
Data and text mining

Cooler: scalable storage for Hi-C data and other

genomically labeled arrays

Nezar Abdennur 1,* and Leonid A. Mirny1,2,*

1Institute for Medical Engineering and Science and 2Department of Physics, Massachusetts Institute of

Technology, Cambridge, MA 02139, USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on March 11, 2019; revised on May 27, 2019; editorial decision on June 30, 2019; accepted on July 9, 2019

Abstract

Motivation: Most existing coverage-based (epi)genomic datasets are one-dimensional, but newer

technologies probing interactions (physical, genetic, etc.) produce quantitative maps with two-

dimensional genomic coordinate systems. Storage and computational costs mount sharply with

data resolution when such maps are stored in dense form. Hence, there is a pressing need to de-

velop data storage strategies that handle the full range of useful resolutions in multidimensional

genomic datasets by taking advantage of their sparse nature, while supporting efficient compres-

sion and providing fast random access to facilitate development of scalable algorithms for data

analysis.

Results: We developed a file format called cooler, based on a sparse data model, that can support

genomically labeled matrices at any resolution. It has the flexibility to accommodate various

descriptions of the data axes (genomic coordinates, tracks and bin annotations), resolutions, data

density patterns and metadata. Cooler is based on HDF5 and is supported by a Python library and

command line suite to create, read, inspect and manipulate cooler data collections. The format has

been adopted as a standard by the NIH 4D Nucleome Consortium.

Availability and implementation: Cooler is cross-platform, BSD-licensed and can be installed from

the Python package index or the bioconda repository. The source code is maintained on Github at

https://github.com/mirnylab/cooler.

Contact: nezar@mit.edu or leonid@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent years have seen a ramp in production of large datasets that

map associations between genomic loci. Of note are high-

throughput chromosome conformation capture (3C) technologies

(Dekker et al., 2002; Denker and De Laat, 2016), such as Hi-C

(Lieberman-Aiden et al., 2009) and its variants, which produce two

dimensional maps of chromosomal contacts. These technologies

have undergone incremental improvements in technological reso-

lution (cutting frequency, capture radius), biological sampling (cell

numbers, library complexity) and technical sampling (sequencing

depth), making it possible to resolve features at increasingly finer

scales. Hi-C and related experiments also span a growing range of

experimental scales, e.g. from single cells to large cell populations,

unbiased versus specific enrichment methods; for a review, see

Davies et al. (2017). As a result, there is a need for data structures

that are flexible enough to accommodate data of massive size and

varying degrees and patterns of sparsity, and easily adapt to new ex-

perimental techniques and novel metadata.

In the case of 3C-based experiments, pairs of sequence tags iden-

tify chimeric ligation junctions between DNA fragments. It is nat-

ural to subject these paired tags to binning, either by assigning them

to putative restriction fragments or more commonly, by aggregating

them with respect to genomic intervals of some fixed size. Such

gridded binning also suppresses count noise and increases effective

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 311

Bioinformatics, 36(1), 2020, 311–316

doi: 10.1093/bioinformatics/btz540

Advance Access Publication Date: 10 July 2019

Original Paper

http://orcid.org/0000-0001-5814-0864
https://github.com/mirnylab/cooler
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz540#supplementary-data
https://academic.oup.com/


coverage (Lajoie et al., 2015). The result is a quantitative genomic

matrix, whose dimensional axes comprise a series of fixed or

variable-length genomic intervals.

Today, processed Hi-C data and similar two-dimensional

datasets are often still persisted using flat text files. For large and

high-resolution datasets, this poses bottleneck challenges for basic

processing, analysis and visualization. There exist compression and

indexing strategies for tabular text files that mitigate these chal-

lenges to some degree by enabling random access (Li, 2011).

However, binary formats can provide more efficient and compress-

ible storage, faster I/O, and preserve numerical precision. Several

custom binary formats have been developed for Hi-C data, including

butlr (Wang et al., 2018), hic (Durand et al., 2016) and MRH

(Sauria et al., 2015). They are useful in that they organize the data

more efficiently and permit random access, but their strict byte lay-

outs make them rather inflexible for accommodating different data

types, metadata or additional information.

