Table 2.
Performance of 3D-ResNet on testing set, validation set, training set, and external test set
| Performance | Testing set (n = 106) NTM-LD (n = 28) MTB-LD (n = 78) |
Validation set (n = 113) NTM-LD (n = 29) MTB-LD (n = 84) |
Training set (n = 886) NTM-LD (n = 244) MTB-LD (n = 642) |
External test set (n = 80) NTM-LD (n = 40) MTB-LD (n = 40) |
|---|---|---|---|---|
|
AUC (95% CI) |
0.86 (0.76, 0.95) |
0.88 (0.80, 0.96) |
0.90 (0.88, 0.93) |
0.78 (0.68, 0.89) |
| Accuracy | 0.83 | 0.88 | 0.87 | 0.69 |
| Specificity | 0.57 | 0.52 | 0.56 | 0.63 |
| Sensitivity | 0.92 | 1 | 0.98 | 0.75 |
| NTM-LD precision | 0.73 | 1 | 0.93 | 0.71 |
| MTB-LD precision | 0.86 | 0.86 | 0.86 | 0.67 |
| NTM-LD F1 score | 0.64 | 0.68 | 0.70 | 0.67 |
| MTB-LD F1 score | 0.89 | 0.92 | 0.91 | 0.70 |