
Pleiotropy of systemic lupus erythematosus risk alleles and 
cardiometabolic disorders: a phenome-wide association study 
and inverse-variance weighted meta-analysis

Vivian K. Kawai1, Mingjian Shi2, Ge Liu1, QiPing Feng1, WeiQi Wei2, Cecilia P. Chung1,3,4, 
Theresa L. Walunas5, Adam S. Gordon6, James G. Linneman7, Scott J. Hebbring8, John B. 
Harley9,10,11, Nancy J. Cox12, Dan M. Roden1,2, C. Michael Stein1, Jonathan D. Mosley1,2

1Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 
Nashville, TN, USA

2Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, 
USA

3Division of Rheumatology, Department of Medicine Vanderbilt University Medical Center, 
Nashville, TN, USA

4Tennessee Valley Healthcare System - Nashville Campus

5Center for Health Information Partnerships, Northwestern University Feinberg School of 
Medicine, Chicago, IL

6Center for Genetic Medicine, Northwestern University, Chicago, IL

7Office of Research, Computing, and Analytics, Marshfield Clinic Research Institute, Marshfield, 
WI

8Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, 
Wisconsin USA

9Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children’s Hospital Medical 
Center, Cincinnati, OH, USA

10Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA

11Cincinnati VA Medical Center, Cincinnati, OH, USA

12Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA

Abstract

Objectives: To test the hypothesis that genetic predisposition to systemic lupus erythematosus 

(SLE) increases the risk of cardiometabolic disorders.

Methods: Using 41 single nucleotide polymorphisms (SNPs) associated with SLE, we calculated 

a weighted genetic risk score (wGRS) for SLE. In a large biobank we tested the association 
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between this wGRS and 9 cardiometabolic phenotypes previously associated with SLE: atrial 

fibrillation, ischemic stroke, coronary artery disease, type 1 and type 2 diabetes, obesity, chronic 

kidney disease, hypertension, and hypercholesterolemia. Additionally, we performed a phenome-

wide association analysis (pheWAS) to discover novel clinical associations with a genetic 

predisposition to SLE. Findings were replicated in the Electronic Medical Records and Genomics 

(eMERGE) Network. To further define the association between SLE-related risk alleles and the 

selected cardiometabolic phenotypes, we performed an inverse variance weighted regression 

(IVWR) meta-analysis.

Results: The wGRS for SLE was calculated in 74,759 individuals of European ancestry. Among 

the pre-selected phenotypes, the wGRS was significantly associated with type 1 diabetes (OR 

[95%CI] =1.11 [1.06, 1.17], P-value=1.05x10−5). In the pheWAS, the wGRS was associated with 

several autoimmune phenotypes, kidney disorders, and skin neoplasm; but only the associations 

with autoimmune phenotypes were replicated. In the IVWR meta-analysis, SLE-related risk alleles 

were nominally associated with type 1 diabetes (P=0.048) but the associations were heterogeneous 

and did not meet the adjusted significance threshold.

Conclusion: A weighted GRS for SLE was associated with an increased risk of several 

autoimmune-related phenotypes including type 1 diabetes but not with cardiometabolic disorders.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder that is associated 

with several cardiometabolic co-morbidities. SLE has a strong genetic component with more 

than a hundred risk alleles associated with disease (1). Although some risk alleles are shared 

with other autoimmune disorders, little is known about their association with the 

cardiometabolic disorders that are prevalent in SLE.

Cardiometabolic diseases contribute substantially to morbidity and mortality in SLE. For 

example, we and others have shown that coronary artery disease (CAD) is a prominent 

feature in SLE(2); also, patients with SLE have increased risk for atrial fibrillation (AF)(3), 

dyslipidemia (4), type 1 diabetes (T1D) and type 2 diabetes (T2D) (5), hypertension (HTN) 

(6), chronic kidney disease (CKD) (7), and central obesity (4) compared to the general 

population. Whether this increased risk for CAD and other cardiometabolic diseases and risk 

factors in SLE is imparted by the genetic predisposition to SLE is not known.