A popular alternative is the HDF5 container format (Koziol and

Robinson, 2018), which provides the freedom to organize collections

of editable multidimensional array data and metadata in binary form

in a hierarchy similar to that of a file system. HDF5 is referred to as

‘self-describing’ because objects can be inspected for their storage

metadata, such as type, compression and array shape. This enables it

to serve as a flexible container for specific applications without con-

straining users to a strict preordained data organization. These fea-

tures and its performance have made HDF5 very popular for storing

large scientific datasets, and it has been made its mark in the Hi-C

field for some time, in software packages such as hiclib (Imakaev

et al., 2012), hifive (Sauria et al., 2015), gcMapExplorer (Kumar

et al., 2017), HiCExplorer (Wolff et al., 2018) and cworld

(https://github.com/dekkerlab/cworld-dekker).

All the HDF5-based Hi-C formats in the tools mentioned, with

the exception of HiCExplorer, use dense representations, i.e. full

two-dimensional arrays of counts or transformed counts—including

zeros for unobserved interactions; however, this strategy scales

poorly with finer binning, whereby both size and sparsity of the data

increase (Supplementary Tables S1 and S2). For example, if we ob-

tain as many as one billion contacts from a population of cells

mapped to the human reference genome and bin them at kilobase

resolution, we are guaranteed to fill less than 0.03% of the trillions

of available matrix elements (Supplementary Data). Moreover,

DNA contact frequency also exhibits a characteristic density pattern

whereby contacts are much more densely sampled near the diagonal

in cis. Sparse representations are not only critical for scalable stor-

age: algorithms such as matrix balancing and principal component

analysis can be adapted to operate using only non-zero elements,

and very finely binned maps can be used to look at patterns aver-

aged over many genomic loci. Storage that accommodates a wide

range of data resolutions is also necessary to visually explore the full

depth of scale of such large datasets.

Here we present a data model, an implementation and a support

library for a sparse, scalable HDF5-based genomic array format

called cooler. We first describe a general sparse data model for

genomically labeled arrays, designed with Hi-C data in mind, but

flexible enough to accommodate any binned genomic data describ-

ing associations, correlations, or interactions, such as linkage dis-

equilibrium statistics. A very similar model is already employed in

the text format of the popular HiCPro pipeline (Servant et al.,

2015). We then present the implementation of the model as a file

format in HDF5 that can support genomic matrices at any reso-

lution as well as multi-resolution files, with a support software

library in Python, also called cooler. The library provides the

functionality to create, aggregate and manipulate the contents of

cooler files, provides an application programming interface (API) to

materialize genomic range queries in both tabular and array forms.

Its design supports both sequential and random access, ideal for the

development of out-of-core data processing algorithms. A command

line interface (CLI) is shipped with the cooler package for conveni-

ent scripting, application and pipeline integration.

The cooler format combines the strengths of a sparse data model

with the optimized storage and querying features of HDF5.

Furthermore, we provide a full high-level specification of cooler files

as implemented in HDF5 (the cooler schema) to facilitate its adop-

tion as an interoperable standard for Hi-C analysis tools.

2 Materials and methods

We outline a simple but flexible data model for representing multidi-

mensional binned genomic data termed genomically labeled sparse

arrays (GLSAs). In the context of data structures, matrices and ten-

sors are normally referred to as arrays, their individual shape dimen-

sions are sometimes also termed axes. We will refer to the discrete

units along the array axes as bins. Throughout we assume that the

array axes are homogeneous, i.e. correspond to the same genome as-

sembly, binned in the same way. A two-dimensional genomically

labeled array is a data structure that assigns unique quantitative val-

ues to pairs of bins obtained from an interval partition of a reference

genome assembly. These pairs of bins make up the coordinates of

the array’s elements. Because they are often visualized as heatmaps,

we also use the term ‘pixels’ to refer to elements of 2D arrays.

By omitting pixels possessing zero or no value, the representation

becomes sparse.

A genomically labeled array of dimension two or greater can be

represented with a single table similar to the BEDPE format, where

each non-zero array element is described by a record listing the gen-

omic coordinates of its bins and additional bin-related attributes

alongside the element’s quantitative value(s) (Fig. 1b, right).

