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Protease-activated receptor 2 (PAR2) is a member of G-protein-coupled receptors and affects ligand-modulated calcium signaling.
Although PAR2 signaling promotes obesity and adipose tissue inflammation in high fat- (HF-) fed conditions, its role in adipocyte
differentiation under nonobesogenic conditions needs to be elucidated. Here, we used several tissues and primary-cultured
adipocytes of mice lacking PAR2 to study its role in the development of adipose tissues. C57BL/6J mice with PAR2 deficiency
exhibited a mild lipodystrophy-like phenotype in a chow diet-fed condition. When adipocyte differentiation was examined using
primary-cultured preadipocytes, PAR2 deficiency led to a notable decrease in adipocyte differentiation and related protein
expression, and PAR2 agonist treatment elevated adipocyte differentiation. Regarding the mechanism, PAR2-deficient
preadipocytes exhibited impaired mitochondrial energy consumption. Further studies indicated that calcium-related signaling
pathways for mitochondrial biogenesis are disrupted in the adipose tissues of PAR2-deficient mice and PAR2-deficient
preadipocytes. Also, a PAR2 antagonist elevated mitochondrial reactive oxygen species and reduced the MitoTracker fluorescent
signal in preadipocytes. Our studies revealed that PAR2 is important for the development of adipose tissue under basal
conditions through the regulation of mitochondrial biogenesis and adipocyte differentiation.

1. Introduction

Adipocytes store excess energy as triglycerides (TGs) and act
as a dynamic autocrine, paracrine, and endocrine organ that
releases hormonal factors. Although excessive growth of
white adipose tissue (1) by hyperplasia and hypertrophy
can lead to obesity, disruption of adipocyte differentiation
also results in metabolic syndrome via ectopic lipid accumu-
lation and lipotoxicity. For instance, genetically and acquired
lipodystrophy patients exhibit insulin resistance, hypertri-
glyceridemia, and nonalcoholic fatty liver diseases (2, 3). Fur-

thermore, various animal studies showed that healthy fat
accumulation elevated body weight but greatly improved
metabolic syndrome. Mice lacking leptin, while overexpress-
ing adiponectin, exhibited increased expression levels of per-
oxisome proliferator-activated receptor γ (PPARγ), a master
transcription factor of adipogenesis, leading to the expansion
of adipose tissue; however, these mice showed an improve-
ment in the metabolic syndrome (4). Furthermore, PPARγ
agonists improve insulin resistance and dyslipidemia, despite
the increase in fat mass. Thus, a supply of fresh adipocytes is
essential to maintain energy homeostasis.
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Although there are various transcription factors for adi-
pocyte development and functions (5, 6), mitochondria and
undifferentiated mesenchymal stem cells (MSCs) are also
essential factors for the regulation of metabolic activity in dif-
ferentiated cells (7, 8). Studies indicate that mitochondria
biogenesis and function are essential for adipocyte differenti-
ation. Mitochondrial biogenesis and oxygen consumption
elevate notably during adipocyte differentiation, and disrup-
tion of these processes inhibits adipocyte differentiation from
MSCs (9). When immortalized human MSCs are infected
with an adenovirus carrying proliferator-activated receptor
γ coactivator 1-α (PGC-1α), a key factor for mitochondrial
biogenesis, the cells were suppressed to differentiate into
osteoblasts under osteogenic induction and stimulated to dif-
ferentiate into brown-like adipocytes by upregulation of
genes associated with mitochondrial function and lipid
metabolism (10). On the other hand, PGC-1α knockdown
suppressed adipocyte differentiation of MSCs (10). Thus,
mitochondrial regulatory processes are mandatory for bioen-
ergetic changes during adipocyte differentiation.

Protease-activated receptor 2 (PAR2) belongs to a family
of G-protein-coupled receptors and affects ligand-modulated
calcium signaling (11). Although PAR2 signaling is closely
associated with obesity and metabolic syndrome under high
fat- (HF-) diet-fed conditions, it is also involved in other cel-
lular processes including muscle cell proliferation, skeletal
growth, bone repair (12, 13), and mitochondrial activity
(14). Because both calcium signaling and PAR2 signaling
are associated with mitochondrial functions (14, 15), we
examined the roles of PAR2 in adipocyte differentiation
using both in vitro and in vivo analyses.

