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Abstract

Purpose: In patients presenting with blunt hepatic injury (BHI), the utility of CT for triage to 

hepatic angiography remains uncertain since simple binary assessment of contrast extravasation 

(CE) as being present or absent has only modest accuracy for major arterial injury on digital 

subtraction angiography (DSA). American Association for the Surgery of Trauma (AAST) liver 

injury grading is coarse and subjective, with limited diagnostic utility in this setting. Volumetric 

measurements of hepatic injury burden could improve prediction. We hypothesized that in a cohort 

of patients that underwent catheter directed hepatic angiography following admission trauma CT, a 

deep learning quantitative visualization method that calculates % liver parenchymal disruption (the 

LPD index, or LPDI) would add value to CE assessment for prediction of major hepatic arterial 

injury (MHAI).

Methods: This retrospective study included adult patients with BHI between 1/1/2008–5/1/2017 

from two institutions that underwent admission trauma CT prior to hepatic angiography (n=73). 

Presence (n=41) or absence (n=32) of MHAI (pseudoaneurysm, AVF, or active contrast 

extravasation on DSA) served as the outcome. Voxelwise measurements of liver laceration were 

derived using an existing multiscale deep learning algorithm trained on manually labeled data 

using cross-validation with a 75–25% split in four unseen folds. Liver volume was derived using a 

pre-trained whole liver segmentation algorithm. LPDI was automatically calculated for each 

patient by determining the percentage of liver involved by laceration. Classification and regression 

tree (CART) analyses were performed using a combination of automated LPDI measurements and 

either manually segmented CE volumes, or CE as a binary sign. Performance metrics for the 

decision rules were compared for significant differences with binary CE alone (the current 

standard of care for predicting MHAI), and the AAST grade.

Results: 36% of patients (n = 26) had contrast extravasation on CT. Median [Q1-Q3] automated 

LPDI was 4.0% [1.0–12.1%]. 41/73 (56%) of patients had MHAI. A decision tree based on auto-

LPDI and volumetric CE measurements (CEvol) had the highest accuracy (0.84, 95% CI: 0.73–

0.91) with significant improvement over binary CE assessment (0.68, 95% CI: 0.57–0.79; p = 

0.01). AAST grades at different cut-offs performed poorly for predicting MHAI, with accuracies 

ranging from 0.44–0.63. Decision tree analysis suggests an auto-LPDI cut-off of ≥ 12% for 

minimizing false negative CT exams when CE is absent or diminutive.
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Conclusion: Current CT-imaging paradigms are coarse, subjective, and limited for predicting 

which BHIs are most likely to benefit from AE. LPDI, automated using deep learning methods, 

may improve objective personalized triage of BHI patients to angiography at the point of care.

Keywords

Blunt Hepatic Injury (BSI); Computed tomography (CT); Liver parenchymal disruption index 
(LPDI) Deep Learning (DL); Quantitative Imaging

Introduction

Blunt hepatic injuries (BHIs) are identified in up to one quarter of patients admitted with 

severe blunt trauma who undergo whole-body computed tomography (CT) (1). In those 

patients who are sufficiently stable to undergo admission CT, the presence of hepatic arterial 

contrast extravasation (CE) predicts future deterioration from arterial injury that is 

potentially reversible with angioembolization (AE) (2). Both CT and digital subtraction 

angiography (DSA) have contributed to a substantial increase in the proportion of patients 

with hepatic injuries who can be treated successfully with non-operative management 

(NOM) (3). CT is also used to predict which patients with high grade liver injury will have 

vascular lesions on angiography that would benefit from perioperative AE (4). However, 

published accuracies of CT in the triage of patients with BHI to angiography have been 

modest. CT contrast extravasation is the most direct sign of arterial bleeding but can be 

discordant with findings on angiography. In 2011, Letoublon et al. reported that 21% of 

patients with hepatic angiography performed for CE on CT did not require AE (5). Other 

authors have reported modest sensitivity (63–83%) and specificity (67–75%), and weak 

positive likelihood ratios (1.9–3.3) for binary CE evaluation (i.e. assessment as either 

positive or negative) on pre- and perioperative contrast-enhanced CT (CECT) in predicting 

the need for urgent hemostatic intervention (4, 6).

The current standard of care involves approaching CE on CT imaging as a binary univariate 

predictor (4, 6). Emphasis has been placed on the importance of CE because high-grade 

injuries may respond favorably to conservative treatment when CE is absent (7). But, the 

absence of CE on computed tomography does not entirely exclude significant hepatic 

arterial injury from declaring itself angiographically in patients with high American 

Association for the Surgery of Trauma (AAST) liver injury grade (4–6). If the absence of CE 

does not confidently exclude major hepatic arterial injury (MHAI), the validity of using this 

imaging sign to determine appropriate management in patients with high AAST grade 

injuries is uncertain. The AAST liver injury scale has traditionally served a complementary 

role in determining angiopositivity on catheter angiography and need for AE in patients 

without CE on CT scan and is heavily based on size and extent of liver laceration and 

hematoma. However this is a coarse categorical system that relies primarily on subjective 

assessment of the depth of parenchymal disruption and number of Couinaud segments 

involved (8).