In Hi-C, for example, additional bin-related quantities include nor-

malization weights or A/B compartment signal. However, at the

scale of Hi-C data, this representation is limited by the fact that bin-

related attributes (coordinates, weights, etc.) can be duplicated

many times throughout the table, in numbers greatly exceeding the

total number of bins (Supplementary Table S2).

We eliminate such redundancy by replacing the single table with

two separate ones (Fig. 1a). The first is a bin table that describes the

complete genomic bin segmentation on both axes of the matrix,

such that each bin-related attribute is fully described by a column,

or one-dimensional array. The second table contains distinct axis

columns (bin1_id, bin2_id) that reference the rows of the bin

table: the resulting pixel table is a condensed representation of the

nonzero elements of the array. Conveniently, this corresponds to the

classic coordinate list (COO) representation for sparse arrays (Saad,

1990). For completeness, we include a third chromosome table to

list the chromosomes (or other scaffolds) of the genome assembly,

their genomic lengths and any other chromosome-specific attributes.

Note that while the bin and chromosome tables tend to have a rela-

tively small memory footprint, it is the pixel table that can greatly

exceed memory storage for large datasets.

Furthermore, for symmetric matrices, such as Hi-C, we reduce

data requirements and preserve a unique representation by keeping

only unique pixels and orienting them to lie within the upper tri-

angle of the matrix, discarding their lower triangular transpose ele-

ments (Fig. 1c). Altogether, for a given ordering of the chromosomes

312 N.Abdennur and L.A.Mirny

https://github.com/dekkerlab/cworld-dekker
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz540#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz540#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz540#supplementary-data


of an assembly, this decomposition uniquely represents a given

genomically labeled 2D array.

Given any collection of rows from the pixel table, its full repre-

sentation (or any subset of bin-related attributes) can be recovered

inexpensively at the application level by performing relational joins

between the axis columns of the pixel table and the desired bin

attributes in the bin table. We refer to this as element annotation

(Fig. 1b).

3 Cooler format

We implemented the GLSA data model for 2D arrays using HDF5,

defining a file format called cooler, with the recommended exten-

sion .cool. A full specification can be found in the online docu-

mentation. We outline the key elements in this section.

3.1 Specification
HDF5 files are organized hierarchically, akin to a file system within

a file, with two primary structures, groups and datasets. Groups

serve the role of directories and contain zero or more groups or data-

sets. Datasets are multidimensional arrays, which can be flexibly

sized, chunked and passed through various I/O filters, including

checksumming and compression. Both groups and datasets can be

assigned key-value user metadata, called attributes, and like POSIX

file systems can be referenced with relative or absolute paths sepa-

rated by slashes.

HDF5 does not natively support sparse arrays or relational data

structures: its datasets are dense multidimensional arrays. Therefore,

we model a table as a group of equal-length 1D arrays representing

columns. Although HDF5 does support row-oriented storage using

compound data types (i.e. structured arrays), we chose to implement

column-oriented storage because of the advantages it provides,

including cheap addition or removal of columns, efficient slicing

along columns and more efficient compression (Abadi et al., 2008).

Our simple table model thus allows for easy addition of columns

and appending of rows, but not random insertion of rows. This was

deemed reasonable since the raw datasets are normally write-once,

but global data transformations are not uncommon. Moreover,

it does not enforce a specific ordering on the columns, though a

conventional order for required columns is provided in the

specification.

A schematic of the array hierarchy representing a single matrix is

shown in Figure 1c. Three HDF5 groups representing the chrom,

bin and pixel tables live directly beneath the collection’s root group.

Our specification permits any number of additional columns in each

of the three tables. For example, continuous 1D signal tracks that

align with the genomic bins (e.g. normalization weights, eigenvector

scores) can be appended as columns to the bin table, and pixel tables

can contain multiple value columns (e.g. the color bands of an

image). An additional group called indexes lives alongside the three

tables and contains two index arrays described below. Any addition-

al group hierarchies and metadata are also permitted as long as they

are not nested within the group of a table.

We term the complete object hierarchy representing a matrix a

data collection. The specification requires that some standard meta-

data be provided in the attributes of the data collection’s root group

(Fig. 1c). We reserve an additional attribute slot for storing serial-

ized custom user metadata in JSON format: for example, experi-

mental details, processing logs or mapping statistics. Since all

versions of the HDF5 library ship with gzip compression, for max-

imum portability, it was chosen as the default compression filter for

all columns.

