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In a fast-changing world, polar ecosystems are threatened by climate variabil-
ity. Understanding the roles of fine-scale processes, and linear and nonlinear
effects of climate factors on the demography of polar species is crucial for
anticipating the future state of these fragile ecosystems. While the effects of
sea ice on polar marine top predators are increasingly being studied, little is
known about the impacts of landfast ice (LFI) on this species community.
Based on a unique 39-year time series of satellite imagery and in situ meteor-
ological conditions and on the world’s longest dataset of emperor penguin
(Aptenodytes forsteri) breeding parameters, we studied the effects of fine-scale
variability of LFI andweather conditions on this species’ reproductive success.
We found that longer distances to the LFI edge (i.e. foraging areas) negatively
affected the overall breeding success but also the fledging success. Climate
window analyses suggested that chick mortality was particularly sensitive
to LFI variability between August and November. Snowfall in May also
affected hatching success. Given the sensitivity of LFI to storms and changes
in wind direction, important future repercussions on the breeding habitat of
emperor penguins are to be expected in the context of climate change.
1. Introduction
Polar ecosystems are subject to local and regionally contrasted sea ice trends as a
result of climate change [1,2]. Given the complexity of these trends, which are
tightly linked to the atmosphere and the ocean dynamics, there is an urgent
need to measure and forecast how polar marine populations will respond to
sea ice habitat changes [3,4]. Among the studies that have investigated the impacts
of climate change and variability on population dynamics in the Southern Ocean
[5,6], a thorough understanding of the fine-scale processes by which climate
affects the population dynamics of polar organisms is still lacking, thereby pre-
venting the scientific community from improving model projections to correctly
assess the future states of polar populations and ecosystems. Given that popu-
lation dynamics are driven by several demographic components whose
sensitivities to climatic factors vary [7,8], it is important to investigate the links
between climate and each demographic component. Determining the spatial
and temporal scales at which climate variability affects biological parameters is
also of prime importance [9]. Also crucial for improving projections, long-term
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multi-decadal biological series are required to detect nonlinear
effects of climate on populations [10–13]. The obtention of such
long time series is however often limited by logistical chal-
lenges associated with conducting long-term studies in these
remote and extreme areas.

Many Antarctic marine top predators, such as seals and
seabirds, are intricately linked to landfast ice (LFI), i.e. the
narrow band of coastal, compact sea ice held in place by ice
shelves and grounded icebergs [14], throughout their breeding
period [15–17]. Therefore, LFI variability, such as extreme
extent or early break up, can profoundly impact their breeding
areas and breeding success [18–20]. However, functional
relationships between LFI variability and demographic par-
ameters of polar marine predators remain poorly known
owing to the scarcity of biological datasets and the difficulty
to characterize LFI variability over long time periods.

To improve our understanding of how polar species will
respond to future climate changes, we explored the role LFI
variability and in situ meteorological conditions have on the
overall breeding success, but also the fledging andhatching suc-
cess of a unique sea ice sentinel species [20], the emperor
penguin (Aptenodytes forsteri). We used the longest historical
time series of Antarctic LFI collected by the Advanced Very
High Resolution Radiometer (AVHRR) and the Moderate-
Resolution Imaging Spectroradiometer (MODIS), covering the
years 1979–2017, i.e. since the inception of modern satellite
monitoring. We also used the world’s longest time series of
emperor penguin breeding parameters, collected at Pointe
Géologie, Adélie Land, since 1952. The novelty of this research,
while relying on previous studies (e.g. [21–26]), lies in
(i) assessing the climate effect on different components of the
reproduction, (ii) using the longest time series available for
LFI and emperor penguin reproduction, (iii) taking into account
the relative contribution of fine-scale processes (local LFI and
in situ meteorological conditions), (iv) exploring different time
windows of these effects, and (v) testing nonlinear effects.
2. Material and methods
(a) Landfast ice data
Three sources of satellite imagery were used to cover the
1979–2017 period and aggregate LFI data (see electronic
supplementary material, figure S1 for examples):

(1) 1979–1991: visible (when available) or thermal infrared
images from AVHRR’s Global Area Coverage (GAC) mode
(spatial resolution of 4 km px−1).

(2) 1992–1999: visible (when available) or thermal infrared
images from the AVHRR Coastal Atlas of East Antarctica
[27] (resolution of 1.1 km px−1).

(3) 2000–2017: LFI maps from Moderate-Resolution Imaging
Spectroradiometer (MODIS) images (resolution of 1 km),
classified by Fraser et al. [28].

Distances between the penguin colony location and the near-
est landfast ice edge (LFIE) (i.e. proxy for access to the ocean) and
landfast ice areas (LFIA) were extracted from the images.