Angiography is resource intensive with a small but non-negligible bleeding risk inherent to 

any invasive vascular procedure. Furthermore, biliary complications from hepatic necrosis 
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are relatively uncommon but increase in incidence with high grade injury (3, 9, 10) and may 

be exacerbated when AE is performed (11, 12).

Further improvement in the diagnostic utility of CT as a triage tool in patients with BHI 

could be achieved by leveraging voxelwise quantitative information (i.e. CT volumetry) to 

measure the degree of parenchymal injury and combine this data with CE assessment for 

more objective and explanatory personalized prediction. In this work, we re-trained and 

validated previously described deep learning (DL) algorithms for the task of automated 

measurement of the liver parenchymal disruption index (auto-LPDI), which we defined as 

the volume of laceration and intervening hematoma normalized to total hepatic volume on 

admission contrast-enhanced CT.

We hypothesized that this automated quantitative visualization tool could provide added 

value as an independent predictor of major hepatic arterial injury (MHAI) in a cohort of BHI 

patients that underwent catheter angiography following admission CT. The potential 

diagnostic value of volumetric CE measurements (CEvol), which currently require manual 

segmentation, was also assessed. Performance was interrogated using decision tree analysis. 

Multivariable analysis with logistic regression was used to determine the strength and 

significance of LPDI as an independent predictor.

Methods

Dataset and inclusion criteria

This HIPAA compliant and IRB approved retrospective study included 73 consecutive adult 

patients (age ≥ 18 years) between January 1, 2008 to May 1, 2017 with BHI who underwent 

contrast enhanced admission CT of the abdomen followed by hepatic arterial angiography at 

one of two level I trauma centers (56 patients from University of Maryland/R. Adams 

Cowley Shock Trauma Center, and 17 patients from University of Miami/Ryder Trauma 

Center). Patients who underwent angiography or laparotomy before CT were excluded. A 

positive outcome (MHAI) was defined as pseudoaneurysm, AVF, or active contrast 

extravasation on catheter-directed angiography.

Voxelwise ground truth labeling of CT scans

At both institutions, admission CT images were acquired on trauma bay-adjacent scanners in 

all patients through the entire torso in the arterial phase and through the upper abdomen in 

the portal venous phase and archived at 3 mm section thickness throughout the study period. 

At the R Adams Cowley Shock Trauma Center (STC), a 40-section and 64-section scanner 

(Brilliance; Philips Healthcare, Andover, Mass) were used from the start of the study period 

until July 2016, when the 40-section scanner was replaced with a dual source 128-section 

scanner (Somatom Force; Siemens Healthcare, Malvern, PA). At the Ryder Trauma Center 

(RTC), the same two 64-section CT scanners (Somatom Definition; Siemens Healthcare) 

were used throughout the study period. At both trauma centers, portal venous phase (PVP) 

images of the upper abdomen were routinely acquired from the dome of the diaphragm to 

the iliac crest. At STC, bolus tracking was used in the descending aorta with a 120 HU 

trigger for the initial arterial scan, and a delay range of ~60–70s for PVP images. At RTC, a 
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fixed delay of 70 seconds is employed. Settings across scanners and institutions included: 

120 kVp, 250 mAs, 0.7 pitch, 0.5 second rotation time, and 0.625 collimation. Studies were 

archived at 3 mm section thickness at both centers.

For the purposes of imaging labeling and algorithm training, images were converted from 

Digital Imaging and Communications in Medicine (DICOM) into Neuroimaging Informatics 

Technology Initiative (NifTI) format. Bilinear interpolation was used to resample 512 × 512 

matrix axial images to a 1.5 mm section thickness prior to reconstruction in sagittal and 

coronal planes.

Portal venous phase images (which confer peak hepatic parenchymal enhancement and 

optimal visualization of parenchymal disruption) were used for all labeling and volumetric 

measurements including a) total LPD volume, b) total liver volume, c) subcapsular 

hematoma volume, and d) CE volume. All voxelwise labeling was performed by research 

staff under the supervision of a radiologist with trauma subspecialization who reviewed the 

labels for quality and performed editing for all cases. Manual labeling and volumetric 

analysis were performed using an open-source software platform with an adjustable 

spherical threshold paint tool at Hounsfield Unit (HU) ranges set to approximately 10–80 

HU (3D slicer, version 4.10, slicer.org) for laceration and subcapsular hematoma, 10–130 

HU for whole liver, and ≥150 HU for CE. Labeling was performed in the axial plane 

although this is an inherently 3D method given the use of a spherical brush tool. In all 

studies, further supervision and editing was performed in the sagittal and coronal planes. 

