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Abstract: Mesenchymal stem cell-derived exosomes (MSC-exos) are phospholipid bimolecular vesicles containing 
various materials, and they mediate crosstalk among cells. MSC-exos can maintain glucose homeostasis and delay 
the progression of diabetes and its microvascular complications through multiple mechanisms, such as by improv-
ing β-cell viability and insulin resistance as well as through multiple signal transduction pathways. However, re-
lated knowledge has not yet been systematically summarized. Therefore, we reviewed the applications and relevant 
mechanisms of MSC-exos in treatments for diabetes and its microvascular complications, particularly treatments 
for improving islet β-cells viability, insulin resistance, diabetic nephropathy, and retinopathy.
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Introduction

Exosomes secreted by mesenchymal stem 
cells (MSCs) are phospholipid bimolecular vesi-
cles containing proteins, lipids, and various 
nucleotides [1]. MSC-derived exosomes (MSC-
exos) have attracted attention because they 
mediate various physiological and pathological 
processes, including nerve regeneration, ath-
erosclerosis, fibrosis, and immune regulation 
[2-5]. Diabetes is a clinical syndrome character-
ized by chronic hyperglycemia. Persistent hy- 
perglycemia has caused damage on various 
organs, including the heart, kidney, and retina. 
Microvascular complications are the most com-
mon complications of diabetes and mainly 
include diabetic nephropathy and retinopathy 
[6]. Of the 10 leading causes of death among 
adults, diabetes has become the most com-
mon endocrine-metabolic disease [7]. Globally, 
in 2019, 463 million people were predicted to 
have diabetes, of whom 9.3% would be adults 
aged 20-79 years; this number is expected to 
reach 578 million (10.2%) by 2030 and increase 

by 1.5 times over 25 years [8]. Our previous 
research demonstrated that MSC-exos can alle-
viate type 2 diabetes by reversing peripheral 
insulin resistance and relieving β-cells destruc-
tion [9]. Other studies have reported that MSC-
exos can regulate the pathophysiological pro-
cess of diabetes and its microvascular compli-
cations by transferring proteins, nucleotides, 
and other signaling molecules. Currently, how 
MSC-exos maintain blood glucose homeostasis 
and delay the progression of diabetic microvas-
cular complications remain unclear. Therefore, 
we reviewed the progress and relevant mecha-
nisms of MSC-exos with regard to their thera-
peutic potential for diabetes and its microvas-
cular complications. In particular, we aimed to 
elucidate mechanisms through which MSC-
exos improve islet β-cell viability, insulin resis-
tance, diabetic nephropathy, and retinopathy.

Characteristics of MSC-exos

MSCs are a type of multipotent, nonhematopoi-
etic, stromal precursor cells with self-renewal 
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and multidirectional differentiation abilities 
[10, 11]. MSCs are distributed throughout the 
body; they can be isolated from not only mature 
tissues, such as the adipose tissue, gums, and 
pancreas, but also other sources, including the 
amniotic fluid, umbilical cord, and placenta 
[12]. Both properties of MSCs, namely self-
renewal and multidirectional differentiation, 
promote tissue repair and regeneration [13, 
14]. In addition, MSCs can secrete various cyto-
kines and even exosomes [15-17] to regulate T 
cells, B cells, natural killer cells and dendritic 
cells, and participate in innate and adaptive 
immunity [18-25]. After the induction of pancre-
atic MSCs, insulin-secreting β-like islet cells 
were formed to maintain blood glucose homeo-
stasis in diabetic mice [26]. Umbilical cord 
MSC-conditioned medium (MSC-CM) contains 
various components that can improve insulin 
resistance through multiple mechanisms [27]. 
Extracellular vesicles can be categorized as 
apoptotic bodies, microvesicles (MVs), and exo-
somes [28]. Apoptotic bodies are related to pro-
grammed cell death. As shown in Figure 1, MVs 
are formed from the exocytosis of the plasma 

ceptors [33] and mediating signal transduction 
pathways [34-36]. 

MSC-exos in the maintenance of blood glu-
cose homeostasis

MSC-exos and pancreatic β-cells

Impaired β-cell function is crucial in the pro-
gression of both type 1 and 2 diabetes. The 
substantial loss of β-cells in the adverse out-
come of long-term insulin dependence. There- 
fore, reversing β-cell injury and even regenerat-
ing β-cells are the ultimate goals of diabetes 
treatment. As shown in Table 1, many studies 
have suggested that MSCs can regulate 
immune inflammatory responses by exosomes, 
inhibit endoplasmic reticulum (ER) stress and 
β-cell apoptosis, and restore the function of 
pancreatic islets to varying degrees (Figure 2).