2. Methods and Materials

2.1. Materials. SLIGRL-NH2 was purchased from Cayman
Chemical (Ann Arbor, MI, USA). GB83 was purchased from
AxonMedchem (Groningen, The Netherlands). Primary and
secondary antibodies were acquired from Abcam (Cam-
bridge, UK), GeneTex (Irvine, CA, USA), Santa Cruz Bio-
technology (Dallas, Texas, USA), and Thermo Fisher
Scientific (Waltham, MA, USA) (Supplementary Table 1).
PVDF membranes were purchased from Millipore
Corporation (Bedford, MA, USA). The Dokdo-MARK™
protein size marker was purchased from Elpis Biotech
(Daejeon, Korea). Sterile plastic plates for cell culture were
purchased from SPL (Seoul, Korea). All other reagents were
purchased from Merck (Kenilworth, NJ, USA).

2.2. Animals. Five-week-old male WT (C57BL/6J) mice
(Daehan Biolink, Seoul, Korea) and PAR2 KO (B6.Cg-
F2rl1tm1Mslb/J) mice (Provided by Prof. Hak Sun Yu, Depart-
ment of Parasitology, Pusan National University School of
Medicine, Yangsan, Korea) were used in all experiments.
All mice were maintained at 23 ± 2°C with a relative humid-
ity of 60 ± 5% and a 12 h/12 h light/dark cycle and provided
an unrestricted amount of food and water. Mouse genotyping
was performed based on the slightly modified protocol pro-
vided by the Jackson Laboratory (Jackson Laboratory, Bar
Harbor, ME) (Supplementary Fig. 1). The QuickExtract™

DNA Extraction Solution 1.0 (Epicentre, Wisconsin, USA)
was used to extract DNA from mouse tails. Standard PCR
was performed with nTaq (Mg2+ plus) DNA polymerase
(Enzynomics, Daejeon, Korea) and primers. The specific
primer sequences to detect PAR2 KO mice were as follows:
mutant, 5′-GCC AGA GGC CAC TTG TGT AG-3′; wild
type forward, 5′-TCA AAG ACT GCT GGT GGT TG-3′;
and wild type reverse, 5′-GGT CCA ACA GTA AGG CTG
CT-3′. PCR-derived products were separated on a 1.5% aga-
rose gel and photographed under UV light. Tissues were iso-
lated and frozen instantly in liquid nitrogen for analysis
including qPCR, western blot, and other biochemical analy-
ses. We followed the animal protocol approved by the Pusan
National University-Institutional Animal Care and Use
Committee (PNU-IACUC, Approval No. PNU-2017-1699).

2.3. Primary Adipocyte Culture. Subcutaneous adipose tissue
was isolated using a midline ventral incision through the skin
of 5-week-old male and female mice. The adipose tissue was
minced and incubated in Dulbecco’s modified Eagle’s
medium (DMEM) with collagenase type 1 buffer (filter
(0.2μm)-sterilized HEPES buffer including 1mg/mL collage-
nase) at 37°C for 90min with uniform shaking. When the
digestion was completed, samples were diluted at a 1 : 1 ratio
in 10% FBS/DMEM and processed by filtration using 70μm
cell strainers to remove undigested tissues. Cells were centri-
fuged at 500 g for 15min, and the upper lipid layer and
supernatant were removed by suction. Sediments were resus-
pended in 10mL of red blood cell lysis buffer (BioLegend,
San Diego, CA, USA). After incubation at room temperature
(22°C) for 10 min, an equal volume of DMEM (10% FBS) was
added to the samples. To discard endothelial cell clumps, the
cells were filtered again using 40μm cell strainers, followed
by centrifugation at 500 g for 5min to obtain primary preadi-
pocytes. After the first subculture, cells were plated in 6-well
plates or 100mm dishes with DMEM (10% FBS) at a density
of 2:0 × 105 or 7:0 × 105. Two days after the confluence of the
cells, adipocyte differentiation was induced by the addition of
a differentiation cocktail (1μM dexamethasone, 0.5mM
IBMX, 10μg/mL insulin, and 1μM rosiglitazone in DMEM
supplemented with 10% FBS). After incubation for 48 h,
the culture medium was changed with a fresh maintenance
medium (DMEM with 10% FBS and 10μg/mL insulin) every
2 days until day 7. Preadipocytes or fully differentiated adipo-
cytes were used for subsequent experiments. Adipocytes were
homogenized to extract RNA and protein or fixed in neutral-
buffered formalin for staining.

2.4. Histological Analysis. Adipose tissues (eWAT and
sWAT) were fixed with neutral-buffered 10% formalin for
histochemical examination. Samples were sectioned by par-
affin embedding, and hematoxylin and eosin staining was
carried out. The Oil Red O staining was performed to visual-
ize lipid accumulation. Differentiated adipocytes were fixed
with 10% formalin for 1 h and washed with 60% isopropyl
alcohol. Oil Red O solution was treated to the cells for 30
min and rinsed with distilled water. After the staining, images
of lipid accumulation were detected with an Olympus IX71
microscope (Olympus, Tokyo, Japan). The dye was eluted
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with isopropyl alcohol and measured at 510 nm using Spec-
traMax i3 (Molecular Devices, San Jose, CA, USA).