Morphological smoothing filters were uniformly applied to reduce label artifact related to 

image noise (13). Using a range of HU values for annotation of each feature, quality control 

by an experienced trauma radiologist, editing in three planes, and the use of smoothing 

filters ensured labeling uniformity despite some differences in scanner makes, models, and 

protocols across institutions.

Deep learning algorithms: Implementation for quantitative visualization of LPDI

To derive automated LPDIs, we employed an existing pre-trained deep learning algorithm 

for automated liver whole-organ segmentation (14), and a recently-published deep learning 

algorithm robust for segmentation of pathology with widely variable sizes, shapes, and 

number of lesion foci previously used for multifocal active bleed segmentation (15) and 

quantitative visualization of hemoperitoneum (16), implemented here for liver parenchymal 

disruption. Specific technical details regarding architecture, training details, and 

implementation, are found in the following recently published works (15, 16). The algorithm 

uses a combination of attentional networks and dilated convolutional neural networks 

(CNNs) which are ideal for learning feature representations at multiple scales of a given 

image (15, 17). This can be thought of as similar to viewing pathologic specimens at 

different levels of magnification; fine detail is captured at small scales and detection of 

multiple lesions of varying sizes at progressively larger scales. Using transfer learning, all 

model weights were carried over from a prior implementation (in this case, for pelvic active 

bleeding) (18), and iteratively updated until the algorithm was optimally trained for the 

novel segmentation task (i.e. liver parenchymal disruption) (19). Training of the latter 

algorithm was performed in four folds, each consisting of a different combination of 3/4ths 
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of the total dataset. Testing was performed on the remaining unseen 1/4 of the data in each 

of the four-folds, resulting in automated labels in each patient. The automated labels for 

whole-liver and laceration segmentation are visualized as contours in a slice-by-slice scroll-

through of the CT image (see Fig 1). Volumes are quantified by automated counting of the 

number of segmented voxels. A final step involves automatically calculating LPDI as the 

ratio of laceration volume to whole liver volume (both in mL).

Clinical data extraction

Relevant baseline characteristics, clinical and laboratory values, hepatic AAST grade, and 

the following outcomes were collected from the trauma registry and electronic medical 

record: 1. presence or absence of a major arterial vascular lesion at angiography 

(pseudoaneurysm, CE, or AVF), 2. whether hepatic AE was performed for the arterial lesion, 

and 3. whether angiography was performed perioperatively as an adjunct to hepatorrhaphy. 

If AE was performed strictly for prophylaxis (n = 3) the outcome was considered negative 

for the purposes of this study. If arterial bleeding was explicitly described in the operative 

report, treated intraoperatively, and followed by an angiogram that demonstrated resolution, 

the outcome was considered positive for MHAI (n = 2).

Data analysis: summary statistics

Summary statistics for baseline clinical and demographic characteristics, CEvol, auto-LPDI, 

and subcapsular hematoma volume were determined for the study population and compared 

across subsets of patients who did and did not have MHAI. All continuous variables were 

tested for normality using the Shapiro Wilk test. Student’s t-test was used to compare means 

for normally distributed variables and the Mann-Whitney U test was used to compare 

medians for non-normally distributed variables. Fisher exact test was used to compare the 

association between two categorical variables.

Data analysis: Deep learning method evaluation

Deep learning method evaluation was performed using the following tests- Pearson’s r and 

intraclass correlation coefficient (ICC) were used to assess correlation and agreement 

between manual and automated measurements for liver laceration, whole liver volume, and 

LPDI. Pearson’s r ≥ 0.80 and ICC ≥ 0.75 are considered strong correlation and excellent 

agreement respectively (20, 21). The Dice similarity coefficient (DSC), a measure of spatial 

overlap, was used to compare manual and automated whole liver and laceration labels; 

Bland-Altman plots were generated for the final output (LPDI) to determine 95% limits of 

agreement and measurement bias between methods.

Data analysis: diagnostic performance

Decision tree analyses were performed using the following two sets of parameters: 1. LPDI 

with binary CE, and 2. LPDI with CEvol. We employed the classification and regression tree 

(CART) approach (22) to generate decision rules for discrete or continuous biomarkers 

including optimal cut-offs for the latter. Diagnostic performance of the decision rules was 

compared with binary CE assessment using McNemar’s tests for accuracy, sensitivity and 

specificity, and Z tests for predictive values (23). Logistic regression models including LPDI 
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and either CEvol or binary CE were used to determine whether LPDI was independently 

predictive of MHAI. The same accuracy metrics were also determined for the AAST hepatic 

organ injury scale at different cut-offs as a baseline comparison. One patient did not have a 

prospectively assigned liver AAST grade and was excluded from relevant comparisons. In 

all cases, p-values < 0.05 were considered statistically significant. Stata/SE version 16 

(Stata, College Station, TX) and R Version 4.0.0 (R Core Team, 2020 and R Foundation for 

Statistical Computing, Vienna, Austria; https://www.R-project.org) was used for all 

statistical analyses.