(b) Meteorological data
Meteorological data were obtained from the French weather
station of Dumont D’Urville. Three parameters were used in
this study: the number of days per month with (i) temperatures
under −10°C, (ii) winds above 28 m s−1, and (iii) snowfall. We
hypothesized that egg loss during incubation and chick mortality
could be enhanced during cold and windy conditions caused by
katabatic winds and winter storms [15]. Heat loss due to cold
temperatures and strong winds, which could be enhanced by
snowfall, may increase chick mortality.

(c) Reproductive data
Data are similar to those used by Barbraud and co-workers [21,29],
with updated estimates (electronic supplementarymaterial). From
count data, we estimated ‘breeding success’ as the number of
fledged chicks divided by the number of breeding pairs; ‘hatching
success’ as the number of breeding pairsminus the number of dead
eggs divided by the number of breeding pairs; and ‘fledging suc-
cess’ as the number of fledged chicks divided by the number of
breeding pairs minus the number of dead eggs. Breeding success
was estimated over the period 1979–2017; hatching and fledging
success over the period 1983–2017.

(d) Climate window analysis
We performed a ‘climate window analysis’ using the R package
climwin, following the steps described in [30]. Climate window
analyses determine, without any a priori hypothesis, the best cli-
mate window(s) (i.e. candidate models) that identify potential
climate signals between biological and climate data. Two data-
sets were analysed: one that contained our monthly climate
data, i.e. LFI or meteorological data covering the 1979–2017
period, and one that contained information on the response vari-
able, i.e. breeding, hatching and fledging success. For each
climate window, a model was computed. Akaike information cri-
teria (AICs) were used for ranking and comparing different
candidate climate windows, and then for assessing the best
models, their uncertainty, explanatory power and applicability.
Details on the analysis and outputs of the analysis are provided
in the electronic supplementary material. The full dataset and
codes can be found on the Dryad Digital Repository [31].
3. Results
(a) Reproduction time series
Hatching success was the most stable reproductive parameter
(mean ± s.d. = 0.82 ± 0.07, CV = 8.3%), while fledging success
(0.65 ± 0.30) and breeding success (0.53 ± 0.25) were more vari-
able (CV = 46.4% and 46.5%, respectively; figure 1a). Hatching
success increased during the study period (slope = 0.051 ±
0.007 (s.e.), p < 0.001), while fledging success (slope =−0.003
± 0.052, p = 0.96) and breeding success (0.026 ± 0.040, p = 0.52)
remained stable (figure 1a). Variations in both fledging and
breeding successes seemed to covary with the LFIA, but even
more so with the distance to the nearest LFIE (figure 1b,c).

(b) Climate window analysis
Breeding success was higher for shorter distances to the LFIE
between August and November ( prandomization = 0.006;
adjusted R2 = 0.4), while the LFIA did not have a significant
influence (i.e. based on the randomization test; table 1 and
figure 2a). The number of days per month with temperatures
under −10°C, with winds above 28 m s−1, and with snowfall
did not influence the breeding success (table 1). Neither the
LFIA nor the number of days per month with winds above
28 m s−1 or temperature below −10°C had an influence on
the hatching success (table 1). However, the hatching success
appeared to be influenced by the number of dayswith snowfall
in May ( prandomization = 0.0003, adjusted R2 = 0.3; table 1 and
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Figure 1. Times series of the emperor penguin reproductive parameters ((a), 95% confidence intervals in grey) and LFI conditions (LFIA (b); nearest distance to LFIE
(c)) at Pointe Géologie, 1979–2017. Pink rectangles highlight years for which breeding success was below 25%.
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figure 2c). This relationship was nonlinear, with hatching suc-
cess increasing with the proportion of days with snowfall per
month up to 37% and remaining stable or decreasing slightly
for higher proportions. Finally, fledging success was higher
for shorter distances to the LFIE in November (prandomization

= 0.035, adjusted R2 = 0.5; table 1 and figure 2b), while the
LFIA, and the number of days per month with temperature
below −10°C, with winds above 28 m s−1, and with snowfall
did not have a significant influence (table 1). Fledging success
declined nonlinearlywith the nearest distance to the LFIE,with
an accelerated decline for distances greater than ca 50 km.
4. Discussion
We showed that over 39 years, different components of
the reproduction of an Antarctic seabird were affected by
fine-scale LFI and in situ meteorological conditions at differ-
ent times of its breeding season, and, importantly, these
relationships were nonlinear.

