol 

to produce 20R,22R-dihydroxycholesterol, and the subsequent oxidative cleavage of the 

C20-C22 bond in 20R,22R-dihydroxycholesterol to produce pregnenolone (Fig. 1). The two 

electrons required for each of these reactions are supplied by NADPH. They are initially 

transferred to the FAD-containing adrenodoxin reductase and then one at a time to the iron-

sulfur protein adrenodoxin, which in turn passes them to the CYP11A1 to activate the 

oxygen substrate. Adrenodoxin reductase and adrenodoxin are located in the mitochondrial 

matrix (Miller and Auchus, 2011; Strushkevich et al., 2011; Tuckey, 2005).

It is well established that CYP11A1 is expressed at relatively high levels in the classical 

steroidogenic tissues such as the adrenal cortex (fasciculata, reticularis and glomerulosa 

zones), testis, ovary and placenta. However, CYP11A1 is also expressed at lower levels in a 

range of other tissues including the brain, skin, thymus, lung, and even T lymphocytes 

(Slominski et al., 2004a; Slominski RM et al., 2020a). CYP11A1 has been shown to 

function as a critical regulator of Th2 and Tc2 cell differentiation and type 2 cytokine 

production (Gelfand et al., 2017, Wang et al., 2020).

Although cholesterol is the major and best characterized substrate for CYP11A1, CYP11A1 

also acts on a range of other sterols and secosteroids including: 7-dehydrocholesterol 

(7DHC), lumisterol, hydroxysterols, plant and fungal sterols such as camposterol and 

ergosterol, as well as vitamins D2 and D3 (Slominski et al., 2014a; 2020a; Tuckey et al., 

2019). Figure 1 summarizes the various biochemical pathways in which CYP11A1 is 

involved. These alternative pathways appear to be important in the skin and are further 

discussed below.

The structure of the CYP11A1 gene was discovered by Morohashi et al in 1987, and it was 

found to be at least 20 kb long with 9 exons and 8 introns (Morohashi et al., 1987). Human 

CYP11A1 is located on chromosome 15q23–24 (Lara-Velazquez et al., 2017). The gene is 

only expressed in vertebrates, including fish, birds, amphibians, and mammals (Slominski et 

al., 2015a).

CYP11A1 activity is stimulated directly by ACTH, LH, and FSH and indirectly by CRH, 

and proinflammatory cytokines such as IL-1, Il-6, and TNF-α (Guo et al., 2007a; Guo et al., 

2007b; Huang et al., 2014; Ruggiero and Lalli, 2016; Slominski et al., 2020a). The 

steroidogenic acute regulatory (StAR) protein mediates the transport of cholesterol from the 

outside of the mitochondria to the inner mitochondrial membrane (Chien et al., 207; Issop et 

al., 203; Manna et al., 2016). ACTH mediates its actions by binding to the melanocortin 2 

receptor (MC2R), thereby stimulating adenylyl cyclase and inducing cAMP production 
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(Ruggiero and Lalli, 2016). Subsequently, cAMP increases the availability of cholesterol via 

rapid synthesis of the StAR protein and directly increases the CYP11A1 mRNA and protein 

levels (Guo et al., 2007b; Miller and Auchus, 2011)

In the adrenals and gonads, CYP11A1 transcription is regulated by a 2.3 kb promotor 

containing binding sites for multiple transcription factors including cAMP- response 

element binding proteins, steroidogenic factor 1 (SF-1), and an Sp-1 (Guo et al., 2007a; 

2007b; Ruggiero and Lalli, 2016). SF-1 was discovered nearly thirty years ago by Parker 

and Morohashi and was shown to play a key role in the regulation of the CYP11A1 gene 

(Lala et al., 1992; Morohashi et al., 1992; Ruggiero and Lalli, 2016). The two cAMP-

responsive sequences (CRS) in CYP11A1: P-CRS and U-CRS contain an SF-1 binding site 

(Guo et al., 2007a). Both SF-1 and activating protein-1 (AP-1) play a role in the activation of 

the CYP11A1 gene (Guo et al., 2007a). Runx2, an osteogenic transcription factor, also plays 

a role in the regulation of the CYP11A1 gene regulation (Teplyuk et al., 2009). Teplyuk et al 

discovered that Runx2 stimulates CYP11A1 gene expression in osteoblasts (Teplyuk et al., 

2009). 1,25(OH)2D3 via binding to the VDR appears to be a negative regulator of CYP11A1 
expression in CD8+ cells (Schedel et al., 2016). Whether this relationship (and hence 

feedback regulation) also holds for 20(OH)D3, the major product of CYP11A1 action on 

vitamin D3 that can similarly act through the VDR, remains to be established.

The structure of the CYP11A1 protein displays the typical P450 like folds with a heme 

group at the protein core (Strushkevich et al., 2011). CYP11A1 has also been found to have 

a monotopic association with the matrix side of the inner mitochondrial membrane that is 

mediated primarily via the F-G loop region (Headlam et al., 2003). This forms part of a 

substrate access channel permitting cholesterol to enter the active site from the membrane 

phase (Strushkevich et al., 2011).