2.5. Western Blot Analysis. Nuclear, cytosolic, and total pro-
tein extraction samples of the cells were boiled for 5min in
a loading buffer including 0.2% bromophenol blue, 125mM
Tris-HCl, 10% 2-mercaptoethanol, pH6.8, and 4% sodium
dodecyl sulfate. The protein mixture for each sample was
separated by SDS-polyacrylamide gel electrophoresis in
6%–15% acrylamide gels. Subsequently, the separated bands
were transferred to PVDF membranes using a Bio-Rad west-
ern system (Bio-Rad, Hercules, CA, USA). Protein-
transferred membranes were soaked in 5% nonfat milk buffer
including 100mM NaCl, 10mM Tris (pH7.5), and 0.1%
Tween-20 for 2 h. Then, the membranes were rinsed with
TBS-Tween buffer and incubated with primary antibodies
at 4°C overnight (Supplementary Table 1). Membranes
were rinsed with TBS-Tween buffer for 30min and
incubated with horseradish peroxidase-conjugated
secondary antibodies at 25°C for 2 h. The protein bands
were visualized by Western Bright Peroxide solution
(Advansta, Menlo Park, CA, USA) and enhanced
chemiluminescence (Davinch-Chemi CAS400, Seoul,
Korea).

2.6. Immunocytochemistry. Preadipocytes were plated on a
60mm cell culture dish and incubated for 24h. After remov-
ing the culture media, cells were incubated with 50 nMMito-
Tracker Red CMXRos (Thermo Fisher Scientific, Waltham,
MA, USA) in serum-free media at 37°C for 20min. Then,
cells were washed with prewarmed PBS and immediately
fixed with 4% formaldehyde in distilled water for 30min.
The cells were washed with cold PBS two times and then
counterstained with Hoechst 33258 (Thermo Fisher Scien-
tific, Waltham, MA, USA) in PBS (1 : 10000) for 5min at
room temperature in the dark. After washing and mounting,
the analysis of images was performed by an FV10i FLUO-
VIEW Confocal Microscope (Olympus, Tokyo, Japan).

2.7. Staining of Mitochondria ROS and Ca2+. After coating
cover slips with poly-D-lysine (Gibco, USA) in 24 well plates
for 15min, preadipocytes were seeded at a density of 1 × 105
cells/well for 24 h. The cells were treated with drugs at the
required concentration (10μM GB83 and 100μM SLIGRL-
NH2) in serum-free media and incubated for 24 h before
staining with 1μM MitoSOX™ Red (Thermo Fisher Scien-
tific, Eugene, OR) or 5μM Rhod-2 AM (Thermo Fisher Sci-
entific, Eugene, OR) for 30min at 37°C in the dark.
Preadipocytes were washed with PBS, and Hoechst 33342
(Invitrogen, USA) was used to stain the cells. After washing,
the cells were observed using a fluorescence microscope
(Lionheart FX automated microscope, BioTek, USA). The
following quantitative analysis was performed by flow
cytometry (cytoFLEX, Beckman Coulter Inc., California, Pas-
adena, USA).

2.8. [Ca2+]i Concentration Measurement. Primarily cultured
cells were scraped; allowed to sediment at 1,000 g for 5min;
resuspended in a HEPES-buffered medium containing
20mM HEPES (pH7.4), 1.2mM MgSO4, 0.5mM CaCl2,

103mM NaCl, 4.8mM KCl, 25mM NaHCO3, 15mM glu-
cose, and 1.2mM KH2PO4; and then incubated for 20min
with 5μM Fura-2-AM. [Ca2+]i levels were determined by
observing changes in Fura-2 fluorescence (emission wave-
length 510nm and excitation wavelengths 340 nm and
380 nm, every 0.1 sec) using a F4500 fluorescence spectro-
photometer (Hitachi, Tokyo, Japan) (Park et al., 2013). Fluo-
rescence intensity ratios (λ340/λ380) were used as surrogates
of [Ca2+]i as described previously (16).