Results

Patient characteristics

The study population consisted of 73 patients presenting with liver trauma from blunt injury 

mechanisms who underwent angiography following admission CT. At both institutions, 

triage to angiography is heuristic and dependent on institutional preferences and individual 

surgeon or angiographer judgement.

Summary statistics of baseline characteristics and timing of exams are presented for the total 

study population, and by individual institution in Table 1. Subsets of patients with and 

without MHAI are also presented. A comparison of volumetric and categorical imaging 

features is presented in Table 2. Visual results of automated LPDI in an example test case are 

shown in Figure 1. Fifty-five percent of patients were male (n = 40), and 45% were female 

(n = 33). Mechanism of injury was motor vehicle collision in 77% of patients, fall in 7%, 

and other mechanisms in the remaining 16%. Median [Q1, Q3] injury severity score (ISS) 

was 34 [27, 41]. Fifty-nine patients (81% of the cohort) underwent angiography as part of 

NOM. Angiography was performed as an adjunct to laparotomy in 14 patients (19% of the 

cohort). Seven patients (10%) were hypotensive despite triage to the CT scanner prior to 

intervention, and 43 patients (59%) had tachycardia. Four patients expired during 

hospitalization, three from non-survivable (AIS grade 6) head injuries and 1 patient from 

multiorgan system failure. Splenic injuries were the most common associated injuries seen 

in 43% of patients. 92% of patients had AAST Grade 3 or higher liver injuries (n = 66). 

Forty-one patients (56%) had major hepatic arterial injury while 32 (44%) did not.

Of the 41 patients with MHAI, 38 patients had angiographically proven active extravasation 

(n = 27), AVF (n = 6), and pseudoaneurysm (n = 4). AE was performed in all but one of 

these patients for whom there was a perceived risk of non-target embolization. Three 

patients had arterial bleeding diagnosed and managed operatively. A comparison of patients 

who did and did not undergo AE showed no significant differences in baseline 

characteristics including patient demographics, ISS, or vital signs.

Patients with MHAI had a higher proportion of CE on admission CT scan than patients 

without MHAI (p < 0.001). Differences in AAST liver injury grades did not reach statistical 

significance (p = 0.08), however auto-LPDI was significantly higher in the MHAI group (p < 

0.001). Manual CEvol measurements were also higher (p < 0.001). A measurable 

subcapsular hematoma was present in only three patients. The parameter was not included in 
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decision tree analysis or model building due to the small patient number. A low prevalence 

of subcapsular hematoma has been reported previously by other authors (1).

Automated LPDI method evaluation

Automated volumetric results from four-fold cross-validation showed excellent correlation 

and agreement between manual and automated measurements for laceration volume (ICC = 

90; r = 0.93), whole liver volume (ICC = 0.98; r = 0.98), and LPDI (ICC = 0.90; r = 0.94). 

DSC for whole liver volume was 0.95 (+/− SD 0.09), and for laceration volume was 0.65 (+/

− SD 0.24). DSC is highly dependent on the relative size of the target in a fixed-size region 

of interest, and values in this range are common for variably-sized irregular targets (24). A 

bland-Altman plot showed a small systematic undermeasurement of LPDI of 2.2%, with 

limits of agreement of two standard deviations between −5.5–9.8%. The high degree of 

correlation, agreement for volumetric measurements, low bias of the LPDI, and the 

explainability of visual results (see Fig 1) all support the internal validity of the method.

Diagnostic performance

Binary CE, decision tree, and AAST diagnostic performance is summarized in Table 3. 

Hepatic AAST grade had poor accuracies at all thresholds ranging from 0.44–0.63. Cut-offs 

of grades 4 and 5 had poor positive and negative predictive value for MHAI. Accuracy of 

binary CE was 0.68 (0.57–0.79).

Logistic regression showed that both binary CE (p = 0.022; odds ratio (95% CI) = 4.55 

(1.24–16.70)) and auto-LPDI (p = 0.014; unit-odds ratio (95% CI) = 1.12 (1.02–1.23)) are 

significant and independent predictors of MHAI. Decision tree analysis combining binary 

CE with auto-LPDI (decision rule 1) increased accuracy (95% CI ) to 0.77 (0.65–0.86) with 

p-value approaching significance (p = 0.11) compared with binary CE. Further improvement 

over binary CE assessment was achieved for decision tree analysis combining CEvol and 

auto-LPDI (decision rule 2) with accuracy of 0.84 (95% CI: 0.73–0.91, p = 0.01).