3.2 Indexing
We further stipulate that the records of the pixel table must be

sorted lexicographically by the bin ID along the first axis, then by

the bin ID along the second axis. This way, the bin1_id column can

be substituted with an array of offsets that serves as a lookup index

for the rows of the matrix, stored under indexes/bin1_offset

(Fig. 1c). With this index, we obtain a compressed sparse row (CSR)

sparse matrix representation (Saad, 1990), where the bin1_offset

index corresponds what is often named indptr in CSR data struc-

tures. Given an enumeration of chromosomes, the bin table must

also be lexicographically sorted by chromosome then by start coord-

inate. Then similarly, the chrom column of the bin table will refer-

ence the rows of the chrom table, and can also be substituted with

an offset array, stored under indexes/chrom_offset (Fig. 1c). Because

of the efficient compression of sorted columns, we preserve the ori-

ginal bin1_id and chrom columns so that the indexes may be

(a)

(b)

(c)

Fig. 1. Data model for GLSAs and cooler format. (a) Diagram of the GLSA

data model. A multidimensional genomically labeled array can be repre-

sented via a decomposition that distinguishes the attributes describing the

genomic intervals (table labeled bins) that make up the coordinates of the

array’s axes from the actual non-zero elements of the array (table labeled ele-

ments). The element table contains one or more numerical value columns

and simple integer coordinates that reference rows of the bin table (depicted

using arrows). The bin table’s records describe a sequence of ordered, non-

overlapping genomic intervals, minimally described by the reference se-

quence (chrom), and start, and end positions. The chrom column is further

encoded as an integer enumeration to reference a third table labeled chroms,

which contains attributes describing the reference sequences themselves,

such as their genomic lengths. (b) Any selection of rows of the element table

can be annotated by joining with the appropriate columns of the bin table. (c)

For symmetric matrices, such as Hi-C maps, only upper triangular pixels are

stored to eliminate duplication. Right, a diagram of a cooler data collection’s

hierarchical structure. The three tables are modeled as HDF5 groups

(depicted as folders) while the table columns are stored as 1D arrays, which

are chunked and compressed internally by HDF5. A reserved set of metadata

HDF5 attributes are associated with the root group of the data collection,

including a property indicating whether the matrix is to be interpreted as

symmetric

Cooler 313



dispensable for a reader that does not wish to use them. Cooler can

therefore be thought of as a hybrid COO-CSR format.

3.3 Flavors
Although the standard cooler file contains a single data collection

located at the file’s root group, we allow a cooler file to store multiple

data collections anywhere in the group hierarchy of an HDF5 file, as

long as they are not sequentially nested. Any number of data collections

is permitted, and each individual data collection can be referenced using

its qualified group path. We therefore support a flexible syntax to locate

data collections within a file (see below) and provide two conventions

or ‘flavors’ of the file layout: the single resolution and multi-resolution

or ‘zoomified’ cooler (often suffixed .mcool), which is ideal for inter-

active multiscale visualization, as exemplified by HiGlass (Kerpedjiev

et al., 2018) (See Supplementary Fig. S1 and https://higlass.io/

app? config¼W4DNgqjXRNWPQ7Nbz7NLnQ).

4 Cooler package

We provide a Python-based convenience library to manage cooler

data collections. It provides tools to create and append data to collec-

tions, to merge, aggregate and normalize them, and to and query their

contents and metadata. To identify cooler data collections that may

lie at any level of the group hierarchy of a file, we support a resource

path syntax consisting of a file path, optionally followed by double

colon :: followed by a fully qualified HDF5 group path. If the double

colon and group path are omitted from the resource path, the data

collection is interpreted as being located in the file’s root group.

4.1 CLI
The cooler Python package ships with a CLI for most common

manipulations (Fig. 2a). They are provided as subcommands under

a top-level cooler command namespace. We briefly describe the

main commands below, grouped by theme. All these actions are also

available and further customizable programmatically through the

Python API.