2.9. Oxygen Consumption Rate (OCR) Analysis. Cellular OCR
was measured using the Seahorse Bioscience XFp Extracellu-
lar Flux Analyzer (Seahorse Bioscience, Billerica, MA, USA).
Cells were seeded on the XFp cell culture mini plates at 2:0
× 104 cells per well under the various conditions designated
in the experiments. The sensor cartridge for the XFp analyzer
was hydrated in a 37°C non-CO2 incubator overnight. Cells
were treated with 1μM oligomycin (complex V inhibitor),
0.5μM FCCP, and 0.5μM rotenone/antimycin A (inhibitors
of complex I and complex III) for the OCR test. During sen-
sor calibration, cells were incubated in the 37°C non-CO2
incubator in FX running media (4.5mg/mL d-glucose,
1mM pyruvate, and 4mM l-glutamine, pH7.4) for 1 h. The
plate was immediately changed with a sensor cartridge in
the calibrated XFp Extracellular Flux Analyzer. OCR was
normalized by total protein/well.

2.10. Statistical Analysis. Data are expressed as the mean ±
standard error of themean ðSEMÞ unless otherwise indi-
cated. GraphPad Prism 5.0 (GraphPad Software, San Diego,
CA, USA) was used for Student’s t-tests (two-tailed). Differ-
ences were considered significant at P < 0:05.

3. Results

3.1. Adipose Tissue Development Is Disrupted in PAR2 KO
Mice. Although PAR2 signaling is involved in obesity and
metabolic syndrome under a HF-fed condition, PAR2 signal-
ing is important not only for cell differentiation and tissue
regeneration (17, 18) but also for preventing apoptosis (17,
19). Because it is unclear whether PAR2 signaling affects adi-
pose tissue development under nonobesogenic conditions,
we investigated the effects of PAR2 deficiency on energy bal-
ance and adipose tissue development under a chow diet-fed
condition. When body weight was measured at an early age
(5 weeks), it was significantly decreased in PAR2 KO mice
compared to WT mice fed a chow diet (Figure 1(a)). There
were no differences in the percent weight of the liver, kidney,
and skeletal muscle, but the percentage of subcutaneous fat
(sWAT), epididymal fat (eWAT), and brown fat (BAT) was
markedly reduced in PAR2 KOmice (Figure 1(b)), indicating
that the development of adipose tissue was abnormal under
PAR2-deficient conditions. To further examine this, H&E
staining was performed. Interestingly, sWAT and eWAT of
PAR2 KO mice were not filled with large, closely packed adi-
pocytes compared to those of WT mice; this characteristic is
more apparent for sWAT (Figures 1(c) and 1(d)). Thus, we
tested whether PAR2 deficiency is associated with adipocyte
differentiation by measuring mRNA levels of adipocyte
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differentiation markers in sWAT. Data from quantitative
PCR (qPCR) showed that mRNA levels of adipogenic and
lipogenic transcription factors including CCAAT/enhancer-
binding protein α/β/δ (CEBPα/β/δ), PPARγ, sterol regula-
tory element-binding protein-1c (SREBP1c), and SREBP2
are notably decreased in sWAT of PAR2 KO mice

(Figure 1(e)). Consistently, mRNA levels of their down-
stream genes including fatty acid synthase (FASN),
hormone-sensitive lipase (HSL), and perilipin 1 were also
significantly decreased (Figure 1(e)). These data suggest
that the development of adipose tissues is disrupted in
PAR2 KO mice.
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Figure 1: Impairment of adipogenesis in PAR2 KO mice. Tissues were isolated from 5-week-old WT and PAR2 KO male mice. (a) Body
weight of WT and PAR2 KO mice (n = 31). (b) The organ-to-body weight ratio was calculated to observe differences in the development
of tissues between WT and PAR2 KO mice. Representative H&E staining images of (c) sWAT and (d) eWAT of WT and PAR2 KO mice
(n = 3/group). (e) qPCR was performed to measure mRNA expression levels of adipogenesis and lipolysis markers in sWAT (n = 6/group).
Data are expressed as the mean ± SEM. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 compared to WT.
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3.2. PAR2 Deficiency Leads to a Defect in Adipocyte
Differentiation. To test whether the decrease in adipose tissue
development in PAR2 KO mice was due to a cell-
autonomous effect, preadipocytes were isolated from sWAT
of both WT and PAR2 KO mice and differentiated into adi-
pocytes for 7 days. WT preadipocytes differentiated well into
adipocytes as determined by the microscopic analysis,
whereas PAR2 KO preadipocytes showed a defect in adipo-

