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Distribution of incubation periods 
of COVID‑19 in the Canadian 
context
Subhendu Paul1* & Emmanuel Lorin1,2

We propose a novel model based on a set of coupled delay differential equations with fourteen delays 
in order to accurately estimate the incubation period of COVID-19, employing publicly available 
data of confirmed corona cases. In this goal, we separate the total cases into fourteen groups for the 
corresponding fourteen incubation periods. The estimated mean incubation period we obtain is 6.74 
days (95% Confidence Interval(CI): 6.35 to 7.13), and the 90th percentile is 11.64 days (95% CI: 11.22 to 
12.17), corresponding to a good agreement with statistical supported studies. This model provides an 
almost zero-cost computational complexity to estimate the incubation period.

The outbreak of coronavirus disease 2019 (COVID-19), reported early in Wuhan (China) and spread around the 
world1, is creating dramatic and daily changes with profound impacts worldwide. People with underlying medi-
cal condition, respiratory disease, diabetes, cancer, etc., and older people are vulnerable to severe complications 
and death from coronavirus, although we are discovering new features of COVID-19 every day. In the absence 
of vaccination and proper medication, we can merely obey some non-pharmaceutical containments, lockdown, 
social distancing, hand hygiene, face masking, mobile app to trace corona-positive individuals, to help prevent the 
spread of this infectious disease. To minimize transmission of the virus through human-to-human interaction, 
quarantine of individuals with exposure to infectious pathogen is an effective strategy for containing contagious 
diseases. To govern a quarantine period for asymptomatic as well as presymptomatic individuals, it is essential 
to fully understand the incubation period of COVID-19 disease.

The incubation period of an infectious disease is the time between when a person is infected by a virus and when 
the first symptoms of the disease are noticed. Estimates of the incubation period for COVID-19 range from 2 to 
14 days, according to the investigation so far. Precise knowledge of the incubation period is crucial to control 
infectious disease like COVID-19; a long incubation period means a high risk of further spreading the disease. 
The distribution of the incubation period can be used to estimate the basic reproduction number R0 , a key factor 
of epidemics, in order to measure the potential for disease transmission. It is indeed difficult to obtain a good 
estimate of the incubation period on the basis of limited data.

There are several statistical studies2–12, using a single measure11, estimated the incubation period of the current 
pandemic. In addition to those statistical approaches, there are numerous analytical and computational studies 
based on mathematical models, involving Ordinary Differential Equations (ODE)13–21 as well as Delay Differential 
Equations (DDE)22–27, to calculate the basic reproduction number R0 and understand the underlying dynamics 
of the epidemic. Researchers usually consider a single delay models, occasionally two delays.

To the best of our knowledge, we are proposing for the first time a mathematical model, comprising fourteen 
delays, to estimate the incubation period utilizing publicly available data of the total number of corona-positive 
cases. This approach is free from any special type of samples in order to produce the distribution of the incuba-
tion period. It is then almost cost free, as it only involves a small scale computations. After a single calculation 
employing this method, we can generate the current distribution as well as previous distributions of the incu-
bation period. We can also observe the change in the incubation period. In the statistical based approach, it is 
usually difficult to consider a large incubation period if the sample size is small. However, in this approach, we 
can go well beyond 14 days, the maximum incubation period we have set for the current work. In this context, 
we demonstrate the incubation period of the COVID-19 epidemic in Canada employing publicly available data 
of confirmed corona-positive cases28 . As of November 7, 2020, the World Health Organization (WHO) had 
confirmed a total of 251,338 cases of COVID-19 in Canada, including 10,381 deaths1.

There are several studies on incubation period mainly based on Chinese patients that can only provide a 
rough estimation for rest of the world. The incubation period may depends on age29 (median-age/country), 
hard immunity, public health system, corona testing capacities, daily corona cases, etc. For a better estimation 
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of the incubation period for a particular region, we need to study local patients. Data collection is a bottleneck 
in studying the incubation period. However, one can easily estimate the incubation period using the approach 
we propose and publicly available data of confirmed cases.

Results and discussion
After estimating the model parameters with sufficiently small values of the error functions, we compare in Fig. 1 
total corona cases calculated with our model and the available data28. This shows excellent agreement. In Fig. 2, 
the confirmed cases 211,735 of 276 days are divided into fourteen groups. The ith compartment Ti , defined in 
Eq. (3), is the confirmed cases of 276 days corresponding to the incubation period of i day(s) for i = 1, 2, . . . , 14 . 
In addition Ti is the frequency of the incubation period of i day(s), and using the bar chat, we obtain a mean 
incubation period of 6.89 days, a median of the incubation period of 6 days, 90th percentile of 11 days, 95th 
percentile of 12 days and 99th percentile of 13.5 days. The bar chat shows that mode of the incubation period is 
of 6 days, and there is a second peak for the incubation period at 10 days. However, the second peak is strongly 
dominated by the first one. From the bar chat presented in Fig. 2, we can also obtain the probability densities of 
incubation periods of the first k days during the epidemic, the total confirmed cases of the first k days starting 

Figure 1.   Estimation of the total number of confirmed coronavirus cases (T) compared to the available data28. 
Here blue circles indicates the results obtained from model, and red line is the publicly available data28.

