Skip to main content
. 2021 Jun 16;48(13):4293–4306. doi: 10.1007/s00259-021-05432-x

Table 2.

Performance of 3D-ResNet on testing set, validation set, training set, and external test set

Performance Testing set (n = 106)
NTM-LD (n = 28)
MTB-LD (n = 78)
Validation set (n = 113)
NTM-LD (n = 29)
MTB-LD (n = 84)
Training set (n = 886)
NTM-LD (n = 244)
MTB-LD (n = 642)
External test set (n = 80)
NTM-LD (n = 40)
MTB-LD (n = 40)

AUC

(95% CI)

0.86

(0.76, 0.95)

0.88

(0.80, 0.96)

0.90

(0.88, 0.93)

0.78

(0.68, 0.89)

Accuracy 0.83 0.88 0.87 0.69
Specificity 0.57 0.52 0.56 0.63
Sensitivity 0.92 1 0.98 0.75
NTM-LD precision 0.73 1 0.93 0.71
MTB-LD precision 0.86 0.86 0.86 0.67
NTM-LD F1 score 0.64 0.68 0.70 0.67
MTB-LD F1 score 0.89 0.92 0.91 0.70