cyte differentiation (Figure 2(a)). When comparing between
male and female mice, the decrease in adipocyte differentia-
tion is more apparent in male PAR2-KO mice (Supplemen-
tary Fig. 2). We found that the defect in the differentiation
ability occurred at a very early stage of the differentiation
process (day 1-2 after the differentiation cocktail treatment,
unpublished data). When mRNA levels of transcription fac-
tors related to adipogenesis were tested by qPCR, CEBPα,
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Figure 2: PAR2 deficiency impairs adipocyte differentiation. Preadipocytes were isolated from sWAT of male WT and PAR2 KO mice (aged
5 weeks). Cells were differentiated into adipocytes for 7 days. (a) Representative microscopic images of primary-cultured adipocytes are
shown. (b) qPCR was performed using primary-cultured adipocytes to measure mRNA expression levels of genes associated with
adipocyte differentiation (n = 6/group). (c) Oil Red O staining images of primary-cultured adipocytes with or without GB83 treatment
(n = 4). Data are expressed as the mean ± SEM. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 compared to WT.
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CEBPβ, PPARγ, SREBP1a, SREBP1c, and SREBP2 mRNA
levels were significantly decreased in PAR2 KO adipocytes
(Figure 2(b)). Correspondingly, mRNA levels of the down-
stream target genes ACC, CD36, FASN, and SCD1 were also
reduced (Figure 2(b)). We next investigated whether treat-
ment with GB83, a PAR2 antagonist, affected the differentia-
tion of preadipocytes isolated from WT mice. The
cytotoxicity assay showed that GB83 had no toxicity up to
50μM in preadipocytes (Supplementary Fig. 3). Oil Red O
staining showed that adipocyte differentiation was sup-
pressed in a concentration-dependent manner when WT
preadipocytes were treated with GB83 during the differentia-
tion process (Figure 2(c)). To further confirm the PAR2-
mediated regulation of adipocyte differentiation, we treated
WT preadipocytes with a PAR2 agonist (SLIGRL-NH2) at
various concentrations and Oil Red O staining was per-
formed. The images and quantified data from Oil Red O
staining exhibit that PAR2 activation elevates preadipocyte
differentiation (Figures 3(a)–3(c)). These data indicate that
PAR2 signaling is necessary for preadipocyte differentiation
into adipocytes, and the effect appears to be cell autonomous.

3.3. PAR2-Deficient Adipocytes Have a Defect in
Mitochondrial Biogenesis and Energy Expenditure. The pro-
cess of adipocyte differentiation requires a large amount of
energy when cells become fully metabolically active (20).

Because we observed that the defect in adipocyte differentia-
tion of PAR2-deficient preadipocytes occurred at a very early
stage, we investigated the energy metabolism of PAR2-
deficient preadipocytes using the Seahorse XF analyzer. Spe-
cifically, the mitochondrial oxygen consumption rate (OCR)
was measured in the primary cultureed preadipocytes iso-
lated from sWAT of WT and PAR2 KO mice under serum-
free conditions. PAR2 KO preadipocytes had substantially
lower basal and maximal cellular respiratory capacities than
WT preadipocytes (Figures 4(a) and 4(b)). Similarly, there
was a significant decrease in the ATP synthesis capacity
and proton leak in PAR2 KO preadipocytes (Figure 4(b)).
Spare respiratory capacity also trended lower in PAR2 KO
preadipocytes (Figure 4(b)). In addition, the MitoTracker
fluorescent signal was weaker in PAR2 KO preadipocytes
than in WT preadipocytes (Figure 4(c)). These data indicate
that mitochondrial dysfunction occurs in PAR2-deficient
preadipocytes. We next investigated whether the dysfunction
in mitochondria occurs in adipocytes differentiated from
PAR2 KO sWAT by measuring mRNA levels of
mitochondria-related markers. The mRNA levels of mito-
chondrial biogenesis markers including PGC-1α, NRF1,
NRF2, ERRα, TFAM, and COX IV were reduced in PAR2-
deficient adipocytes (Figure 4(d)). In addition, PAR2 defi-
ciency downregulated mRNA levels of mitochondria fusion
genes including mitofusin 1 (MFN1) and optic atrophy 1
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Figure 3: PAR2 agonist increases preadipocyte differentiation into adipocytes. Preadipocytes were isolated from sWAT of male WT mice
(aged 5 weeks). Preadipocytes were treated with the PAR2 agonist (SLIGRL-NH2) and differentiated into adipocytes for 7 days followed
by Oil Red O staining. (a) Visible images of stained adipocytes. (b) Oil Red O was extracted with isopropanol, and the absorbance of the
extracted dye was measured at 510 nm. (c) Oil Red O staining images of primary-cultured adipocytes with or without SLIGRL-NH2
treatment (n = 3). Data are expressed as the mean ± SEM. ∗P < 0:05 compared to the control group.
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Figure 4: PAR2 deficiency decreases mitochondrial biogenesis and mitochondrial function. Preadipocytes were isolated from sWAT of male
WT and PAR2 KO mice (aged 5 weeks). (a) Oxygen consumption rate (OCR) was measured in primary-cultured preadipocytes using the
Seahorse XFp analyzer (n = 3). After recording thrice the baseline for OCR measurements, oligomycin (Oligo), FCCP, rotenone (Rot), and
antimycin A (Anti) were added to the cells and OCR measurements were taken three times after each drug treatment. (b) Quantification
of parameters of mitochondrial OCR analyzed by the Seahorse XFp analyzer (n = 3). These experiments were repeated three times. (c)
Representative staining images of MitoTracker and Hoechst 33258 in preadipocytes. To measure mRNA levels of genes related to
mitochondrial biogenesis and mitochondrial function in adipocytes, preadipocytes were isolated from sWAT of male WT and PAR2 KO
mice (aged 5 weeks) and differentiated to adipocytes for 7 days. The mRNA expression level of genes associated with (d) mitochondrial
biogenesis and (e) mitochondrial function. Data are expressed as the mean ± SEM. ∗P < 0:05 and ∗∗∗P < 0:001 compared to WT.
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(OPA1) as well as mitochondria fission genes including
dynamin-related protein 1 (DRP1) and mitochondrial fission
1 protein (FIS1) (Figure 4(e)). Moreover, deficiency of PAR2
significantly attenuated mRNA expression of PPARα, a β-
oxidation-related gene (Figure 4(e)). These results indicated
that PAR2 plays an important role in mitochondrial biogen-