The CYP11A1 enzyme plays an essential role in steroidogenesis and thus complete loss of 

expression is incompatible with life. Defects in CYP11A1 are one of the causes of primary 

adrenal insufficiency (PAI) which can range from classical PAI that is characterized by salt 

loosing adrenal insufficiency and gonadal insufficiency to more mild cases that present itself 

as glucocorticoid insufficiency (Maharaj et al., 2019). Congenital lipoid adrenal hyperplasia 

(CLAH) is primarily due to defects in StAR, which delivers cholesterol to the CYP11A1 in 

the inner mitochondrial membrane, however, mutations in the CYP11A1 gene can also cause 

the disorder (Goursaud et al., 2018; al Kandari et al., 2006). A case study done by al Kandari 

et al found that a case of adrenal insufficiency, hypogonadism, and agenesis of the corpus 

callosum was due to a homozygous point mutation in the CYP11A1 gene (al Kandari et al., 

2006). Although rare, mutations in the CYP11A1 gene can be shown to have clinically 

significant effects (Kim et al., 2008).

Aberrant/alternative splicing in the CYP11A1 gene can cause a deficiency in the expression 

of active enzyme (Goursaud et al., 2018) or production of protein that has a lower molecular 

weight (MW) that appears to play a different function to the full-length enzyme (Teplyuk et 

al., 2009; Annalora et al., 2017). An alternatively spliced CYP11A1 isoform has been 

detected in human epidermal keratinocytes and melanoma cells (Slominski et al., 2004a).
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2. Skin as a stress response organ:

2.1. Overview of the skin:

The skin together with the subcutaneous adipose tissue is the largest organ in the body and 

plays many roles in preserving the homeostasis of the human body (Slominski et al, 2012a). 

These roles include, but are not limited to, acting as a physical barrier against 

microorganisms and physical and chemical insults, regulating body temperature, retaining 

body fluid, protecting against UV light, and acting as a sensory, immune, endocrine and 

even steroidogenic organ (Boer et al., 2016; Elias, 2012; Fuchs, 2016; Racine et al., 2020; 

Slominski et al., 2012a; 2015b; 2018a).

The skin is divided into three layers: the epidermis, dermis, and subcutaneous fat. The 

epidermis (from the external to internal layers) is subdivided into the stratum corneum, 

stratum lucidum (only found in thick skin), stratum granulosum, stratum spinosum, and 

stratum basale. The epidermis contains keratinocytes as well as Langerhans cells, Merkel 

cells, and melanocytes (Boer et al., 2016; Gallo and Hooper, 2012). The dermis is divided 

into two layers, papillary and reticular (Brown and Krishnamurthy, 2020). The reticular 

dermis is thicker than the papillary layer and contains hair follicles, sensory nerves, and 

sebaceous and sweat glands (Nguyen and Soulika, 2019). Both layers of the dermis are 

comprised of fibroblasts and myofibroblasts, as well as resident immune cells (Gallo and 

Hooper, 2012; Nguyen and Soulika, 2019). The immune cells in the dermis play an 

important role in both innate and adaptive immunity. Dendritic cells, macrophages, mast 

cells, eosinophils, innate lymphoid cells (ILC), and B and T lymphocytes have all been 

found in the dermis (Nguyen and Soulika, 2019).

2.2. Skin neuroendocrine system:

The concept that the skin is indeed a neuroendocrine organ was presented for the first time 

in 2000 (Slominski and Wortsman, 2000; Slominski et al., 2000a), and expanded on in 

reviews concerning cutaneous CRH signaling, cutaneous serotoninergic and melatoninergic 

systems, complex local and systemic responses to the UVR and microorganisms, and 

clinical implications of these properties (Racine et al., 2020; Ramot et al., 2020; Slominski 

et al., 2005a; 2013a; 2018a; 2018b; 2020b).

The hypothalamic-pituitary axis (HPA) plays a critical role in the stress response as well as 

being a regulator of glucocorticoid production (Chrousos, 2009). Under stressful conditions, 

corticotropin releasing hormone (CRH) is released from the paraventricular nucleus (PVN), 

moves into the anterior pituitary and binds to the type 1 CRH receptors (CRH-R1) 

(Hillhouse and Grammatopoulos, 2006; Slominski et al., 2001; 2013a; Turnbull and Rivier, 

1999; Vale et al., 1981). CRH promotes the expression and processing of 

proopiomelanocortin (POMC) giving rise to ACTH, endorphins, melanotropins (MSH), and 

lipotropins (LPH)(Cawley et al., 2016; Slominski et al., 2000a; 2013a; Turnbull and Rivier, 

1999). In the adrenal gland, ACTH binds to the melanocortin type 2 receptor (MC-2) 

resulting in the rapid synthesis of the StAR protein which increases the movement of 

cholesterol into the mitochondria, and also causes the chronic stimulation of the expression 

of the steroidogenic enzymes such as CYP11A1.
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HPA-like axis behavior has been described in the skin (Slominski and Mihm, 1996; 

Slominski et al., 2007). The skin has been shown to express CRH, urocortins and CRH 

receptors (Ito et al., 2004; Pisarchik and Slominski, 2001; Slominski et al., 1996a; 1998a; 