4.1.1 Ingestion

There are several commands used to create cooler data collections

from input data. The first required input is a definition of the bin

segmentation of the genome assembly to which the interaction data

was mapped. In the case of a uniform bin size, the user may simply

provide a file listing the chromosome lengths (a chrom-sizes file)

along with the bin size (resolution) in base pairs. In the case of vari-

able length bins, it can be specified using a BED file. The second

required input is either (1) a list of records describing aggregated

data (i.e. a matrix) or (2) a list of unaggregated paired tags.

If the input data are unaggregated paired tags, the command

cooler cload will aggregate the pairs according to the provided

bin segmentation. If the input is already binned, the cooler load

command will convert the input matrix into the cooler format.

4.1.2 Aggregation

Cooler data collections at one or more base resolutions can be aggre-

gated or coarsened to lower resolutions using the cooler coarsen

command. Moreover, recursively aggregated multi-resolution cooler

files can be generated using the cooler zoomify command. The

resulting files are suitable both for data analysis and for multiscale

visualization (Waldispühl et al., 2018).

4.1.3 Merging

Any combination of cooler data collections with compatible bin

axes, such as technical or biological replicates of an experiment, can

be pooled together in a memory-efficient manner using the cooler

merge command.

4.1.4 Balancing

The de facto standard method for normalizing Hi-C data is matrix

balancing, also known as iterative correction (Imakaev et al., 2012).

(a)

(b)

Fig. 2. Cooler CLI and Python library. (a) Summary of the main categories of

cooler commands available with the cooler Python package, illustrating the

flow of data. The main operations include the ingestion of file or text streams

to create new coolers, aggregation and coarsening of existing coolers to

lower resolutions, merging of axis-compatible matrices, normalization of

cooler matrices by iterative correction, utilities to serialize and stream out the

data and metadata inside a cooler file and to process range queries and a

lightweight viewer to visually inspect a matrix. For example, one uses either

the load command to ingest pre-aggregated data already in matrix form or

the cload command to aggregate paired tag records into a matrix. The gen-

omic bin segmentation defining the axes of the matrix must be provided sep-

arately by providing either a path to a BED file or a path to a chromosome

sizes file along with a specified fixed bin size. (b) The cooler Python library

provides a Cooler class that exposes data range selectors to facilitate data

retrieval and analysis. The individual chrom, bin and pixel tables are access-

ible using 1D range selectors that accept column and row-range selections

and yield pandas data frame output. A cooler’s matrix values are also

exposed using a 2D range selector that processes rectangular range queries

specified either by a pair of genomic coordinate intervals in UCSC-style nota-

tion (using the fetch method) or as integer matrix coordinates (using Python

slice syntax). The retrieved 2D range data may be materialized as dense

NumPy arrays, sparse matrices or data frames. For symmetric coolers, the

file’s upper triangular data will be appropriately mirrored in the array and

sparse matrix outputs

314 N.Abdennur and L.A.Mirny

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz540#supplementary-data
https://higlass.io/app? config=W4DNgqjXRNWPQ7Nbz7NLnQ
https://higlass.io/app? config=W4DNgqjXRNWPQ7Nbz7NLnQ
https://higlass.io/app? config=W4DNgqjXRNWPQ7Nbz7NLnQ


Because is it such a common transformation, we include this func-

tionality in the cooler package. The output is a vector of balancing

weights [the reciprocal of the biases described in Imakaev et al.

(2012)]. These weights are applied by multiplying each pixel value

by the weights associated with its two genomic bins. The cooler

balance command performs bin-level filtering and balancing using

a parallel and out-of-core implementation of iterative correction

with extensive options. Balancing weights are commonly stored as

columns in the bin table of a data collection and applied on-the-fly

during querying. See Supplementary Data for further discussion.

4.1.5 View/export

The contents of the chrom, bin and pixel tables may be serialized as

delimited text using the cooler dump command, which also sup-

ports genomic range queries and pixel annotation. Additionally, the

cooler show command provides a lightweight interactive matplot-

lib visualization to inspect and explore the data.

4.2 Python library
The cooler library provides programmatic access to all of the above

functions as well as an API to select arbitrary ranges of data from

the tables and perform 2D range queries on matrices (Fig. 2b), pow-

ered by the h5py (Collette, 2013) Python interface to HDF5. It pro-

vides both tabular and 2 D array-based interfaces to the sparse (and,

for symmetric matrices, upper triangular) data representation in the

file. It understands both global array indices and genomic coordin-

ate ranges.