esis and mitochondrial function of primary-cultured preadi-
pocytes and adipocytes.

3.4. sWAT of PAR2 KO Mice Has Reduced Mitochondria
Number and Altered Expression Profile of Genes Related to
Mitochondrial Function. We further tested whether the
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Figure 5: Expression profile of mitochondria-related genes is changed only in adipose tissues of PAR2 KO mice. Tissues were isolated from
male WT and PAR2 KOmice (aged 5 weeks). The mRNA expression levels of mitochondrial genes were analyzed in the (45) sWAT, (d) liver,
(e) skeletal muscle, and (f) kidney tissues by qPCR. (c) Mitochondrial DNA was quantified in sWAT by qPCR to predict the number of
mitochondria. Data are expressed as the mean ± SEM. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 compared to WT.
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dysfunction in mitochondria occurs in tissues of PAR2 KO
mice by measuring mRNA levels of mitochondria-related
genes or by quantifying mitochondrial DNA. The mRNA
levels of mitochondrial biogenesis markers including PGC-
1α, NRF2, TFAM, and COX IV were reduced in the sWAT
of PAR2 KO mice (Figure 5(a)). The mRNA levels of ERRα
and NRF1 trended lower in PAR2 KO sWAT (Figure 5(a)).
In addition, PAR2 deficiency downregulated mRNA levels
of mitochondria fusion genes including MFN1 and OPA1
as well as mitochondria fission genes including DRP1 and
FIS1 in sWAT (Figure 5(b)). When mRNA levels of fatty acid
oxidation-related genes were measured, PPARα and CPT1A
were downregulated in PAR2 KO sWAT (Figure 5(b)). Con-
sistent with the gene expression profile, the mitochondria
over nuclear DNA ratio (mtDNA/nDNA, 16S/HK2) was
significantly decreased in the sWAT of PAR2 KO mice
compared to that of WT mice (Figure 5(c)). However, there
were no differences in mRNA levels of mitochondria-
related genes in the liver, skeletal muscle, and kidney
between WT and PAR2 KO mice (Figures 5(d)–5(f)).
Together, these results suggest that PAR2 is involved in
mitochondrial biogenesis and mitochondrial function in
adipose tissues.

3.5. PAR2 Is Associated with Calcium-Mediated
Mitochondrial Biogenesis Pathways. Studies showed that
PAR2 activation stimulates endogenous calcium channels
to adjust intracellular calcium mobilization (21–23). In addi-
tion, it has been reported that intracellular calcium signaling
is necessary for mitochondrial biogenesis (24, 25). To deter-
mine whether PAR2 also increases intracellular calcium con-
centrations in preadipocytes, the PAR2-specific agonist,
SLIGRL-NH2, and Fura-2/AM, a high-affinity Ca2+ selective
fluorescent indicator, were used. The PAR2 agonist induced a
concentration-dependent calcium response in cells that
express PAR2 (Figure 6(a)). However, no response was found
in PAR2-deficient preadipocytes (Figure 6(a)), indicating
that PAR2 is important for intracellular calcium signaling.