Adult emperor penguins during the breeding season
forage and hunt by diving at the edge of the LFI in cracks,
flaw leads and polynyas [32]. Longer distances between the
colony and foraging grounds accessed by the LFIE imply
lower chick-feeding frequency, and thus lower chick growth,
with negative consequences on fledging and breeding success.
Using historical AVHRR and recent MODIS images, our study
brings important and novel results. First, we identified that dis-
tance to nearest LFIE particularly affected fledging success in
November (and the second-best model identified a window
between August and November), indicating that chick mor-
tality was the main cause of declining breeding success with
increasing distance to LFIE. Second, this relationship was non-
linear, with over 50% chickmortalitywhen the distance to LFIE
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5

exceeded ca 65 km. Nonlinearity could be detected by extend-
ing the time series from 8 years in a previous work [26] to
nearly 40 years in our study. Third, we identified that the
best climate window explaining the relationships between dis-
tance to LFIE (i.e. foraging grounds) and breeding success was
between August and November, suggesting chicks were par-
ticularly sensitive to environmental variability during this
period of high energetic demands for body growth [33,34].

Reproduction has been monitored at extremely few other
emperor penguin colonies. Surprisingly, no relationship was
found between LFI and breeding success of emperor pen-
guins at Taylor Glacier colony [35]. Although this may
depict the complex interactions between environment and
penguin foraging behaviour and their consequences for
breeding performances, Robertson et al. [35] used distance
to LFIE in April and September, and our time windows
analysis indicated that these months did not represent the
full critical period for fledging and breeding success. Never-
theless, this highlights the need to monitor multiple sites in
order to understand how sea ice variability, and especially
LFI, is affecting the global emperor penguin population.
Our study supports previous findings that it is crucial to
consider both fine-scale climate processes and fine-scale tem-
poral windows when investigating the relationships between
climate variability and demographic traits [9,36]. Despite the
diversity of studies that have investigated the effect of climate
change on polar species, there is a strong need to account for
the factors that control population dynamics at local/regional
scales in order to understand how they may modulate the
effects of large-scale environmental variations on long-term
population trend [13]. For example, Olivier et al. [37] compared
the influence of environmental factors on the breeding success
of snow petrels (Pagodroma nivea) at Casey station with the
colony of Adélie Land, and showed that despite similarities
in the biological processes controlling snow petrel breeding
success, the correlation of large-scale environmental factors
with breeding success differed substantially between the two
colonies, likelyowing to the effects of the environmental factors
at the local/regional scale.

LFI variability may have important indirect effects that we
did not consider in this study. For example, LFI break-ups
could contribute to the phytoplankton seeding process (e.g.
[38–40]) and may drive a phytoplankton bloom associated
with trophic cascades. This could in turn benefit emperor pen-
guins through bottom-up processes with a temporal lag
depending on the timing within the breeding period. In the
Arctic, longer temporal lags between sea ice melting and phy-
toplankton bloom resulted in rapidly decreasing breeding
performance for little auks (Alle alle) and Brünnich’s guillemots
(Uria lomvia) [41]. Thus, considering local- to regional-scale
phenology in the development of potential phytoplankton
blooms in response to LFI variability may help understand
climate-driven environmental impacts on seabirds.

During breeding, individual emperor penguins do not
use a fixed nest site as do other penguins. Therefore, the
colony is mobile during the breeding season and can move
several hundred metres or even a few kilometres. Therefore,
the selection of nest site (and experience to nest site) is not rel-
evant for this species. However, there might be selection for
sites where colonies are situated, as these sites are generally
occupied for long time periods (several decades at least), as
our results suggest a strong selection pressure from environ-
mental factors such as LFIE. Nevertheless, the environmental
factors affecting colony site selection have not been investi-
gated and quantified to date.

Finally, none of the meteorological variables, except snow-
falls for the hatching success, had an influence on reproductive
parameters. The positive relationship between the number of
days with snowfall in May and the hatching success may be
associated with the hydration of males during their long fast-
ing period of about four months. We speculate that
important snowfalls in May allow males to supplement their
water intake by eating snow, thus decreasing dehydration
potentially leading to the abandonment of the egg before it
hatches. Indeed, field observations during winter indicate
that male emperor penguins eat snow throughout the
incubation period ([42]; C.B. 2021, personal observation).

Our results bring new insights on the proximate mechan-
isms through which a poorly known polar habitat feature,
LFI, affects demographic parameters of polar top predators.
We note that, although we might be able to better predict the
future state of polar populations once such fine-scale processes
are fully understood, population projections based on sea ice
models (e.g. [43]) remain hampered by the fact that these
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models project sea ice extent but do not provide information on
LFI dynamics yet. Important future repercussions on the breed-
inghabitat of emperorpenguins andultimately their persistence
are to be expected in the context of climate change [2], given the
sensitivity of LFI to storms and changes in wind direction [44],
as well as the recently observed strong and opposed LFI trends
in adjacent regions [45]. Given the demographic sensitivity of
emperor penguins associatedwith postglacial warming leading
to a major southward expansion [46], major shifts such as
decline or extinction of emperor penguin populations are
expected under anthropogenic climate change.
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