Streptozotocin (STZ) was usually used to induce 
β-cell destruction in rats. Menstrual blood-
derived MSC-exos were injected into the tail 
vein of STZ-treated animals at different time 
points (0, 2, or 10 days after STZ injection) in a 

Figure 1. Formation of exosomes and microvesicles. Microvesicles (MVs) 
with irregular shapes are formed from the exocytosis of the plasma mem-
brane and mainly contain cytoplasmic materials. By contrast, exosomes 
are formed from the endocytosis of the plasma membrane followed by the 
fusion of a multivesicular body and secondary exocytosis; the sizes of exo-
somes are smaller than those of MVs. The surface proteins of MVs mainly 
originate from the membranes of cells from which they are derived, and 
exosomes include CD63, CD81, and CD9.

membrane and range from 50 
to 1000 nm in size. MVs with 
irregular shapes mainly con-
tain cytoplasmic materials. By 
contrast, exosomes are for- 
med from the endocytosis of 
the plasma membrane, fol-
lowed by the fusion of a mul- 
tivesicular body and secondary 
exocytosis; exosomes range 
from 40 to 200 nm in size [29, 
30]. The surface proteins of 
MVs mainly originate from the 
membranes of cells from whi- 
ch they are derived, and exo-
somes include CD63, CD81, 
and CD9 [31]. Because of their 
similar sizes and limited experi-
mental conditions, it is difficult 
to distinguish MVs [1, 28].

Cellular crosstalk resulting fr- 
om the exchange of cellular 
components mediated by exo-
somes may be a novel type  
of intercellular communication 
[32]. Exosomes, with their car- 
go, can initiate various physio-
logical responses in a recipient 
cell by interacting with its re- 
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Table 1. Effect of exosomes derived from mesenchymal stem cells on improving β-cell function
Model Source Exosome Route Effect Ref.
STZ-induced MenSCs NG In vivo Intravenously injection Regenerate β islets through Pdx-1 dependent mechanism [37]

hypoxia-induced HucMSC miR-21 in vitro Alleviate ER stress and inhibiting p38 MAPK phosphorylation [38]

STZ-induced BMSCs shFas and anti-miR-375 In vitro Downregulate Expression of Fas and miR-375 in Human Islets [39]

STZ-induced AD-MSCs NG In vivo intraperitoneal injection increase regulatory T-cell population and their products [40]

HFD and STZ HucMSC GLUT; PK and LDH etc. In vivo Intravenously injection decrease caspase3 [9]

Isolated mouse islets MSC VEGF In vitro Activate PI3K/Akt pathway Decrease BAD and BAX Increase BCL-2 Downregulate BAX/BCL-2 [41]
STZ: streptozotocin; HFD: high-fat diet; HucMSCs: human umbilical cord mesenchymal stem cells; MenSCs: menstrual blood-derived mesenchymal stem cells; BMSCs: bone marrow mesenchymal stem cells; AD-MSCs: adipose tissue-derived 
mesenchymal stem cells; NG: not given; GLUT: glucose transporters; PK: pyruvate kinase; LDH: lactic dehydrogenase; VEGF: vascular endothelial growth factor.
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single or repeated dose. The results suggested 
that all therapeutic methods could increase the 
number of islets after approximately 6 weeks 
as soon as β-cells were damaged. However, the 
number of islets did not differ significantly 
between the repeated-dose and single-dose 
groups. The size of regenerated islets was 
smaller in all experimental mice compared with 
nondiabetic mice; however, the size of regener-
ated islets of the repeated-dose group was 
larger. Although the plasma insulin levels of 
mice that received MSC-exo treatment were 
higher than those of controls, little statistical 
difference was detected in the fasting blood 
glucose (FBG) level between the treatment and 
nontreatment groups. Glucose levels may not 
have been improved because of the following 
reasons: detection of proinsulin instead of its 
active form, inadequate regeneration of β-cells, 
or immaturity of regenerated islets [37].