Ca2+ is a second messenger that regulates various cell
functions by making a complex with calmodulin (CaM), a
pervasive intracellular Ca2+ receptor. Combining Ca2+ with
CaM activates several CaM-binding proteins including
CaM kinases (CaMKI, CaMKII, and CaMKIV) (26). Of
these, CaMKII is associated with the activation of CREB
and AMPK, which are important factors for the induction
of PGC-1α, a central regulator for mitochondrial biogenesis
(27–29). We tested the relationship between PAR2 and the
signaling pathways associated with calcium-related mito-
chondrial biogenesis in preadipocytes. Western blotting
showed that PAR2-deficient preadipocytes had reduced pro-
tein levels of CaM and CaMKII in the cytosol compared to
those of WT preadipocytes (Figure 6(b)). Protein levels of
key regulators of mitochondrial biogenesis including p-
CREB and PGC-1α were also decreased in the nucleus of
PAR2-deficient preadipocytes (Figure 6(c)). Furthermore,
protein levels of p-AMPK, another mitochondrial
biogenesis-related protein regulated by calcium signaling,
were reduced in the cytosol of PAR2-deficient preadipocytes
(Figure 6(d)). Consistently, protein levels of TFAM, a mito-
chondrial biogenesis marker, were decreased in PAR2-
deficient preadipocytes (Figure 6(e)). In addition, the Mito-
Tracker fluorescent signal is weaker in preadipocyte treated
with PAR2 antagonist (GB83) and stronger in preadipocyte
treated with PAR2 agonist (SLIGRL-NH2) than the control
group (Figure 6(f)). These data showed that PAR2-
mediated calcium signaling is associated with mitochondrial
biogenesis and functions in preadipocytes.

3.6. PAR2 Is Negatively Related to Mitochondrial ROS
Generation. Mitochondrial calcium overload can induce the
generation of reactive oxygen species (ROS), triggering the
permeability transition pore and leading to mitochondrial
dysfunctions (30). We determined whether PAR2 is associ-
ated with mitochondrial ROS generation using MitoSOX, a
mitochondrial superoxide indicator, and mitochondrial cal-
cium using Rhod-2, the fluorescent calcium indicator

0

Co
nt

ro
l

G
B8

3

SL
IG

RL
-N

H
2

50

100

150

200

250

⁎

⁎⁎

M
FI

 (%
 o

f c
on

tr
ol

)
(g)

Figure 6: PAR2 deficiency reduces calcium signaling in preadipocytes. Preadipocytes were isolated from sWAT of male WT and PAR2 KO
mice (aged 5 weeks). (a) SLIGRL-NH2-mediated calcium mobilization by activation of PAR2. Representative images of western blot analysis
show protein levels of (b) CaM and p-CaMKII (cytosol), (c) p-CREB and PGC-1α (nucleus), (d) p-AMPK (cytosol), and (e) TFAM (whole
lysate) in the cells. (f) Preadipocytes were treated with the PAR2 agonist (SLIGRL-NH2) or antagonist (GB83) for 24 h, and fluorescent
microscopic analysis was performed. (g) MitoTracker staining images were quantified by ImageJ (n = 3). Data are expressed as the mean
± SEM. ∗P < 0:05 and ∗∗P < 0:01 relative to control.
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selectively accumulated within mitochondria. The fluores-
cent images and data from flow cytometry showed that
PAR2 antagonist treatment in preadipocyte significantly ele-
vated mitochondrial ROS levels (Figures 7(a)–7(c)). To test
the elevated ROS in the PAR2 antagonist-treated group asso-
ciated with mitochondrial calcium levels, we performed flow
cytometry, and the results showed that mitochondrial cal-
cium (Rhod-2) was notably elevated (Figures 7(d) and
7(e)), indicating that the elevated mitochondrial calcium is
related to the increase in mitochondrial ROS in preadipo-
cytes treated with the PAR2 antagonist.

4. Discussion

Although PAR2 signaling is associated with adipose inflam-
mation, obesity, and metabolic syndrome under a HF-fed
condition (31, 32), its role in adipose tissue under nonobeso-
genic conditions has not been yet examined. Here, we report
a previously unrecognized role of PAR2 in adipocyte differ-
entiation. PAR2 deficiency leads to a mild lipodystrophy-
like phenotype due to impairment in adipocyte differentia-
tion in chow diet-fed mice. As a potential mechanism,
PAR2-deficient preadipocytes exhibit a marked decrease in
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Figure 7: PAR2 regulated mitochondrial ROS and calcium levels in preadipocytes. Preadipocytes were isolated from sWAT of male WTmice
(aged 5 weeks) and treated with the PAR2 agonist (SLIGRL-NH2) or antagonist (GB83). Mitochondrial ROS levels were observed using
mitochondrial superoxide indicator MitoSOX by (a) fluorescent microscopy and (b) histogram of flow cytometry. (c) The data from flow
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Ca2+ was used for (d) flow cytometry. (e) The data from flow cytometry were quantified. Data are expressed as the mean ± SEM. ∗P < 0:05
compared to the control group.
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mitochondrial respiration possibly due to disruption of cal-
cium signaling-mediated mitochondrial biogenesis. Thus,
PAR2 signaling may be necessary for the proper develop-
ment of adipose tissues in nonobesogenic environments.