With the availability of large genome-wide association studies (GWAS) that have identified 

common single nucleotide polymorphisms (SNPs) associated with many phenotypes 

including SLE and cardiometabolic disorders, it is possible to study the shared genetic 

predisposition between various phenotypes. For example, in a previous study that used 

information from large GWAS, we found that genetic liability for rheumatoid arthritis (RA) 

was associated with increased risk of T1D and decreased risk of multiple sclerosis (MS) (8).
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To define whether a genetic predisposition to SLE increases risk of cardiometabolic 

disorders we used two approaches: a) we examined whether a weighted genetic risk score 

(GRS) for SLE identified individuals in a large de-identified electronic health record (EHR) 

system with increased prevalence of selected prespecified cardiometabolic phenotypes; we 

also performed an global phenome wide association study (PheWAS) to identify potential 

novel clinical associations with the SLE GRS; b) we used inverse variance weighted 

regression (IVWR) meta-analysis to test for a causal association between predisposition to 

SLE and selected cardiometabolic phenotypes using publicly available genome-wide 

association data.

METHODS

Data Sources

We used BioVU, the Vanderbilt University Medical Center (VUMC) DNA biobank, to study 

the association between genetic liability for SLE and 9 cardiometabolic outcomes previously 

associated with SLE: AF, ischemic stroke, CAD, T2D, obesity, HTN, CKD, 

hypercholesterolemia, and T1D. A full description of BioVU has been published (9). 

Briefly, BioVU accrues DNA from blood samples obtained during routine clinical care from 

patients who have consented to have a DNA sample collected. DNA is extracted from blood 

samples that would otherwise be discarded, de-identified, and linked to a de-identified 

version of the EHR. Approval for the study was obtained from the Vanderbilt Institutional 

Review Board. For replication of findings, we use data from the electronic Medical Records 

and Genomics (eMERGE) Network that has been fully described elsewhere (10). Because 

BioVU and eMERGE participants were predominantly self-reported white, we restricted our 

sample to individuals of European ancestry (EA) determined by principal components in 

conjunction with the HapMap population as described elsewhere (11). The eMERGE 

network included EA individuals born prior to 1990 (n=31,773, excluding VUMC dataset) 

while the BioVU dataset included more than 74,000 EA individuals over 18 years old.

We selected the largest genetic meta-analysis with summary-level data available for EA 

individuals for SLE and the other phenotypes of interest (or proxies when the exact 

phenotype was not available) (Supplementary Table S1 and S2). We studied the same 9 

phenotypes (or proxies) used in the GRS association analyses and 2 additional biomarkers 

that have been associated with increased risk of cardiometabolic disease for which there are 

no good phenotype equivalents in the EHR: C-reactive protein (CRP) and interleukin 6 

(IL-6) concentrations in the absence of acute inflammation (12).

Genotyping

In the BioVU cohort, genotyping was performed by the Vanderbilt Technologies for 

Advance Genomics (VANTAGE) according to standard protocols on the Illumina Infinium 

Multi-Ethnic Genotyping Array (MEGAEX) platform. eMERGE participants were 

genotyped on multiple platforms and underwent QC analyses and imputation as previously 

described (13). Quality control (QC) analyses used PLINK version 1.90β3 (14) and included 

reconciling strand flips, verifying that allele frequencies were concordant among data sets, 

and identifying duplicate and related individuals (one of each pair of subjects with a pi-
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hat>0.05 was excluded). Data sets were standardized using the HRC-1000G-check tool 

v4.2.5 (http://www.well.ox.ac.uk/~wrayner/tools/) and pre-phased using SHAPEIT (15). 

BioVU data was imputed using IMPUTE2 (16), in conjunction with the same reference 

panel from which the SLE risk alleles were derived (1000 Genomes cosmopolitan reference 

haplotypes). All other genetic data were imputed using the Michigan Imputation Server 

(HRC v1.1). Imputed data were filtered for a sample missingness rate <2%, a SNP 

missingness rate <4% and SNP deviation from Hardy-Weinberg P<5x10−6. Principal 

components (PCs) were calculated using the SNPRelate package (17).