A study indicated that hypoxia could significant-
ly induce β-cell apoptosis. β-cells were cultured 
under the condition of hypoxia (2% oxygen) with 
or without umbilical cord MSC-exos. The con-
centrations of exosomes were varied (0, 6.25, 
12.5, 25, 50, 100, and 200 μg/mL). The results 
indicated that low-dose MSC-exos (6.25 and 
12.5 μg/mL) could not improve β-cell viability, 
but high-dose exosomes (25, 50, 100, and 200 
μg/mL) significantly promoted β-cell survival 
under hypoxic conditions. MSC-exos can inhibit 
ER stress and apoptotic signal pathways in 
hypoxic environment. Moreover, the p38 mito-
gen-activated protein kinase (MAPK) signal 
pathway was suppressed by MSC-exos with 
miR-21 and let-7g. After transfection with an 
miR-21 mimic, ER stress and the p38 MAPK 
signal pathway were downregulated in β-cells 
under a hypoxic condition, and the survival rate 
of β-cells increased, which could be reversed 
by exosomes with an miR-21 inhibitor [38].

Bone marrow MSC (BMSC)-exos transfected 
with pshFas-anti-miR-375 could downregulate 
Fas and miR-375 levels, inhibit β-cells apopto-
sis, and relieve islet damage against inflamma-
tory cytokines [39]. A study suggested that adi-
pose-derived MSC (AD-MSC)-exos can upregu-
late interleukin (IL)-4, IL-10 and transforming 
growth factor (TGF)-β; reduce IL-17 and inter-
feron gamma, and upregulate the regulatory T 
cell ratio in splenic mononuclear cells of mice 
with type 1 diabetes mellitus. An obvious in- 
crease in the number of islets was observed 
after the application of AD-MSC-exos, which 
can be attributed to the amelioration of autoim-
munity [40]. Even in a model of type 2 diabetes 
induced by a high-fat diet (HFD) and STZ, our 
previous study [9] demonstrated that human 
umbilical cord MSC (HucMSC)-exos not only 
accelerated glucose metabolism by improving 
insulin sensitivity but also inhibited β-cell apop-
tosis and partly restored the insulin secretion 
function of islets. Furthermore, a recent study 
reported that MSC-exos with vascular endothe-
lial growth factor (VEGF) could preserve islet 
survival and insulin secretion function in vitro 
through the PI3K/Akt pathway [41].

MSC-exos and insulin resistance

Type 2 diabetes is characterized by insulin 
resistance and defective β-cells function [42]. 
As shown in Figure 3, insulin resistance is 
mainly caused by the obstruction of insulin sig-
nal transduction, which is due to the disordered 
phosphorylation of tyrosine residues in insulin 
receptor substrate 1 (IRS-1) and the inactiva-
tion of protein kinase B (PKB) [43-45]. HucMSC-
exos were intravenously injected into mice with 
type 2 diabetes induced by HFD and STZ. The 
FBG of the mice significantly decreased [46]. 
HucMSC-exos could not only significantly pro-
mote liver glycolysis and glycogen synthesis 

Figure 2. The mechanism of anti-β cell apoptosis mediated by MSC-exos. MSC-exos can improve β-cell viability by 
downregulating ER stress and apoptosis-related proteins, such as BAX/BCL-2, through the repression of the p38 
MAPK pathway and activation of the PI3K/Akt pathway.
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and inhibit gluconeogenesis but also induce 
the phosphorylation of tyrosine in IRS-1 and 
PKB and increase the synthesis and membrane 
translocation of glucose transporter 4 (GLUT-4) 
in the muscle tissue [9]. Therefore, HucMSC-
exos can improve insulin sensitivity and main-
tain glucose homeostasis.

Type 2 diabetes is closely associated with age, 
and its incidence is generally higher in the older 
population than in the younger population. A 
study suggested a remarkable increase in miR-
29b-3p levels in the hBMSC-exos of older mice. 
The upregulation of miR-29b-3p in hBMSC-exos 
significantly increased the risk of insulin resis-
tance, and sirtuin 1, as the downstream target, 
also played a crucial role in the regulation of 
insulin resistance. The study revealed that miR-
29b-3p in hBMSC-exos could be a promising 
target for improving aging-associated insulin 
resistance [47]. 