Mitochondrial biogenesis is mandatory for adipocyte dif-
ferentiation (9). For example, mitochondrial oxidative
metabolism produces ATP for dynamic changes; moreover,
mitochondrial anaplerosis is critical for generating glycerol
3-phosphate to synthesize TGs in adipocytes (33, 34). In
addition, the generation of acetyl-CoA before the esterifica-
tion of TGs may need a relatively large number of mitochon-
dria. Moreover, β-oxidation of FAs may be a crucial energy
source in adipocytes (35). On the other hand, the knockdown
of mitochondria fusion genes resulted in the loss of adipocyte
differentiation capacity (36). Our data shows that sWAT and
PAR2-deficient adipocytes exhibit a decrease in mRNA levels
in the genes associated with mitochondrial biogenesis,
dynamics, and β-oxidation. Furthermore, the reduction in
mitochondrial biogenesis signaling was observed in PAR2-
deficient preadipocytes. Considering that the impairment in
adipocyte differentiation occurs at a very early stage after
treatment with the differentiation cocktail, we assume that
the impairment in mitochondrial biogenesis and dysfunction
in PAR2-deficient preadipocytes greatly contribute to the
impaired development of adipose tissues in PAR2 KO mice.

Although mitochondrial biogenesis is inhibited under
PAR2-deficient conditions, the underlying mechanisms are
unclear. We considered the possibility that PAR2-mediated
calcium signaling is related to this process. PAR2 has been
shown to activate calcium signaling (37), and phosphorylated
CaMKII induces activation of signaling molecules and sev-
eral other transcription factors including CREB (38). Charac-
terization of the promoter region in the PGC-1α gene
exhibited a conserved CREB binding sequence (39, 40). Our
study also showed that treatment with a PAR2 agonist
induced calcium-mediated CaMKII activation followed by
CREB phosphorylation in WT preadipocytes, whereas no
response was found in PAR2-deficient preadipocytes. CaM-
KII has also been shown to regulate the activity of AMPK
(41). Several insights from different in vivo transgenic models
demonstrated that AMPK directly affects PGC-1α activity
through phosphorylation (42, 43). Similarly, our study
showed that activation of AMPK was lower in PAR2 KO pre-
adipocytes. Additionally, protein levels of PGC-1α in the
nucleus were decreased in PAR2 KO preadipocytes. Thus,
we assume that PAR2-mediated calcium signaling, followed
by the activation of CREB and AMPK, contributes to mito-
chondrial biogenesis.

A G-protein-coupled receptor 103 (GPR103) has been
reported as a regulator of adipocyte metabolism (44). When
pyroglutamylated RFamide peptides (QRFPs), endogenous
peptide ligands of GPR103, were treated in fully differenti-
ated 3T3-L1 adipocytes, intracellular triglyceride levels were
elevated based on Oil Red O staining followed by
densitometry-based quantification. These effects were medi-
ated partly due to the lipoprotein lipase-mediated increase
in fatty acid uptake and reduced lipolysis after isoproterenol
treatment (44). While shRNA-mediated knockdown of
GPR103b did not affect adipocyte differentiation, it sup-

pressed QRFP-mediated fatty acid uptake. These data suggest
that GPR103b receptor signaling is important for lipid accu-
mulation in differentiated adipocytes (44). Based on our data,
the differentiation capacity of PAR2-deficient preadipocytes
was lower than that of WT preadipocytes possibly due to
impaired calcium-related signaling pathways that lead to
mitochondrial biogenesis and mitochondrial oxidative stress.
Thus, it appears that the action mechanisms of GPR103b and
PAR2 on adipocyte functions look different although further
studies are necessary.

In conclusion, PAR2 plays an important role in adipocyte
differentiation partly by activating CaMKII/CREB/AMPK
signaling, followed by mitochondrial biogenesis. Thus,
PAR2 is necessary for maintaining an energy balance by reg-
ulating the development of adipose tissue under nonobeso-
genic conditions.
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