Phenotypes

For the 9 prespecified phenotypes, we extracted clinical diagnoses from the EHR using the 

9th and 10th International Statistical Classification of Diseases and Related Health Problems 

(ICD) Clinical Modification (CM) codes that mapped to the phenotype and transformed 

these ICD9/ICD10 codes into phecodes, which aggregate one or more related ICD codes 

into distinct diseases or traits (18). For each phenotype, cases were defined as individuals 

with 2 or more instances of the specific phecode in the EHR. Controls were defined as 

individuals without the phecode or related phecodes (see map of phecodes at https://

phewascatalog.org/phecodes). For the PheWAS analysis, we followed the same procedures 

and extracted information for 1162 clinical phenotypes with 100 or more cases (to assure 

statistical power) in the EHR. ICD9/10 codes extraction was performed on December 2019 

for BioVU and October 2019 for eMERGE.

Genetic Risk Score and Statistical Analysis

To construct the GRS, we selected 41 autosomal SNPs that were associated with SLE in the 

largest meta-analysis performed in EA individuals (1) (Supplementary Table S1), and only 

included EA individuals in the analyses. Summary statistics for these 41 SNPs were 

included into a weighted GRS (wGRS) to calculate genetically-predicted risk for SLE using 

the following equation:

Weighted genetic risk score (wGRS) = ∑
i = 1

#SNPs
(βi x [SNP genotype]i)

where β is the effect size (log odds-ratio) of the risk allele and the genotype is the number of 

copies of the risk allele coded as 0, 1, or 2. Only SNPs that passed quality control were 

included in the calculation of the wGRS. A multivariable regression analyses adjusting for 

the first 5 PCs, median age in the EHR, and sex was performed for the nine pre-specified 

phenotypes. For these 9 prespecified phenotypes, a Bonferroni-corrected P-value <0.0056 

(0.05/9 phenotypes) was considered significant. In addition, we tested whether the wGRS 

was associated with the selected phenotypes in patients with SLE and with lupus 

nephropathy. SLE was defined as the presence of two or more SLE-related phecodes and 

lupus nephropathy as the presence of 2 or more nephropathy-related phecodes in individuals 

with SLE (19). A Benjamini-Hochberg false discovery rate (FDR) q<0.05 was considered 

significant for the global PheWAS and the replication in eMERGE. The PheWAS was 

adjusted by the same covariates included in the regression analysis using the PheWAS R 
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package (20). As a secondary analysis, we performed a PheWAS that excluded patients with 

SLE or common autoimmune diseases (see Supplementary Table S3). All PheWAS 

associations were expressed as odds- ratios (OR) and 95% confidence interval (95%CI), 

where ORs represent the risk of disease per standard deviation (s.d.) increase in the GRS.

To further test the association between genetic liability for SLE and the selected phenotypes 

we performed IVWR meta-analyses. The same 41 autosomal SNPs included in the GRS 

were used to select a linkage disequilibrium (LD)-reduced (r2<0.05) set of SNPs with a 

MAF>0.05 as instrumental variables (IVs) for SLE in the IVWR meta-analysis. 

Heterogeneity p-values are based on the Cochran’s Q statistic, and a low p-value indicates 

that one or more variants in the GRS may be pleiotropic.

As a sensitivity analysis, we performed weighted median regression since this approach, 

while less well powered than IVWR, provides better estimates of the true effect size when 

less than 50% of the IVs are not valid (21). In addition, we also tested for unbalanced 

horizontal pleiotropy using MR-Egger regression, which provides unbiased estimates in the 

presence of pleiotropy (21). Analyses were performed using the Mendelian Randomization 

R-package and a Bonferroni-adjusted P-value<0.0045 (0.05/11 outcomes) was considered 

significant. A P-value<0.05 for the intercept estimate in the Egger regression indicated the 

presence of horizontal pleiotropy.