1999a; 2000b; 2001e; 2004b; 2006a; Zoubouliset al., 2002; Zbytek and Slominski, 2005) as 

well as POMC and POMC-derived peptides (Bohm et al., 2006; Luger et al., 1999; Schauer 

et al., 1994; Scholzen et al., 2000; Slominski, 1998; Slominski et al., 1992; 1993; 1998b) 

and corticosteroids (Hannen et al., 2017; Ito et al., 2005; Sarkar al., 2017; Slominski et al., 

1999b; 2000c; 20002; 2005b; 2005c; 2006b; Vukelic et al., 2011). More details on CRH and 

POMC involvement in the cutaneous response to stress including those describing the HPA 

axis in the skin can be found in a number of original reviews (Slominski et al., 2006c; 

2013a), with one discussing their possible origin (Slominski, 2007). The elements of CRH-

POMC signaling systems can regulate CYP11A1 expression and activity in different 

cutaneous compartments

In addition to expressing an analog of the HPA axis, the skin plays many neuroendocrine 

roles (Slominski et al., 2012a). The skin has been shown to produce a number of 

neurohormones and precursors including catecholamines (reviewed in (Gillbro et al., 2004, 

Grando et al., 2006, Schallreuter, 1997, Schallreuter et al., 1995)), L-DOPA and L-tyrosine 

(reviewed in (Slominski et al., 2012c)), serotonin and melatonin (Slominski et al., 

2005a,Slominski et al., 2018b,Slominski et al., 2020b), acetylcholine (reviewed in (Grando 

et al., 2006; Grando, 2006)), histamine (reviewed in (Paus et al., 2006)), cannabinoids 

(reviewed in (Biro et al., 2009)), and vitamin D including products form non-canonical 

activation pathways (reviewed in (Bikle, 2020; Bikle and Christakos 2020; Slominski et al., 

2020a; 2020c)). This provides strong evidence that the skin plays a critical role in both local 

and systemic neuroendocrine systems with important implications for steroidogenesis.

2.3. The role of UV in the skin:

UV radiation acts as a two-edge sword in its role of regulating skin functions (Bernard et, 

2019; De Silva et al., 2020; Slominski et al., 2018a; Wacker and Holick, 2013; Wondrak, 

2007). It can play positive roles in the skin such as stimulating the production of 

antimicrobial peptides, initiating the synthesis of vitamin D (Bikle, 2011; Holick, 2003; 

Hong et al., 2008; Wacker and Holick, 2013), and causing the elimination of microbes such 

as the fungus malassezia furfur (plays a role in seborrheic dermatitis) and the bacterium 

streptococcus aureus (Abhimanyu and Coussens, 2017; Gontijo et al., 2006; Silva et al., 

2006; Wikler et al., 1990). However, UV also stimulates the production of pro-inflammatory 

cytokines, produces radical oxygen species (ROS) and promotes prostaglandin E2 (PGE2) 

production, and in high doses damages epithelial keratinocytes in the epidermis and 

stimulates an inflammatory response (Abhimanyu and Coussens, 2017; Bickers and Athar, 

2006; Kabashima et al., 2007). It further accelerates skin aging (Bocheva et al., 2019) and 

plays a critical role in DNA damage and cutaneous carcinogenesis by acting as a full 

carcinogen ( Athar et al., 2011; Gordon-Thomson et al., 2014; Hocker and Tsao, 2007; 

Reichrath and Rass, 2014; Schadendorf et al., 2015, Wondrak, 2007; Yang et al., 2020). UV 

radiation also stimulates the local and systemic HPA axis and the production of 

corticosterone or cortisol in the skin (Skobowiat et al., 2013a; 2013b; 2017a; Skobowiat and 
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Slominski, 2015; Tiganescu, Hupe, Jiang et al., 2015). Figure 2 illustrates this concept in 

both human and mouse skin.

2.4. The skin immune system:

The skin contains a unique assortment of immunocompetent cells and soluble mediators that 

play a key role in its protective function against exogenous physical insults, microbes and 

toxins as well as against endogenous mutations and malignancies (Bernard et al., 2019; Xu, 

et al.,, 2019). In the stratum corneum of the epidermis, cornified keratinocytes known as 

corneocytes, contain a lipid envelope and are linked by keratin (Boer et al., 2016; Hoath and 

Leahy, 2003; Nguyen and Soulika, 2019). The stratum corneum has a pH of around 5.5 that 

makes it inhospitable to microorganisms (Schmid-Wendtner and Korting, 2006). As part of 

the rapid innate immune response, epidermal keratinocytes express toll-like receptors 

(TLRs) and cytosolic nucleotide-binding domain, leucine-rich repeat containing receptors 

(NLRs) that are receptors for microbial products such as lipopolysaccharides (LPS) from 

gram-negative bacteria, lipoteichoic acid and peptidoglycans from gram positive bacteria, 

mannans of yeast and fungi, and nucleic acids from pathogens and the host (McInturff et al.,, 

2005; Nestle et al., 2009).