To integrate seamlessly into the Python data ecosystem, the cool-

er package’s API materializes queries in several common scientific

data structures, including dense NumPy arrays, SciPy sparse matri-

ces and Pandas data frames. Furthermore, selections of pixels in

data frame form can be annotated with genomic bin columns as

depicted in Figure 1b using the annotate function.

The combined CLI and API of the cooler package makes it suit-

able for use in scripts and pipelines and for inclusion in other soft-

ware libraries. Thanks to its ease of integration with Python-backed

tools, it has already been successfully integrated into 3D genome

browsers, pipelines and visualization tools, including HiGlass

(Kerpedjiev et al., 2018), the WashU Epigenome Browser (Li et al.,

2017), HiCExplorer (Wolff et al., 2018), HiCPlotter (Akdemir and

Chin, 2015) and CoolBox (Xu et al., 2019). The cooler package also

provides the flexibility to facilitate interactive data analysis in envi-

ronments such as the Jupyter Notebook platform (Kluyver et al.,

2016). A comprehensive suite of tools dedicated to Hi-C data ana-

lysis using cooler files is being developed as part of a package called

cooltools and will be presented elsewhere.

4.3 Implementation
Cooler is implemented as a Python package and supports Python

versions 2.7 and 3.4 or greater and works on Linux, Mac OS X and

Windows platforms. The cooler package is open source, BSD

licensed, and the source code is maintained on GitHub at

https://github.com/mirnylab/cooler. The documentation

is hosted at https://cooler.readthedocs.io.

Cooler can be installed using Python’s pip package manager,

$ pip install cooler

or from the bioconda distribution channel (Grüning et al., 2018)

using the conda package manager

$ conda install -c bioconda cooler

For docker users, the CLI is also available through

BioContainers (da Veiga Leprevost et al., 2017)

$ docker run quay.io/biocontainers/cooler

cooler –help

5 Discussion

We present a sparse data model and file format for genomically

labelled arrays with minimal redundancy but enough flexibility to

support a wide range of data types, data sizes and future metadata

requirements. A sparse representation in particular is crucial for

developing robust tools and algorithms for use on increasingly high-

resolution multidimensional genomic data sets that need to operate

on subsets of data at a time. While we developed a command line

suite and Python API to create, inspect and manipulate cooler data

collections, we also set out to define a simple enough specification

that it could be easily interpreted across programming environments

using the established APIs of the underlying storage layer.

In selecting a storage layer on which to implement our sparse

array data model, HDF5 was chosen because it is an open-source,

portable and performant format for scientific data with widespread

use and whose self-describing generic data structures are well suited

to data modeling. Furthermore, we required exchangeable encapsu-

lated files, rather than sharded files or distributed databases, because

the former are still indispensable for modern bioinformatic work-

flows and data analysis practices. Popular binary formats such as

the current versions of MATLAB’s mat files and Unidata’s

NetCDF4 are built as abstractions on top of HDF5 (Dougherty

et al., 2009) and it has been used to store petabytes of mission critic-

al data, such as NASA’s Earth Observation System, for decades

(Folk et al., 2011). Importantly, HDF5 supports chunking and com-

pression, arrays of unlimited size and efficient array subset selection

(slicing). High level APIs exist for a wide variety of programming

languages, including C/Cþþ, Java, Python, Perl and R, facilitating

interoperability across tools developed in different programming

languages and environments.

Nevertheless, the high-level GLSA data model can be imple-

mented using a variety of storage strategies for different goals. For ex-

ample, because the model minimally fragments the data while

eliminating duplication, it can be very useful for text-based inter-

change for multidimensional genomic arrays or parts thereof. Indeed,

for Hi-C data, a two-file text format based on a bin file and upper tri-

angular element file was introduced by the HiCPro pipeline (Servant

et al., 2015). Other open source backends in which GLSAs could be

implemented include Apache Parquet (https://parquet.apa

che.org/), a cloud-optimized columnar binary format for big tabu-

lar data; an emerging array storage technology called TileDB that

provides native high performance sparse array support (https://

tiledb.io/) and a new format called Zarr (https://github.

com/zarr-developers/zarr) that provides an HDF5-inspired

implementation of chunked, compressed, N-dimensional arrays that

can work on top of a variety of storage layers (file system hierarchies,

zip files, or key-values stores). Such new technologies are poised to

become more important as community genomic data migrate increas-

ingly to cloud storage and computing environments.