Decision rule 1 resulted in seven fewer false negative CT exams (a 32% reduction) than 

binary CE assessment, with no change in false positives. Decision rule 2 resulted in twelve 

fewer false negative CT exams (a 63% reduction) with one additional false positive CT, 

increasing from 4 to 5 (25% change) (Figure 2 and Table 3).

High PPVs were maintained across the board for binary CE, decision rule 1, and decision 

rule 2 (84.6%, 87.5%, and 87.2% respectively), but sensitivities and NPVs increased 

substantially over binary CE assessment for decision rule 2 (sensitivity: 82.9% versus 

53.7%, p-value<0.001; NPV: 79.4% versus 59.6%, p-value=0.06).

Discussion

CT combined with selective catheter angiography have both contributed to the widespread 

adoption of NOM in stable patients with BHIs (1–3, 7, 9). There has also been a trend across 

level I trauma centers toward more liberal utilization of CT as an initial tool for triage and 

treatment planning in more severely injured patients, including transient responders and 

patients with shock (25). In such patients, catheter angiography is also performed for 
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suspected MHAI as an adjunct to laparotomy (4, 26). In our study cohort, 10% of BHI 

patients that went on to catheter angiography following admission CT were hypotensive, and 

in 19%, angiography was undertaken perioperatively. Triage of BHI patients to angiography 

is largely based on a) presence or absence of CE on the initial scan, and b) assessment of 

liver parenchymal disruption using the AAST liver injury scale. However, accuracy of CT 

for MHAI remains modest (4–6, 27).

Granular voxelwise CT assessment of liver injury severity could be complementary for 

resolving ambiguous cases, particularly in those patients with high-grade liver injury for 

whom CE foci are absent or diminutive in size. However, the AAST liver injury grade is a 

coarse categorical framework that incorporates subjective semi-quantitative assessment of 

the degree of liver parenchymal disruption, and may be ill-suited for this purpose (8). For 

example, grade IV lacerations bin a wide spectrum of parenchymal disruption (25–75% of a 

hepatic lobe or 1–3 Couinaud segments) into a single tranche. The ambiguity could 

potentially result in delayed triage to the angiography suite in some patients, or non-

therapeutic catheter-directed angiography in others. While most clinical and laboratory 

information is inherently quantitative and granular, CT interpretation leaves considerable 

unused volumetric quantitative information on the reading room or CT console table (28–

30). There is inherent information loss that could be avoided with voxel-level volumetric 

measurements. To this end, we re-trained existing deep learning (DL) algorithms for 

quantitative visualization of the liver parenchymal disruption index (auto-LPDI).

We hypothesized that the accuracy of CT for predicting MHAI could be significantly higher 

than binary CE assessment using classification and regression tree analyses that incorporate 

auto-LPDI. Two decision rules were generated and tested against binary CE assessment. 

Decision rule 1 combined auto-LPDI with binary CE assessment, and decision rule 2 

combined auto-LPDI with voxelwise CE volume (CEvol). We also used logistic regression 

to determine whether auto-LPDI was independent of CE in predicting MHAI.

We found that binary CE and auto-LPDI were independent predictors of MHAI. The unit-

odds ratio of 1.12 for auto-LPDI indicates that for each 1% change in auto-LPDI, there is a 

corresponding 12% increase in the odds of MHAI. The accuracy of decision rule 1 (0.77) 

was improved over binary CE assessment alone (0.68), with a p-value that approached 

significance (p = 0.11). The accuracy of decision rule 2 which utilized CEvol and auto-LPDI 

resulted in an accuracy of 0.84, which was significantly improved over binary CE 

assessment (0.68, p = 0.01). In comparison, the accuracy of the AAST liver injury scale at 

thresholds of grade II-V ranged from only 0.44–0.63.

Decision rule 1 dictates that if there is a small (< ~2%) auto-LPDI, MHAI is virtually 

excluded (see Figure 2). Catheter angiography can be obviated in these patients. In patients 

with auto-LPDI greater than ~2%, if there is CE on the admission CT, then MHAI is 

presumed and catheter angiography should be performed. If CE is absent, then catheter 

angiography should be undertaken only if the auto-LPDI is ≥ 12%. Decision rule 2, which 

incorporates CEvol, is similar but classifies as negative both patients with a) diminutive foci 

of hemorrhage < 0.05 mL and b) those with no CE on CT examination. Any patients with 

foci of CE above this low volume threshold will likely yield MHAI on catheter angiography. 
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Those with diminutive to no CE may still benefit from catheter angiography if the same 

≥12% auto-LPDI threshold is reached.