Other components of the cutaneous innate immune response in the skin are the antimicrobial 

peptides (Schauber and Gallo, 2008) of which cathelicidins and β-defensins are the two best 

characterized. They are synthesized by keratinocytes, cells of sebaceous and eccrine glands, 

and mast cells (Gallo and Hooper, 2012; Sanford and Gallo, 2013). The cathelicidins and 

defensin class of antimicrobial proteins act by disrupting the bacterial and fungal 

membranes, and viral envelopes (Gallo and Hooper, 2012; Ordonez et al., 2014). 

Cathelicidin and B-defensin expression is normally low in the skin but is markedly increased 

when the skin barrier is disrupted (Gallo and Hooper, 2012).

The skin is also a rich source of cytokines and chemokines, which manipulate the extent and 

characteristics of the immune responses qualitatively and quantitatively (Bernard et al., 

2019, Xu et al., 2019; Tan et al., 2015). Cytokines and chemokines also modulate the 

systemic host response. Their cutaneous production involves several different cell types 

including keratinocytes, melanocytes, dendritic cells, fibroblasts and mast cells. While 

cytokines produced by skin cells have similar actions as those secreted by other cell types, 

they can have distinctive effects on cutaneous tissues. For example, IL-1 stimulates matrix 

metalloproteinase synthesis in the dermis (Schonbeck et al.,, 1998), while at the same time 

contributing to wound repair by augmenting collagen production.

Adaptive immunity provides antigen specific protection against intracellular and 

extracellular pathogens and can be both initiated and expressed in the skin (Nestle et al., 

2009; Xu et al., 2019). This is accomplished primarily by a variety of T cell subsets and by 

IgA, IgM, and IgE antibodies (Debes and McGettigan, 2019). The T cells that carry out 

these defenses reside within the skin and preferentially recirculate between the skin and 

regional lymph nodes (Clark, 2015). T-cell mediated immunity is initiated by antigen-

presenting myeloid dendritic cells (DCs). There are multiple distinct types of DCs in skin 

(Clausen and Kel, 2010; Henri et al., 2010). Those that reside within the epidermis are call 

Langerhans cells (Nguyen and Soulika, 2019; Sanford and Gallo, 2013). The diverse array 
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of dendritic cells enables a more precise activation of different T-cell subpopulations. 

Plasmacytoid dendritic cells reside within the dermis and are a potent source of the cytokine 

interferon-γ (Xu et al., 2019).

Although not specifically made in the skin, IgE antibodies play an important role in host 

defenses against parasites. IgE antibodies bind to mast cells, which express the high affinity 

surface receptor for IgE (Longley et al.,, 1995). As a consequence of antigen binding to IgE 

molecules on mast cells, degranulation occurs with the release of potent prostanoids, 

histamines and cytokines which help to attract additional inflammatory cells to the skin (Xu 

et al., 2019).

Aberrant T-cell mediated immunity can result in increased susceptibility to infections and 

skin cancer if the immune response underperforms, as well as to allergic and atopic 

dermatitis and autoimmune diseases such as psoriasis, alopecia areata and vitiligo when 

there is excessive activation. Increased IgE and mast cell activity is considered to be an 

essential element of urticaria and angioedema, atopic dermatitis, hyperimmunoglobulin E 

syndrome and bullous pemphigoid.

3. CYP11A1 and the skin

3.1. Classical function

It is now well established that the skin can produce cortisol which can be derived from 

cholesterol via a complete steroidoidogenic pathway. This starts with the StAR protein that 

delivers cholesterol to the inner mitochondrial membrane which is subsequently converted to 

pregnenolone by CYP11A1 (Slominski et al., 2004a; 2013b).The cutaneous rate of steroid 

synthesis is much lower than in classical steroidogenic tissues such as the adrenal cortex and 

placenta (Slominski et al., 2013b). Since the initial discovery of CYP11A1 gene expression 

in the human skin (Slominski et al., 1996b), a number of papers have documented CYP11A1 

enzyme expression in keratinocytes, melanocytes and dermal fibroblasts (Hannen et al., 

2011; Skobowiat and Slominski, 2015; Skobowiat et al., 2011; 2013a; 203b; Slominski et 

al., 2004a; 2013b; 2017; Thiboutot et al., 2003, Tiala et al., 2007; Tongkao-On et al., 2015), 

as well as in immune cells (Slominski RM et al., 2020a). This indicates that a variety of cell 

types in the skin are potentially capable of de novo steroid synthesis. CYP11A1 plays 

several key roles in the skin of which the most important is that it catalyzes the conversion of 

cholesterol to pregnenolone, which serves as the precursor to cutaneous cortisol, estrogens, 

and androgens. The pregnenolone is initially converted to either progesterone by 3β-

hydroxysteroid dehydrogenase (3-βHSD) or to 17β-hydropregnenolone by CYP17A1. The 

skin expresses all the downstream CYP enzymes required to convert the progesterone into 

cortisol (Slominski et al., 2013b; 2015b)(Fig. 3). The skin can also convert the 17β-

hydropregnenolone into androgens and estrogens, but these can also be derived from 

circulating DHEA-sulfate (Nikolakis et al., 2016; Slominski et al., 2013b; 2015b)

The role of steroidogenesis in the skin includes countering the inflammatory responses in the 

skin and preventing hyperproliferation of keratinocytes (Bigas et al., 2018; Phan et al., 2021; 

Slominski and Zmijewski, 2017; Vukelic et al., 2011). In fact, dysregulation of steroid 

synthesis in the skin has been associated with many skin disorders (Hannen et al., 2011; 
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2017;Nikolakis et al., 2016; Phan et al., 2021; Ramot et al., 2020; Zmijewski, 2017; 

Slominski et al., 2014c; 2015b; 2017a), which are discussed further below.