RESULTS

Genetic risk score analysis

All 41 autosomal SNPs passed quality control and were included in the calculation of the 

wGRS. We calculated the wGRS for SLE in all 74,759 individuals of European ancestry in 

BioVU with genotype information and clinical data available; 41,934 (56%) were women 

and the median value (IQR) of the average age on the EHR was 52.5 (32.7, 65.14).

Among the pre-selected phenotypes, T1D was significantly associated with the wGRS for 

SLE (OR [95%CI] =1.11 [1.06, 1.17], P=1.05x10−5) and a nominal association was 

observed for CKD (1.05 [1.01, 1.08], P=0.007) (Table 1).

In addition, none of the selected phenotypes were associated with the wGRS (P>0.05) when 

only patients with SLE were studied. The average wGRS was higher in patients with lupus 

nephropathy compared to SLE patients without nephropathy (0.082 vs. 0.080, P=0.001); but 

the wGRS was not associated with any of the selected cardiometabolic phenotypes in 

patients with lupus nephropathy (P>0.05, Supplementary Table S4)

The global PheWAS in BioVU showed that the wGRS for SLE was significantly associated 

with 42 clinical diagnosis including several autoimmune phenotypes (FDR q<0.05) such as 

SLE, diffuse diseases of the connective tissue, sicca syndrome, rheumatoid arthritis (RA) 

related phenotypes, systemic sclerosis, celiac disease, autoimmune thyroiditis-related 

phenotypes, and T1D-related phenotypes among others (Table 2, Figure 1). The wGRS for 

SLE was also associated with non-autoimmune disorders including renal phenotypes and 

skin neoplasms. The replication analysis was performed in 31,773 EA individuals (55% 
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female) from eMERGE and 24 of the 42 associated phenotypes in BioVU were also strongly 

associated (FDR q<0.05) in the eMERGE population; most of which were autoimmune 

disorders (Table 2, Supplementary Table S5).

When patients with SLE were excluded from the PheWAS analysis in BioVU, most of the 

autoimmune phenotypes (e.g.: rheumatoid arthritis-related phenotypes, sicca syndrome, 

celiac disease, systemic sclerosis, autoimmune thyroiditis-related phenotypes, and T1D 

related phenotypes among others), renal failure, and skin neoplasms remained significantly 

associated with the wGRS (all FDR q<0.05, Supplementary Table S6); but when we 

additionally excluded patients with other common autoimmune diseases from the analysis 

none of the phenotypes were associated with the wGRS for SLE (FDR>0.05). 

(Supplementary Table S7)

Inverse variance weighted regression meta-analyses

Genetic predisposition to SLE was not significantly associated with any of the pre-selected 

outcomes (all P>0.0045, Table 3) using the IVWR method. Nominal associations were 

observed for T1D and LDL cholesterol, with a positive association for T1D (estimate= 

0.249, P=0.048), and a negative association for LDL cholesterol (estimate = −0.015, 

P=0.018). Although the MR-Egger analysis did not show evidence of horizontal pleiotropy 

(Egger intercept p-value >0.05) for both phenotypes (Supplementary Table S8), we observed 

that rs2476601 was the SLE-associated SNP with the strongest association with T1D (effect 

size= 0.636, P-value=1.10x10−122), and that exclusion of this SNP from the IVWR 

attenuated the association with T1D (P=0.093).

DISCUSSION

The main finding of this study was that a genetic predisposition to SLE based on common 

SNPs is not associated with an increased risk of cardiometabolic phenotypes but is 

associated with increased risk of other autoimmune disorders. In a similar study in RA, we 

found that genetic predisposition to RA was not associated with an increased risk of 

cardiometabolic phenotypes but was associated with increased risk for T1D (8).