The positive predictive value was fairly high for binary CE assessment and both decision 

rules (84.6–87.2). The benefit of the decision rules was primarily related to improved 

sensitivity and NPV and substantial (32–63%) reduction in false negative exams.

We conclude that precise personalized decision support using quantitative imaging can 

improve diagnostic accuracy, and potentially reduce missed injury or delays to intervention 

in patients with no CE on admission CT. The potential for MHAI despite absence of CE on 

CT scan is a well-known phenomenon but to our knowledge no objective means of assessing 

arterial bleeding risk based on the extent of liver parenchymal disruption have been 

heretofore introduced. Our deep learning-based automated method of calculating LPDI was 

precise and clinically useful for decreasing false negative CT exams in patients without CE. 

We are currently not aware of deep learning algorithms for automated volumetric 

segmentation of liver CE. This is a daunting task since CE can extend beyond the confines of 

the injured organ. Developing and training convolutional neural networks to correctly 

identify the source of CE on CT of the upper abdomen is non-trivial with no known 

predicate.

In the meantime, both decision rules suggest that if CE is either absent or miniscule in 

patients with BHI, if more than ~1/10th of the total liver volume is disrupted, then MHAI is 

still possible, and if less than ~ 1/10th of the total liver volume is disrupted, then in the 

absence of surgically important injuries to other organs, NOM is likely to be successful 

without need for angio-intervention.

The liver-specific quantitative imaging information assessed in this study is not meant to be 

interpreted in a vacuum given the importance of associated injuries and the patient’s 

hemodynamic state (9, 31). Our decision rules may be helpful, particularly in decreasing 

false negative CT exams and delays to intervention in BHI patients for whom angiography is 

being considered despite absence of CE on CT exam.

Robust automated deep learning-based quantitative CT visualization and measurement 

algorithms have been previously reported for non-traumatic liver lesions as well as ill-

defined, irregular, and multicompartmental extraperitoneal pelvic hematoma and foci of 

pelvic CE (15, 32, 33). As computer vision methods and graphics processing hardware 

continue to evolve, more features of traumatic organ and vascular injury will be quantifiable 

with explainable results that can be intuitively displayed as contours or partially transparent 

mask overlays on the source CT images with no burden to diagnostic radiologist, 

interventionalist, or surgical end-users. Processing through the algorithm pipelines could be 

performed while the patient is still on the CT table. This constitutes “free” personalized 

point-of-care image-based precision diagnostics that can be expected to improve decision 

support and outcome prediction (32).

Limitations of our study are as follows. The study collection period preceded the proposed 

2018 AAST modifications for solid organ grading which include binary assessment of CE. It 

should be noted that the proposed 2018 AAST solid organ injury scales were published as a 
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brief current opinion paper and the hepatic organ injury scale has not been clinically 

validated at the time of writing (34). We did not consider volume of hemoperitoneum as a 

predictor in the present study (35). Additionally, the method does not stratify risk differently 

by hilar or peripheral location. Accurate segmentation of hemoperitoneum is performed 

during the portal venous phase since peak organ enhancement during this phase brings 

hemoperitoneum into relief. The CT protocol during the collection period included portal 

venous phase imaging through the upper abdomen only, but hemoperitoneum can pool more 

caudally in the intraperitoneal pelvis and lower paracolic gutters (36). The scanning protocol 

at University of Maryland/R. Adams Cowley Shock Trauma Center has recently been 

changed to include two-phase imaging through the abdomen and pelvis, and we are 

currently investigating the utility of automated quantitative visualization of 

hemoperitoneum.

Our auto-LPDI method requires further validation using a larger corpus of external multi-

institutional data and containerization as deployable software. The study was limited by its 

retrospective design. Further validation of the clinical decision rules would require 

prospective inclusion of consecutive patients with BHI on admission CT regardless of 

intervention or outcome.

Finally, we did not consider venous hepatic bleeding as an outcome. This is typically treated 

using modalities such as packing, hepatic debridement or resections, electrocautery, and 

argon beam coagulation (3, 9). We also did not explore the phenomenon of late hemorrhage 

or rebleeding, which would require assessment of post-operative CT exams (4, 7, 9).