3.2. Non-classical functions

CYP11A1 can also use lumisterol, vitamins D2 and D3, ergosterol and 7-DHC as substrates 

hydroxylating their side chain at different positions, and in some cases cleaving it (Guryev et 

al., 2003; Slominski et al., 2004a; 2005d; 2005e; 2006d; 2009a; 2011a; 2012c; 2012d; 

2017a; Tuckey et al., 2008; 2011; 2014)(Fig. 1). It should be noted that the vitamin D3, 

lumisterol and tachysterol are derived from UV irradiation of 7-dehydrocholesterol in the 

skin (Bikle, 2020; Holick et al., 1981; Wacker and Holick, 2013). Thus, the skin is likely to 

be a primary site of their metabolism to biologically active hydroxyderivatives, supported by 

the detection of many of these metabolites in the skin (Slominski et al., 2012d; 2013b; 

2015d; 2017c). The hydroxyvitamin D products act as biased agonists on the VDR 

displaying many but not all the effects of 1,25(OH)2D3, and also act to some extent through 

other receptors expressed in the skin including the retinoic acid-related orphan receptors, 

RORα and γ (Slominski et al., 2014c; 2017b), and the aryl hydrocarbon receptor (AhR) 

(Slominski et al., 2018c; 2020a).

The above CYP11A1-derived vitamin D hydroxyderivatives have been proposed to play key 

roles in the maintenance of skin physiology. At least 10 different CYP11A1-derived vitamin 

D3 metabolites have been discovered with 20(OH)D3 and 20,23(OH)2D3 being the major 

ones (Slominski et al., 2014a). In keratinocytes, 20(OH)D3 and 20,23 (OH)2D3 inhibit DNA 

synthesis and cause cell cycle arrest. The CYP11A1-derived vitamin D hydroxyderivatives 

have been found to stimulate differentiation and inhibit proliferation and NF-κB activity in 

human keratinocytes (Chaiprasongsuk et al., 2020a; Janjetovic et al., 2009; 2010; Slominski 

et al., 2014a; Zbytek et al., 2008). They also show photoprotective properties which are also 

shared by the CYP11A1-derived hydroxylumisterols (Chaiprasongsuk et al., 2019; 2020a; 

2020b; Slominski et al., 2015c; 2017c; 2020; Tongkao-On et al., 2015). Thus, products of 

CYP11A1 action appear to protect the skin against the harmful effects of UVR with 

responses that include increased expression of DNA repair enzymes (Slominski et al., 

2020a). This is particularly relevant to the photoprotective properties of the 

hydroxylumisterols, since lumisterol is a product of excessive UV radiation (Holick et al., 

1981). Furthermore, UVB is able to upregulate CYP11A1 expression (see Figure 2) which 

presumably results in increased CYP11A1-mediated hydroxyvitamin D3 and 

hydroxylumisterol production in the skin to help combat the harmful effects of radiation.

CYP11A1-derived vitamin D metabolites hold therapeutic potential. Besides their 

photoprotective role, they have been found to inhibit the growth of normal and malignant 

melanocytes and display anti-fibrotic activity on dermal fibroblasts (Slominski et al., 2011a; 

2011b; 2012e; 2013c; 2013d). Treatment with the CYP11A1-derived vitamin D compounds 

inhibited the growth of the SKMEL-188 melanoma cells in vivo as well as downregulating 

NF-κB activity (Janjetovic et al., 2011; Skobowiat et al., 2017b). Thus, the CYP11A1-

derived vitamin D compounds are candidates for the treatment of skin cancers including 

melanoma (Slominski et al., 2018d; 2020c). Importantly, while showing a lack of 

(20(OH)D3) or low (1,20(OH)2D3) calcemic effects (Chen et al., 2014; Slominski et al., 
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2010; 2013c, Wang et al., 2012), CYP11A1-derived secosteroids also express potent anti-

inflammatory effects (Chaiprasongsuk et al., 2020b; Janjetovic et al., 2009; 2010; Lin et al., 

2017; 2018; Slominski et al., 2014a; 2014c). Thus, CYP11A1 derived secosteroids are also 

excellent candidates for treatment of autoimmune or inflammatory disorders of different 

etiology (Slominski RM et al., 2020a; 2020b).