The finding that genetic susceptibility to SLE is associated with increased risk of other 

autoimmune diseases in the PheWAS is not surprising, since autoimmune diseases share 

clinical and immunological characteristics as well as risk susceptibility loci (22). For 

example, a cross phenotype meta-analysis found that 44% of risk alleles were shared across 

seven common autoimmune diseases (SLE, T1D, RA, multiple sclerosis, psoriasis, Crohn’s 

and coeliac disease) although not across all autoimmune disorders (23). The same study 

found that risk variants that are common to a subset of autoimmune diseases aggregate in 

discrete pathways such as the tumor necrosis factor (TNF) pathway for shared SNPs in RA 

and SLE (23). Another study reported only a modest genetic overlap between SLE and 17 

common autoimmune diseases with no apparent association between several individual SLE 

risk loci with these autoimmune diseases (24). In our study, we estimated the aggregated the 

effect of individual SNPs using a wGRS and found that the GRS is associated with modest 

increases in risk for several autoimmune diseases.
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Because SLE is a heterogenous disease, we also performed a PheWAS that excluded patients 

with SLE to determine if the associations with autoimmune disorders were independent SLE 

and found that most of the autoimmune phenotypes remained significantly associated with 

the wGRS for SLE, supporting the hypothesis of shared immunogenetic mechanisms among 

autoimmune diseases.

Although several established SLE risk loci have been associated with susceptibility for our 

pre-selected cardiometabolic phenotypes (e.g. cardiac arrythmias with BANK1 (25); CAD 

with FCGR2A (26), TNFSF4 (27), IL10 (28), WDFY4 (29), and SH2B3 (30); HTN with 

TNFSF4 (31), NCF2 (32), and SH2B3 (33); obesity with IL10 (34); T2D with JAZF1 (35); 

and T1D with TYK2 (36), IFIH1 (37), IRF7 (38), SOCS1(39), IKZF1 (40), TNFAIP3 (41), 

and SH2B3 (39)), to our knowledge this is the first study that examined the genetic sharing 

between SLE and cardiometabolic comorbidities that are prevalent among individuals with 

SLE. Consistent with our findings in the PheWAS analysis, the IVWR analysis did not show 

significant associations between genetic liability for SLE with the selected cardiometabolic 

phenotypes, which suggests that genetic liability for SLE is not associated with these 

disorders. However, we did not examine subpopulations of SLE, and we only studied EA 

individuals (42).

Previous studies have focused on the identification of risk alleles that may increase the risk 

of sub-phenotypes of SLE, mainly cardiovascular (CVD) and renal disease (43, 44). The 

largest study for CVD performed in SLE patients of EA (2088 SLE patients) found that 

variants at two loci, IL19 and SRP54-AS, were associated with increased risk of stroke and 

myocardial infarction in patients with SLE (45). Interestingly, none of these loci have been 

associated with SLE susceptibility or CVD risk in the general population, suggesting a 

different mechanism for CVD in SLE (45). Likewise, a cross-phenotype meta-analysis of 6 

common autoimmune diseases (including SLE) found no association between CVD risk and 

any SLE risk loci. However, the same study identified 8 genetic clusters strongly associated 

with CVD in SLE, two of which were enriched for genes in the TNFα and INFγ response, 

suggesting that genetic variations in these immune pathways could contributed to the 

increased risk of CVD in SLE (46).

Genetic studies of kidney disorders in SLE have focused on defining the genetic basis lupus 

nephritis (LN) and have shown that some, but not all, established SLE risk loci are also 

associated with LN (44). More recent studies have identified genes that are specifically 

associated with LN (but not with SLE susceptibility), which suggests that genetic liability 

for LN is a combination of general SLE risk genes and disease specific genes (44). In our 

study, lupus patients with nephropathy had a higher wGRS than those without nephropathy 

and the wGRS for SLE was associated with renal phenotypes only when patients with SLE 

were included in the PheWAS analysis, suggesting that renal disorders were common 

complications in SLE patients and associated with the wGRS for SLE, which has been 

previously described (47, 48). Concordant with that interpretation, a genetic predisposition 

to SLE was not associated with CKD in the IVWR analysis.