MSC-exos in diabetic microvascular complica-
tions 

MSC-exos and diabetic kidney disease

Diabetic nephropathy (DN), also known as glo-
merulosclerosis, can present as diffuse or nod-

ular glomerulosclerosis as well as renal intersti-
tial fibrosis, renal arteriolar sclerosis, and renal 
tubular disease [48, 49]. Various kidney diseas-
es, including DN, are related to miRNA abnor-
malities [50]. Related studies have indicated 
that miRNAs are indispensable in both renal 
fibrosis and antifibrosis [51-53]. MiRNAs can be 
transported by exosomes and promote corre-
sponding changes in target cells. In a mouse 
model of renal fibrosis, miR-let7c was trans-
ported to the impaired kidney by MSC-exos. 
miR-let7c upregulation was accompanied by 
the amelioration of the renal structure and the 
reduction of extracellular matrix (ECM) deposi-
tion through the inhibition of type 1α1 and IVα1 
collagen, TGF-β type 1 receptor, and α smooth 
muscle actin (α-SMA) [54]. The TGF-β signaling 
pathway is crucial in the pathophysiology of 
renal fibrosis. This signaling pathway not only 
aggravates the deposition of ECM molecules, 
such as collagen type I, α-SMA, and laminin 
[55, 56], but also is related to epithelial-mesen-
chymal transition (EMT) [57, 58]; these factors 
contribute to the progression of renal fibrosis 
[59]. TGF-β1 mainly functions on the down-
stream Smad2/3-dependent signal pathway to 
induce the transdifferentiation of intrinsic renal 
cells [60]. The Smad2/3-dependent signal pa- 
thway, which involves MAPKs [61], Ras homo-

Figure 3. The mechanism of insulin resistance in patients with type 2 diabetes. The high glucose level causes the 
disordered phosphorylation of tyrosine residues in insulin receptor substrate 1 (IRS-1) and the inactivation of protein 
kinase B (PKB), which lead to liver insulin resistance by promoting the process of gluconeogenesis. The disordered 
expression and translocation of glucose transporter 4 (GLUT4) contribute to muscle and adipose insulin resistance.
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log family member A [62], and Wnt/β-catenin 
[63], can accelerate the progression of renal 
fibrosis. Nagaishi et al. designed an experiment 
revealing that exosomes purified from MSC 
conditioned medium (MSC-CM) could amelio-
rate vacuolation, atrophic change, and apopto-
sis of renal tubular epithelial cells (TECs) by 
inhibiting the TGF-β1 signaling pathway and 
maintain the expression of cellular junction pro-
teins such as zona occludens protein 1 (ZO-1) 
in Bowman’s capsule and TECs [64]. Moreover, 
because of the deposition of ECM proteins, 
matrix metalloproteinases (MMPs) have been 
identified as targets for potential kidney fibrosis 
treatment [65]. This process was affirmed by 
another study in which mouse ucMSC-derived 
paracrine factors reduced the deposition of 
ECM proteins by inhibiting myofibroblast trans-
differentiation induced by TGF-β1, cell prolifera-
tion mediated by the Smad2/3-dependent sig-
naling pathway, and the upregulation of MMP2 
and MMP9 [66]. Moreover, the antifibrotic prop-
erties of MSC-derived paracrine in DN might 
depend on exosomes secreted by MSCs [66].

The clinical characteristics of DN mainly mani-
fest as persistent albuminuria. Pathologically, 
DN mainly manifests as a thickening of the glo-
merular basement membrane (GBM) and in- 
creased mesangial matrix, which are associat-
ed with autophagic flux inhibition, podocyte 
apoptosis or necrosis, and renal function exac-
erbation [67]. Autophagic dysfunction is a sign 
of podocyte apoptosis or necrosis [68]. Persi- 
stent hyperglycemia can downregulate the ex- 
pression of autophagy-related proteins, such 
as Beclin 1 and LC3II/I, and increase the phos-
phorylation of mammalian target of rapamycin 
(mTOR) and the p62 level, which can downregu-
late autophagy and accelerate podocyte injury 
in patients with DN [69, 70]. AD-MSC-exos 
could reduce the levels of blood urea nitrogen, 
serum creatinine, and urine protein and inhibit 
podocyte apoptosis in mice, with miR-486 play-
ing a crucial role [70]. miR-486 contained in 
AD-MSC-exos can downregulate Smad1 expres-
sion, thereby repressing mTOR pathway activa-
tion, promoting autophagy, and inhibiting podo-
cyte apoptosis [70]. Moreover, exosomes from 
BMSCs significantly restored renal function and 
structure by increasing autophagy-related pro-
tein and prominently reducing mTOR in the 
renal tissue [71]. Duan et al. [72] also demon-
strated that microRNA-26a-5p carried by the 