3.3. Regulation of CYP11A1 expression in the skin

The delivery of cholesterol resulting from the activity of the StAR protein appears to play 

the most important role in the acute regulation of CYP11A1 activity in the skin (Slominski 

et al., 2014a; 2014d). Other factors that regulate CYP11A1 including CRH, ACTH, POMC, 

cAMP, and cytokines IL-1, particularly Il-1β, IL-6, and TNF-α, are likely to operate in the 

skin, although more detailed studies remain to be performed. Tkachanko et al (2011) found 

that IL-1α and β stimulate StAR protein, CYP17A1, and 3β-hydroxysteroid dehydrogenase 

2 (3βHSD2) expression at the mRNA level in adrenal cells, with increased androgen and 

cortisol production (Tkachenko et al., 2011). UVB and UVC have been found to stimulate 

CYP11A1 and cortisol production by skin; however, UVA seems to have no effect on 

cortisol production (Skobowiat et al., 2011a,; 2013b;). Huang et al (2014) reported that 

TNF-α suppresses steroidogenesis and CYP11A1 expression in intestinal epithelial cells by 

activating c-Jun and NF-κB (Huang et al., 2014). When the dominant-negative form of c-Jun 

amino-terminal kinase 1 (JNK1), an NF-κB inhibitor was injected into mice, steroidogenesis 

in the intestinal epithelial cells was restored (Huang et al., 2014). Toll-like receptors (TLRs), 

notably TLR3, can play a role in the regulation of steroidogenesis in the skin. Shimada-

Omori et al found that Polyinosinic:polycytidylic acid (Poly(I:C)), a known ligand for 

TLR3, stimulates glucocorticoid production and CYP11A1 expression in rosacea epidermis 

(Shimada et al., 2020). Also, other environmental stressors leading to barrier disruption can 

stimulate epidermal cortisol production (Takei et al., 2013; Zhu et al., 2014).

3.4. CYP11A1 in pathological skin or skin tumors

The synthesis of CYP11A1-derived steroids is a two-edged sword. Although they can play a 

positive role in maintaining homeostasis, some can also play an enhancing role in certain 

pathologies. Figure 4 illustrates this concept. CYP11A1 can also be used as an indicator of 

autoimmune diseases (Slominski RM et al., 2020a). Its expression is decreased in both 

atopic dermatitis and psoriasis (Hannen et al., 2011; 2017). Metabolomic and transcriptomic 

profiling of psoriatic skin vs healthy control revealed that deficiencies in cortisol and 

cortisone production in the psoriatic skin lesions could lead to production of 

proinflammatory cytokines (Sarkar et al., 2017). These findings support our previous theory 

that deficient feedback of POMC and glucocorticoids on cutaneous immunity contributes to 

inflammatory and autoimmune dermatoses, and that restoration of these endogenous 

deficiencies represents a realistic goal in treating psoriasis and inflammatory disorders 

(Slominski, 2009; 2013a; 2017a).

CYP11A1 as well as other CYP enzymes can play a role in skin cancer. CYPs such as 

CYP1A1, CYP1B1, CYP2B6, CYP2E1, and CYP3A5, have been found in keratinocytes 

(Baronet al., 2001). Keratinocytes play an important role in the most common types of skin 

neoplasms, such as basal and squamous cell carcinomas (Ratushny et al., 2012; Slominski et 
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al., 2014d). CYPs in keratinocytes metabolize hazardous materials and carcinogens 

(Slominski et al., 2014d). Cortisol and cortisone immunosuppression can cause progression 

of basal and squamous cell carcinoma. However, corticosteroids can inhibit melanoma 

directly (Horn and Buzard, 1981) or indirectly by inhibiting the production of POMC or NF-

κB activity (Bohm et al., 2006; Slominski et al., 2014d). Normal melanocytes and 

melanoma cells can produce their own cortisol and corticosteroids (Fig 3) (Slominski et al., 

1999b;, 2005b; 2005c). This can lead to local immunosuppression allowing tumor cells to 

escape from immune attack leading to tumor growth and melanoma progression (Slominski 

and Carlson, 2014). This concept appears to be supported by in vivo experiments in 

hamsters showing that adrenalectomy significantly inhibited melanoma growth, while use of 

a synthetic glucocorticoid accelerated it (Stanberry et al., 1982).

Some of the immune cells residing in the skin can affect tumor behavior. Mahata et al used 

two groups of transgenic mice, mCherry (florescence reporter line) and a conditional 

CYP11A1 knockout, to prove that T cell steroid biosynthesis could aid tumor growth and 

progression, and that targeting the rate limiting steps in the steroid synthesis of T cells can 

prevent tumor metastasis, particularly melanoma (Mahata et al., 2020).

Changes in CYP11A1 levels in cancer tissues relative to normal tissue have been found at 

several sites in the body. CYP11A1 expression was downregulated in 6 different cancer 

types, colon adenocarcinoma, kidney renal clear cell carcinoma, liver hepatocellular 

carcinoma, lung squamous cell carcinoma, prostate adenocarcinoma, and uterine corpus 

endometrial carcinoma (Fan et al., 2016). In addition, CYP11A1 is expressed in many tumor 

lines of different lineage including melanomas (Slominski et al., 1996b; 2004a; 2012e; 

2014d).

Other steroidogenic enzymes can also contribute to the behavior of skin cancer. Levels of 

mRNA for 11β-hydroxysteroid dehydrogenase (11β-HSD) type 1 (produces cortisol) and 2 

(deactivates cortisol) vary between healthy and malignant tissues (Cirillo et al., 2017). 