Of course, our design decisions involved certain tradeoffs. The

data model assigns every genomic bin a global bin ID, which is sensi-

tive to the chromosome order chosen. This tradeoff was deemed pref-

erable to more complicated schemes that add additional bin identifiers

or that divide each scaffold-pair block into a separate group. HDF5

Cooler 315

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz540#supplementary-data
https://github.com/mirnylab/cooler
https://cooler.readthedocs.io
https://parquet.apache.org/
https://parquet.apache.org/
https://tiledb.io/
https://tiledb.io/
https://github.com/zarr-developers/zarr
https://github.com/zarr-developers/zarr


supports a row-based storage model for tables using compound data

types (structured arrays), but the compression, append and perform-

ance benefits of columnar were deemed important enough to define a

column-based storage model. The CSR indexing scheme in our HDF5

schema is very space-efficient, but not optimal for 2D range queries

because the data are not serialized in a way that strongly preserves 2D

locality. However, by using different sort orders on the element data,

the data model we present can support more sophisticated indexing

schemes, such as space-filling curves (Pascucci and Frank, 2003).

Finally, the data model implemented describes two-dimensional arrays

with homogeneous sets of axes. Though not yet implemented in the

cooler package, handling heterogeneous axes is a matter of including

separate chromosome and bin tables for each distinct axis. The data

model also extends naturally to multidimensional tensors by including

additional axis columns in the element table.

Cooler provides a scalable solution to tackling the analysis and

visualization of big Hi-C data and other genomically labeled matri-

ces at any data resolution, scaling to massive data sizes without

incurring the read and write bottlenecks of dense storage. It is also

amenable to external-memory (often called out-of-core) algorithms

that can be controlled to maximally exploit multiple cores and disk

I/O while not overwhelming memory resources (Vitter, 2006). The

cooler package’s command line tools facilitate integration into

scripts and workflows, and its Python API allows users to leverage

the powerful resources of the Python data ecosystem while the port-

able HDF5 format makes it readily accessible in other environments

such as Java and R. The cooler format has adopted as a standard for

Hi-C data storage, along with hic (Durand et al., 2016) and the pairs

text format (https://github.com/4dn-dcic/pairix/blob/

master/pairs_format_specification.md), by the 4D

Nucleome Consortium’s Data Coordination and Integration Center,

and is already supported by a number of genomic analysis and visu-

alization tools, including HiGlass (Kerpedjiev et al., 2018).

Acknowledgements

We greatly thank Anton Goloborodko and Maxim Imakaev for many extensive

discussions, contributions to code development and providing feedback on the

manuscript. We are grateful to Peter Kerpedjiev and Fritz Lekschas for helpful

discussions and for HiGlass integration. We also thank Geoffrey Fudenberg,

Sergey Venev, Ilya Flyamer, Joachim Wolff, members of the Mirny lab, and

members of Nils Gehlenborg’s and Peter Park’s groups for feedback, contribu-

tions and animated participation on the public issue tracker.

Funding

This work was supported by the National Institutes of Health Common Fund

4D Nucleome Program [Center for Structure and Physics of the Genome

DK107980; and 4D Nucleome Network Data Coordination and Integration

Center U01 CA200059].

Conflict of Interest: none declared.

References

Abadi,D.J. et al. (2008) Column-stores vs. row-stores: how different are they

really? In: Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’08, pp. 967–980. ACM,

New York, NY, USA.

Akdemir,K.C. and Chin,L. (2015) HiCPlotter integrates genomic data with

interaction matrices. Genome Biol., 16, 198.

Collette,A. (2013) Python and HDF5: Unlocking Scientific Data. O’Reilly.

da Veiga Leprevost,F. et al. (2017) BioContainers: an open-source and

community-driven framework for software standardization. Bioinformatics,

33, 2580–2582.

Davies,J.O. et al. (2017) How best to identify chromosomal interactions: a

comparison of approaches. Nat. Methods, 14, 125.