extracellular vesicles of AD-MSCs can target 
Toll-like receptor 4, deactivate the nuclear fac-
tor (NF)-κB pathway, downregulate vascular 
endothelial growth factor A (VEGFA), and inhibit 
the apoptosis of mouse glomerular podocytes 
to prevent DN. In vitro experiments by Xiang  
et al. [73] indicated that HucMSC-exos and 
HucMSCs can repress proinflammatory cyto-
kine and profibrotic factor levels in renal glo-
merular endothelial cells and TECs, thus pre-
venting early DN.

Researchers have demonstrated that EMT is a 
feature of hyperglycemia-induced podocyte 
injury, which is regarded as the initiating factor 
of GBM thickening and persistent albuminuria 
[74, 75]. Zinc finger E box-binding homeobox 2 
(ZEB2), a DNA-binding transcription factor, is 
associated with epithelial-mesenchymal tran- 
sition, migration, and invasion [76]. AD-MSC-
exos can transfer miR-215-5p to podocytes 
and prevent hyperglycemia-induced EMT by 
means of ZEB2 inhibition [77] (Figure 4).

MSC-exos and diabetic retinopathy

Retinal ischemia and inflammation are patho-
physiological hallmarks of vision loss and injury 
in diabetic retinopathy (DR) [78, 79]. Mathew et 
al. revealed the neuroprotective effect of MSCs 
and MSC-CM in a mouse retinal ischemia-
reperfusion model and verified that the effect 
was achieved through exosomes [80-82]. In a 
rat ischemia model, MSC exosomes were 
injected into the vitreous humor 24 h after reti-
nal ischemia, and MSC-exos were absorbed by 
retinal ganglion cells, neurons, and microglia 
through cell surface heparan sulfate proteogly-
can; however, they remained in the vitreous 
humor for 4 weeks. MSC-exo treatment amelio-
rated the impairment of function, neuroinflam-
mation, and cell apoptosis [83]. 

In vivo, MSC-exos with miR-126 were intravit-
really injected into diabetic rats, and MSC-exos 
were cultured in vitro with high glucose-condi-
tioned human retinal endothelial cells (HRECs) 
[84]. The results suggested that inflammation 
in vivo and in vitro could be promoted by high 
glucose via inflammatory cytokine upregula-
tion, which could be reversed by miR-126 car-
ried by MSC-exos by inhibiting the high mobility 
group box 1 (HMGB1) signaling pathway, inflam-
mation, and nod-like receptor family pyrin do- 
main containing 3 inflammasome activity in 
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HRECs [84]. In another study, high glucose-
treated Muller cells were cocultured with 
BMSC-exos with miR-486-3p, and the results 
showed that the expression of miR-486-3p 
could improve the proliferation of Muller cells 
due to the inhibition of the TLR4/NF-κB path-
way and the alleviation of oxidative stress [85].

Angiogenesis is an indicator of the DR severity. 
The miR-221/miR-222 family could repress 
angiogenesis through the c-Kit receptor [86] 
and regulate signal transducer and activator of 
transcription 5A (STAT5A) during neoangiogen-
esis-related inflammation [87]. The results 
affirmed that micRNA-222 carried by MSC-exos 
could promote retina regeneration [88]. There- 
fore, the exosomes released by MSCs have 
been considered novel therapeutic vectors be- 
cause of their role in shuttling signal factors 
[88].

Conclusions

Current treatments for diabetes mainly encom-
pass drug therapy, such as oral antidiabetic 
drugs, and insulin therapy, such as subcutane-
ous injections and subcutaneous and intrave-
nous pumping. However, these treatments 
require long-term follow-up and blood glucose 
adjustment. They cannot fundamentally cure 
diabetes or its complications in the long term. 
Studies have indicated that MSC-exos with dif-

ferent cargo can improve or even reverse the 
pathophysiology of diabetes and its microvas-
cular complications through various pathways. 
MSC-exos might be novel promising vectors for 
the treatment of diabetes and its microvascular 
complications. However, more questions regar- 
ding the duration, dosage, and safety of MSC-
exo treatment for diabetes and its complica-
tions warrant further study.
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