Squamous cell carcinoma (SCC) samples showed significantly lower expression of 11β-

HSD2 than healthy control cells (Cirillo et al., 2017).

4. Role of steroid signaling in skin physiology and pathology

4.1 Glucocorticoid and mineralocorticoid signaling

Corticosteroids produced endogenously by the skin can affect various signaling pathways. 

For example, corticosteroids have been shown to influence NF-κB and AP-1, and STAT3 

signaling pathways (Sevilla and Perez, 2018). Corticosteroids can also affect gene 

expression in the skin. Lili et al has found that the synthetic glucocorticoid, clobetasol, 

upregulates 1607 genes and downregulate 1917 genes from RNA sequencing analysis (Lili 

et al., 2019). They also found that when given clobetasol, glucocorticoid receptor (GR) 

targets such as GILZ were more active in African Americans, while females have a stronger 

shift towards the IFN-α /IFN-γ and IL-6/Jak/STAT3 signaling pathway, which is pro-

inflammatory (Lili et al., 2019). Glucocorticoids have been found to activate REDD1, a 

mTOR inhibitor (Baida et al., 2015). REDD1 mediates many of the adverse effects of 

glucocorticoids including skin atrophy. Mice that were KO for REDD1 maintained many of 
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the anti-inflammatory effects of glucocorticoids (Baida et al., 2015). Most recent studies 

show that keratinocytes control skin immune homeostasis through de novo-synthesized 

glucocorticoids (Phan et al, 2021).

Many of the actions of glucocorticoids in the skin are mediated by the GR expressed in 

different cutaneous compartments and involve different mechanisms of action (Aberg et al., 

2007; Baida et al., 2015; Chebotaev, Yemelyanov et al., 2007, Jozic et al., 2017; Lili et al., 

2019; Nikolakis et al., 2016; Sarkar et al., 2017; Sevilla and Perez, 2018; Slominski and 

Zmijewski, 2017; Slominski et al., 2017a). Mice in which GR and MC were partially 

knocked out exhibited more severe inflammation and hyperproliferation of the skin after 

imiquimod treatment when compared to healthy controls (Bigas et al., 2018). The GR also 

plays many important roles in skin development. Immunohistostaining on mice embryos that 

had the GR gene completely knocked out (GR−/−) showed that the skin of these mice had 

incomplete epidermal stratification as well as significantly less fillagrin and desmosomes, 

thus incompatible with life (Bayo et al., 2008). In addition, non-genomic actions of GR in 

the skin have been described concerning the inhibition of wound healing (Jozic et al., 2017; 

Slominski and Zmijewski, 2017).

Mineralocorticoids mediate their signaling action through the mineralocorticoid receptor 

(MR). MR antagonism can help counter some of the effects of glucocorticoid-induced skin 

atrophy and delayed wound healing (Maubec et al., 2015; Nguyen et al., 2016; Stojadinovic 

et al., 2016). Mice that overexpress MR show skin atrophy and alopecia (Sainte Marie et al., 

2007). Thus, research on both GR and MR may yield promising new therapies for treating 

various skin ailments.

4.2 Estrogen and Androgen signaling

There are two major types of estrogen receptors that have been discovered, estrogen receptor 

alpha (ERα) and estrogen receptor beta (ERβ) (Bakry et al., 2014,; Cutolo and Straub, 2020; 

Hall and Phillips, 2005; Ohnemus et al., 2006; Thornton et al., 2003), with ERβ playing a 

more important role in the skin (Ahn et al., 2020; Thornton et al., 2003). ERα is barely 

detectable in the skin, while ERβ was found in the sebaceous glands, hair follicles, 

epidermis, and dermal fibroblasts (Thornton et al., 2003). Estrogens play several key roles in 

the skin which include acting as a regulator of the immune system (Cutolo and Straub, 2020; 

Ohnemus et al., 2006), increasing collagen production in the skin and modulating hair 

growth (Ohnemus et al., 2006). Patients with estrogen deprivation have symptoms that 

include dryness, atrophy and wrinkling of the skin, as well as delayed wound healing (Hall 

and Phillips, 2005). Most recent studies show that photoprotective responses to 

1,25(OH)2D3 in mice are modulated by the estrogen receptor-β (Tonkgao-on et al., 2021).

Two androgen receptor (AR) isoforms have been identified, AR A and AB (Liegibel et al., 

2003). ARs are expressed in epidermal and follicular keratinocytes and melanocytes, dermal 

fibroblasts, vascular endothelium, and dermal papilla cells (DPC) in hair follicles (Ceruti et 

al.,, 2018; Chang et al., 2013). Androgens play many roles in skin disorders such as acne, 

androgenic alopecia, and delayed wound healing (Lai et al., 2012). In castrated mice, 

accelerated wound healing and decreased inflammation were observed compared to control 

mice (Ashcroft and Mills, 2002). Thus, androgens show the opposite effect to estrogens and 
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delay wound healing (Lai et al., 2012). Further research into the role of androgens and 

estrogens in the skin could pay dividends for treating skin disorders.