The observed association between the wGRS for SLE and T1D-related phenotypes in 

BioVU and eMERGE, along with the nominal association in the IVWR, suggest shared 
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genetic risk between these phenotypes. Genetic studies have not only shown that SLE and 

T1D share risk loci (IRF7 (38), SOCS1 (39), IKZF1 (40), TNFAIP3 (41), IL10 (24), TCF7 
(49), and BANK1(50)), but they also have common risk alleles (e.g.: rs2476601 in PTPN22, 

rs2304256 in TYK2 (36), rs2111485 in IFIH1(51), and rs1801274 in FCGR2A (52)) or risk 

alleles in close LD (e.g. rs10774625 with rs3184504 in SH2B3 (39), rs11889341 with 

rs7574865 in STAT4 (41), rs12785878 with rs3794060 in DHRC7 (53)). Also, a study using 

hierarchical clustering of 47 pleiotropic SNPs across different autoimmune diseases 

(including SLE and T1D) found that both phenotypes shared cluster patterns that represent 

distinct molecular mechanisms affected by these variants (23).

Our study has limitations. First, the findings may not generalize to all patients but rather to 

those of European ancestry seeking care at a tertiary care hospital. Second, because billing 

codes were aggregated to assemble clinical phenotypes into phecodes and the quality of 

case-control discrimination varies across phenotypes, there is potential misclassification 

bias, which can bias the results towards the null, resulting in false negative associations. 

Third, many unmeasured factors (e.g., diet, smoking, exercise, medications, and other 

interventions) may modulate the risk for some of the phenotypes examined in the PheWAS 

and thus obscure a genotype-phenotype relationship. However, the consistency of the 

findings between the BioVU and the eMERGE populations support the validity of the 

findings.

In conclusion, we found that a weighted GRS for SLE was associated with an increased risk 

of several autoimmune-related phenotypes but not with cardiometabolic disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Clinical diagnoses associated with a weighted genetic risk score (wGRS) for SLE in 

individuals of European ancestry in BioVU. Green triangles represent significant 

associations at FDR q<0.05. Black dots represent non-significant associations. Table 2 

shows the complete list of significant associations arranged by FDR
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Table 1:

Association of the weighted genetic risk score for systemic lupus erythematosus and selected cardiometabolic 

phenotypes

Phenotype Phecode # cases # controls OR (95%CI) P-value

Atrial fibrillation 427.21 6601 32787 0.99 [0.96, 1.02] 0.320

Ischemic stroke 433.21 1830 47571 1.04 [0.99, 1.09] 0.935

Coronary atherosclerosis 411.4 10357 38740 1.01 [0.99, 1.04] 0.370

Type 2 diabetes 250.2 9741 38763 1.01 [0.98, 1.03] 0.279

Essential hypertension 401.1 25911 26027 0.99 [0.97, 1.01] 0.260

Chronic renal failure 585.3 4742 42181 1.05 [1.01, 1.08] 0.007

Obesity 278.1 6424 42347 1.01 [0.99, 1.04] 0.355

Type 1 diabetes 250.1 1881 38647 1.11 [1.06,1.17] 1.05x10−5

Hyperlipidemia 272.13 9448 33414 0.99 [0.97, 1.02] 0.607
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Table 3:

Association between genetic predictors for SLE and genetic predictors of selected cardiometabolic phenotypes 

in the IVWR

Cardiometabolic phenotypes #SNPs Estimate [95%CI] P-value

Atrial fibrillation 30 0.006 [−0.007, 0.019] 0.381

Ischemic stroke 30 0.009 [−0.010, 0.029] 0.342

Coronary atherosclerosis 30 0.021 [−0.004, 0.046] 0.096*

Type 2 diabetes 30 0.027 [−0.002, 0.056] 0.070*

Systolic blood pressure 30 0.034 [−0.101, 0.170] 0.620*

Chronic renal failure 30 0.014 [−0.006, 0.035] 0.171*

Waist circumference 27 0.003 [−0.007, 0.013] 0.598*

Type 1 diabetes 18 0.249 [0.002, 0.496] 0.048*

LDL cholesterol 26 −0.015 [−0.027, −0.003] 0.018*

C-reactive protein 30 0.004 [−0.007, 0.014] 0.467*

Interleukin 6 30 0.023 [−0.002, 0.049] 0.111

estimates represent change in risk for the outcome per unit of change in the exposure

*
heterogeneity P-value <0.05
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