Dekker,J. et al. (2002) Capturing chromosome conformation. Science, 295,

1306–1311.

Denker,A. and De Laat,W. (2016) The second decade of 3C technologies:

detailed insights into nuclear organization. Genes Dev., 30, 1357–1382.

Dougherty,M.T. et al. (2009) Unifying biological image formats with HDF5.

Queue, 7, 20.

Durand,N.C. et al. (2016) Juicebox provides a visualization system for hi-c

contact maps with unlimited zoom. Cell Syst., 3, 99–101.

Folk,M. et al. (2011) An overview of the HDF5 technology suite and its appli-

cations. In: Proceedings of the EDBT/ICDT 2011 Workshop on Array

Databases, pp. 36–47. ACM, Uppsala, Sweden.

Grüning,B. et al. (2018) Bioconda: sustainable and comprehensive software

distribution for the life sciences. Nat. Methods, 15, 475.

Imakaev,M. et al. (2012) Iterative correction of Hi-C data reveals hallmarks of

chromosome organization. Nat. Methods, 9, 999.

Kerpedjiev,P. et al. (2018) HiGlass: web-based visual exploration and analysis

of genome interaction maps. Genome Biol., 19, 125.

Kluyver,T. et al. (2016) Jupyter notebooks—a publishing format for reprodu-

cible computational workflows. In: Loizides,F. and Schmidt,B. (eds)

Positioning and Power in Academic Publishing: Players, Agents and

Agendas, Göttingen, Germany. IOS Press, Amsterdam, Netherlands, pp.

87–90.

Koziol,Q. and Robinson,D. (2018) The HDF Group (2000–2018) Hierarchical

Data Format version 5. doi: 10.11578/dc.20180330.1.

Kumar,R. et al. (2017) Genome contact map explorer: a platform for the com-

parison, interactive visualization and analysis of genome contact maps.

Nucleic Acids Res., 45, e152.

Lajoie,B.R. et al. (2015) The Hitchhiker’s guide to Hi-C analysis: practical

guidelines. Methods, 72, 65–75.

Li,D. et al. (2017) Chromatin interaction data visualization in the WashU epi-

genome browser. bioRxiv, p. 239368.

Li,H. (2011) Tabix: fast retrieval of sequence features from generic

tab-delimited files. Bioinformatics, 27, 718–719.

Lieberman-Aiden,E. et al. (2009) Comprehensive mapping of long-range inter-

actions reveals folding principles of the human genome. Science, 326,

289–293.

Pascucci,V. and Frank,R.J. (2003) Hierarchical indexing for out-of-core

access to multi-resolution data. In: Gerald,F. et al. (eds) Hierarchical and

Geometrical Methods in Scientific Visualization. Springer-Verlag, Berlin

Heidelberg, pp. 225–241.

Saad,Y. (1990) SPARSKIT: A basic tool kit for sparse matrix computations.

Technical Report 90.20. Research Institute for Advanced Computer

Science, NASA Ames Research Center.

Sauria,M.E. et al. (2015) HiFive: a tool suite for easy and efficient HiC and 5C

data analysis. Genome Biol., 16, 237.

Servant,N. et al. (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C

data processing. Genome Biol., 16, 259.

Vitter,J.S. (2006) Algorithms and data structures for external memory. Found.

Trends Theor. Comput. Sci., 2, 305–474.

Waldispühl,J. et al. (2018) Storage, visualization, and navigation of 3D gen-

omics data. Methods, 142, 74–80.

Wang,Y. et al. (2018) The 3D genome browser: a web-based browser for visu-

alizing 3D genome organization and long-range chromatin interactions.

Genome Biol., 19, 151.

Wolff,J. et al. (2018) Galaxy HiCExplorer: a web server for reproducible Hi-C

data analysis, quality control and visualization. Nucleic Acids Res., 46,

W11.

Xu,W. et al. (2019) Coolbox: a interactive genomic data explorer for Jupyter

notebook. bioRxiv.

316 N.Abdennur and L.A.Mirny

https://github.com/4dn-dcic/pairix/blob/master/pairs_format_specification.md
https://github.com/4dn-dcic/pairix/blob/master/pairs_format_specification.md