5. Conclusions and future directions.

CYP11A1 plays many important roles in maintaining the physiology of the body. It 

catalyzes the first and rate-determining step in steroidogenesis, the conversion of cholesterol 

to pregnenolone. It is involved in the production of steroids such as cortisol, pregnenolone, 

estrogens and androgens. Local production of corticosteroids in the skin, initiated by 

CYP11A1, appears to play important roles in skin physiology and pathology. CYP11A1 can 

also metabolize vitamin D and lumisterol into non-calcemic hydroxymetabolites which have 

potential therapeutic benefits. These reactions appear to occur in the skin, which has a high 

concentration of these UV-derived substrates, but their exact physiological roles remains to 

be further investigated. Additional research into cutaneous CYP11A1 derived steroids and 

secosteroids and their biological effects may yield future therapies for many dermatological 

and systemic diseases.
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Highlights

• CYP11A1 is expressed and enzymatically active in the skin

• CYP11A1 initiates local steroidogenesis, secosteroidogenesis and 5,7-diene 

metabolism

• Cutaneous CYP11A1 is regulated by UVB, UVC, CRH, ACTH, c-AMP and 

cytokines

• CYP11A1 plays a key role in regulation of the protective barrier and immune 

functions

• Disturbances to CYP11A1 catalytic activity can lead to skin pathology
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Figure 1. 
CYP11A1 activities in the skin. A. CYP11A1 receives electrons form its redox partners to 

cleave the side chain of cholesterol producing pregnenolone which is converted to other 

steroids by cell/tissue specific pathways. B. CYP11A1 can act on endogenous sterols and 

secosteroids in the skin. The major products from cholesterol and 7DHC have their side 

chain removed whereas little cleavage of the side chain occurs for lumisterol and no 

cleavage occurs for vitamin D3. Major products from each substrate are shown in bold font. 

The stereochemistry of products is shown, where known. 7DHC, 7-dehydrocholesterol; 
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lumisterol, lumisterol3. More details on these reactions can be found in (Slominski et al., 

2015a; 2020a; Tuckey et al., 2011; Tuckey et al., 2019).
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Figure 2. 
Immunofluorescent staining of CYP11A1 (P450scc) in skin with and without UV treatment. 

A shows the human skin and the levels of CYP11A1 and its regulators CRH (corticotropin 

releasing hormone), PC1 (proconvertase-1), ACTH (adrenocorticotropic), B-END (β-

endorphin), and GR (glucocorticoid receptor) after treatment with UVA, UVB, and UVC. 

Image taken from (Skobowiat et al., 2011) with permission from the publisher. B shows the 

CYP11A1 levels in the skin of C57BL6 mice and DBA/2J mice before and after treatment 

with UVB. Image taken from (Skobowiat et al., 2013a) with permission from the publisher.
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Figure 3. 
Production of cortisol in human skin cells. A. Corticotropin-releasing hormone (CRH) were 

shown to stimulate proopiomelanocortin (POMC) in melanocytes in a time dependent 

manner. The top graph shows CRH stimulating mRNA production of POMC. The white bar 

shows negative control while the black bar shows treatment with CRH. The bottom graph 

shows CRH stimulating ACTH production in a concentration dependent manner after 24 

hours of treatment. B. Melanocytes were shown to produce cortisol. The top graph shows 

liquid chromatography-mass spectrometry (LC/MS) of cortisol control vs melanocyte 
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extract. Notice that both of them have a peak of [M+H]+ at mass to charge ratio of 363 with 

retention time at 11 minutes. The last two graphs come from mass spectrometry 

fragmentation analysis and shows similarities between melanocytes extract (middle graph) 

and cortisol standard (bottom graph). C. CRH was shown to promote cortisol production in 

melanocytes in POMC and CRH-R1 dependent manner. D. Fibroblasts were shown to 

produce cortisol. The top graph shows liquid chromatography-mass spectrometry (LC/MS) 

of cortisol standard vs fibroblasts extract. Notice that both of them have a peak of [M+H]+ at 

mass to charge ratio of 363 with retention time at 11 minutes. The last two graphs come 

from mass spectrometry fragmentation analysis and shows similarities between fibroblast 

containing media (middle graph) and cortisol standard (bottom graph). Panels A, B, and C 
were taken with permission from the following article (Slominski at al. 2005c) and panel D 
was taken with permission from the publisher (Slominski et al., 2006b).
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Figure 4. 
Summary of the two-edged role that CYP11A1-derived compounds play in the human skin.

Slominski et al. Page 31

Mol Cell Endocrinol. Author manuscript; available in PMC 2022 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction to CYP11A1
	Skin as a stress response organ:
	Overview of the skin:
	Skin neuroendocrine system:
	The role of UV in the skin:
	The skin immune system:

	CYP11A1 and the skin
	Classical function
	Non-classical functions
	Regulation of CYP11A1 expression in the skin
	CYP11A1 in pathological skin or skin tumors

	Role of steroid signaling in skin physiology and pathology
	Glucocorticoid and mineralocorticoid signaling
	Estrogen and Androgen signaling

	Conclusions and future directions.
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