Conclusion

Auto-LPDI was found to be a significant independent predictor of MHAI in patients with 

blunt hepatic injury that underwent CT prior to angiography. Incorporation of auto-LPDI in 

decision rules improved diagnostic performance. Classification and regression tree analysis 

revealed that auto-LPDI thresholds of ≥ 12% and < 1.7% were optimal for ruling in and 

excluding MHAI respectively in patients with either no CE, or miniscule (<0.05 mL) foci of 

CE. Auto-LPDI measurements have the potential to improve triage to catheter angiography 

in BHI patients sufficiently stable to undergo admission trauma CT, particularly in those for 

whom the absence of CE foci is not dispositive. The deep learning method once 

containerized as a software application and prospectively validated in a multicenter cohort, 

could provide precision diagnostic imaging data at the point of care for objective forecasting 

and decision support with no burden to radiologists and other members of the traumatology 

team. In the meantime, our data suggest that MHAI is most likely in patients with traumatic 

disruption of 1/10th or more of the total liver volume on visual inspection.
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Figure 1. 
Figure demonstrates high fidelity of deep learning-based segmentation of both the liver 

(green contour) and fine irregular margins of multifocal hepatic lacerations with variable 

shapes and sizes (yellow contour). The LPDI is automatically calculated as % liver 

disruption over total liver volume and was 13.1% in this example. (LPDI- liver parenchymal 

disruption index)
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Figure 2. 
Decision trees from CART analysis are shown. Decision tree 1 includes the combination of 

auto-LPDI and assessment of CE as a binary sign. Decision tree 2 includes auto-LPDI and 

CEvol. Contingency table results and AUCs for the two analyses is presented in Table 3. 

Decision tree analysis revealed an optimal cut off of ≥ 12% for ruling in MHAI when CE is 

either absent (decision tree 1), or diminutive at < 0.05 mL (decision tree 2). (CART-
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classification and regression trees, auto-LPDI- automated liver parenchymal disruption 

index, CE- contrast extravasation, CEvol- contrast extravasation volume)
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Table 1:

Baseline demographic and clinical characteristics

Covariate Total cohort 
(n=73)

Institution A* 
(n=56)

Institution B* 
(n=17)

Major hepatic arterial 
injury

P value

Yes (n= 
41)

No (n=32)

Angio only -n (%) 59 (81) 51 (91) 8 (47) 32 (78) 27 (84)

Angio and Ex-lap -n (%) 14 (19) 5 (9) 9 (53) 9 (22) 5 (16)

Age 33 [24 – 52] 29 [23 – 48] 47 [32 – 57] 35 [25 – 
53]

32 [23 – 51] 0.734

Gender -n (%)

 Male 40 (55) 30 (54) 10 (59) 25 (61) 15 (47) 0.233

 Female 33 (45) 26 (46) 7 (41) 16 (39) 17 (53)

Mechanism of injury -n 
(%)

 MVC 56 (77) 41 (73) 15 (88)

 Fall 5 (7) 3 (5) 2 (12)

 Other 12 (16) 12 (21) 0 (0)

ISS 90 34 [27 – 41] 36 [29 – 42] 34 [25 – 41] 34 [25 – 
41]

34 [31 – 44] 0.397

 ISS 90 ≥ 16 -n (%) 59 (81) 43 (77) 16 (94) 34 (83) 25 (78) 0.608

Associated injuries -n (%)

 Gallbladder 6 (8) 5 (9) 1 (6)

 Spleen 31 (43) 25 (45) 6 (35)

 Kidney 16 (22) 11 (20) 5 (29)

 Adrenal 18 (25) 13 (23) 5 (29)

 Pancreas 6 (8) 4 (7) 2 (12)

 Colon 3 (4) 3 (5) 0 (0)

 Small Bowel 5 (7) 4 (7) 1 (6)

 Pelvic fracture 17 (23) 13 (23) 4 (24)

Admission to CT time 
(min)

50 [31 – 70] 45 [30 – 70] 56 [41 – 67] 50 [31 – 
71]

48 [31 – 67] 0.921

Admission to angio time 
(hours)

4.2 [3.0 – 5.4] 4.4 [3.4 – 5.4] 3.0 [2.6 – 5.4] 3.9 [2.8 – 
5.3]

4.4 [3.2 – 
6.2]

0.217

Systolic BP (mm Hg) 122 [105 – 133] 121 [105 – 130] 128 [103 – 142] 125 [109 – 
133]

120 [101 – 
133]

0.267

 Hypotension (SBP ≤ 90 
mm Hg) -n (%)

7 (10) 4 (7) 3 (18) 3 (7) 4 (13) 0.424

Heart rate 101 [82 – 117] 104 [82 – 116] 95 [86 – 120] 100 [82 – 
117]

101 [86 – 
113]

0.910

 Tachycardia (HR ≥ 90) -n 
(%)

43 (59) 32 (57) 11 (65) 24 (59) 19 (59) 0.778

In hospital mortality
4
§ 2 2

Note.— All continuous variables had non-normal distributions and are presented as median [first quartile - third quartile]

*
University of Maryland Medical Center/R. Adams Cowley Shock Trauma Center is denoted as Institution A, and University of Miami Jackson 

Memorial Medical Center/Ryder Trauma Center is denoted as Institution B.
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§
Three patients expired from unsurvivable head injuries (AIS = 6). One patient expired from multi-organ system failure.

Missing values: there were 3 missing values for systolic blood pressure (4.1%), and three for heart rate (4.1%).

Abbreviations: Angio- angioembolization, ex-lap- exploratory laparotomy, ISS– injury severity score, BP- blood pressure
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Table 2:

comparison of results between cohorts

Characteristic Total cohort Major hepatic arterial injury P

Yes No

Auto-LPDI

n (%) 73 41 32 < 0.001

mean ± SD 7.73 ± 8.84 11.01 ± 9.98 3.53 ± 4.51

median [Q1 – Q3] 4.01 [1.00 – 12.05] 10.47 [2.62 – 17.36] 1.36 [0.59 – 5.11]

range (min, max) 0– 37.79 0.07 – 37.79 0 – 17.58

CE vol (mL)

n (%) 73 41 32 < 0.001

Mean ± SD 1.01 ± 3.16 1.78 ± 4.07 0.03 ± 0.10

median [Q1 – Q3] 0 [0 – 0.37] 0.07 [0 – 2.00] 0 [0 – 0]

range (min, max) 0 – 21.4 0 – 21.4 0 – 0.43

Subcapsular hematoma vol (mL) – n (%)*

0 70 (96) 38 (93) 32 (100) 0.12

9.70 1 (1) 1 (2) 0 (0)

49.7 1 (1) 1 (2) 0 (0)

290.5 1 (1) 1 (2) 0 (0)

Total 73 41 32

Hepatic AAST grade – n (%)

1 0 (0) 0 (0) 0 (0) 0.080

2 6 (8) 1 (2) 5 (16)

3 24 (33) 13 (32) 11 (35)

4 39 (53) 25 (34) 14 (45)

5 3 (4) 2 (5) 1 (3)

Total 72** 41 31**

CE (binary) – n (%)

Present 26 (36) 22 (54) 4 (13) < 0.001

Absent 47 (64) 19 (46) 28 (87)

Note.— values are mean +/− SD

Significant p-values are in bold

*
only three patients had measurable subcapsular hematoma. Patients are discretized by volumes (0, 9.7, 49.7, 290.5 mL) and presented as number 

(%)

**
One case was not assigned a hepatic AAST grade

Abbreviations: AE- angioembolization, LPDI- liver parenchymal disruption index, CE- contrast extravasation, AAST - American Association for 
the Surgery of Trauma
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Table 3.

Diagnostic performance

Parameter
cut-off 
value‡ TP TN FP FN Accuracy Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Binary CE 22 28 4 19 0.68 (0.57–
0.79)

53.7 (37.4–
69.3)

87.5 (71.0–
96.5)

84.6 (67.8–
93.5)

59.6 
(50.8–
67.7)

Decision tree 1 
(LPDI & 
CEbin)

28 28 4 13 0.77 (0.65–
0.86)

68.3 (51.9–
81.9)

87.5 (71.0–
96.5)

87.5 (71.0–
96.5)

68.3 
(51.9–
81.9)

Decision tree 2 
(LPDI & 
CEvol)

34 27 5 7 0.84 (0.73–
0.91)

82.9 (67.9–
92.8)

84.4 (67.2–
94.7)

87.2 (72.6–
95.7)

79.4 
(62.1–
91.3)

Hepatic AAST
±

2 (1 vs. 2–
5)

41 0 31 0 0.57 (0.45–
0.69)

100 (91.4–
100.0)

0 (0 –11.2) 56.9 (56.9–
56.9) -

††

3 (1–2 vs. 
3–5)

40 5 26 1 0.63 (0.50–
0.74)

97.6 (87.1–
99.9)

16.1 (5.5–33.7) 60.6 (56.7–
64.4)

83.3 
(38.1–
97.6)

4 (1–3 vs. 
4–5)

27 16 15 14 0.60 (0.47–
0.71)

65.9 (49.4–
79.9)

51.6 (33.1–
69.8)

64.3 (54.1–
73.4)

43.5 
(41.2–
45.8)

5 (1–4, vs. 
5)

2 30 1 39 0.44 (0.33–
0.57)

4.9 (0.6–16.5) 96.8 (83.3–
99.9)

66.7 (16.0–
95.5)

43.5 
(41.2–
45.8)

Note.—

±
For hepatic AAST organ injury scale, accuracy metrics are shown for each categorical grade (n =72). One subject was excluded due to missing 

Hepatic AAST grade

††
NPV not defined because no data is classified as test negative at the specified threshold.

‡
value ≥ cut-off value is defined as test positive

Abbreviations: PPV- positive predictive value, NPV, negative predictive value, LPDI- liver parenchymal disruption index, CE- contrast 
extravasation, CEbin- contrast extravasation binary, CEvol- contrast extravasation volume, AAST- American Association for the Surgery of Trauma
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