Figure 2.   The cumulative data of confirmed corona cases as of October 23, 2020 is splitted into several 
incubation periods.
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on January 22, 2020. The probability densities p(k)i  of the first k days and corresponding incubation period i days 
for i = 1, 2, . . . , 14 can be defined as

where T(k)
i  s are defined in Eq. (3). The probability densities p(100)i  , p(200)i  and p(276)i  for i = 1, 2, . . . , 14 are pre-

sented in Fig. 3. The density curves for the first 100, 200 and 276 days are similar, and the densities obey a remark-
able configuration: for 2 ≤ i ≤ 5, p(100)i > p

(200)
i > p

(276)
i  , for 7 ≤ i ≤ 9 and 11 ≤ i ≤ 14 , p(100)i < p

(200)
i < p

(276)
i  ; 

although the second peak, for i = 10 , does not follow the decreasing-increasing convention. For the incubation 
period of 10 days p(200)10 > p

(100)
10 > p

(276)
10  , an oscillatory behaviour is observed. The descending pattern for 2 

≤ i ≤ 5 and the ascending order for 7 ≤ i ≤ 9 and 11 ≤ i ≤ 14 indicate that the mean incubation period is ris-
ing. Now, we fit the frequency data for the first 276 days, presented in the bar chat Fig. 2, with the lognormal 
distribution function and obtain the lognormal distribution parameters µ = 1.79 and σ = 0.52 . Fig. 4 shows 
the lognormal distribution function of the incubation period for the first 276 days and population size 211,735 
with p(276)i  for i = 1, 2, . . . , 14 . The estimated incubation period, obtained using lognormal distribution, has a 

(1)p
(k)
i =

T
(k)
i∑14

i=1 T
(k)
i

,

Figure 3.   Probability densities of incubation period, presented in Eq. (1). The ’first 100 days’ indicates that the 
density of incubation period based on the cumulative data of the first 100 days during the epidemic starting 
from January 22, 2020 and similar for other two.

Figure 4.   Probability density function of the lognormal distribution of the incubation period with µ = 1.79 
and σ = 0.52 . The result based on the total confirmed corona cases of 276 days. The blue circles indicate the 
densities obtained from the model calculation.
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mean of 6.74 (95% CI: 6.35 to 7.13), and the 90th percentile is 11.64 days (95% CI : 11.22 to 12.17). In addition, 
we focus on the distribution of the incubation period for a single day, October 23, 2020 which is the 276th day 
of the epidemic, with 2258 confirmed cases. The probability density p̂(k)i  for a single day can be calculated as

where T(k)
i  is defined in Eq. (3). The estimated incubation period, obtained from the frequency table of 276th 

day and population size of 2258, has a mean of 7.14 days, a median of 7 days, the 90th percentile of 11 days, 95th 
percentile of 12.5 days and 99th percentile of 14 days. We generate the lognormal distribution function from 
the 276th day’s frequency data and obtain the lognormal distribution parameters µ = 1.83 and σ = 0.53 . Fig. 5 
shows the lognormal distribution of 276th day along with p̂(276)i  . The estimated incubation period of 276th day, 
population size of 2258 and obtained using a lognormal distribution, has a mean of 6.98 days (95% CI: 6.41 to 
7.55) and the 90th percentile of 12.29 days. A list of several studies along with the present calculation “Math.-
Model” are presented in Table 1; we present the mean incubation period for the raw data as well as the lognormal 
distribution function. The list shows that our calculated data are closed the value reported by Ma et. al.9 using a 
larger sample size of 587. The calculated mean incubation period using two different ways, the raw data as well 
as the lognormal distribution are indeed closed, indicating that the raw data calculated using our mathematical 

(2)p̂
(k)
i =

T
(k)
i − T

(k−1)
i∑14

i=1 T
(k)
i −

∑14
i=1 T

(k−1)
i

,

Figure 5.   Probability density function of the lognormal distribution of the incubation period with µ = 1.83 
and σ = 0.53 . The result based on the confirmed corona cases of a particular day, October 23, 2020. The blue 
circles indicate the densities obtained from the model calculation.

Table 1.   A list of several studies along with sample size, mean and lognormal parameters µ , σ.

Author Data size Mean (days) µ σ

Backer et al.2 88 6.4 1.796 0.349

Lauer et al.3 181 5.5 1.621 0.418

Li et al.4 10 5.2 1.425 0.669

Bi et al.5 183 4.8 1.570 0.650

Jiang et al.6 40 4.9 1.530 0.464

Linton et al.7 158 5.6 1.611 0.472

Zhang et al.8 49 5.2 1.540 0.470

Ma et al.9 587 7.4 1.857 0.547

Leung et al.10 61 7.2 1.780 0.680

McAloon et al.11 Meta 5.8 1.63 0.50

Jing et al.12 1084 8.29

Math model (raw data) 211,735 6.89

Math model (lognormal) 211,735 6.7 1.788 0.520

Math model (raw data) 2587 7.17

Math model (lognormal) 2587 7.0 1.827 0.528
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model, are statistically significant for a lognormal distribution (statistical p value less than 0.001). It follows from 
the “Math.-Model” calculation, presented in Table 1, that the mean incubation period of 276th day, population 
size 2258, is greater than the mean incubation period of 276 days, population size 221,735 which demonstrates 
that the mean incubation period of COVID-19 is slightly increasing with time.

Methods
In this section, we introduce a compartment based infectious disease model including a total of seventeen 
partitions, Lockdown, Susceptible, Infected and fourteen compartments of Total confirmed cases (LSIT). The 
model is constructed as a set of coupled delay differential equations involving several variables and parameters.

The model.  Modeling the spread of epidemic is an essential tool for projecting its outcome. By estimating 
important epidemiological parameters using the available database, we can make forecasts of different interven-
tion scenarios. In the context of compartment based model, where the population of a region is distributed into 
several population groups, such as susceptible, infected, total cases, etc., is a simple but useful tool to demon-
strate the panorama of an epidemic.

In this article, we introduce an infectious disease model, extending the standard SIR model, including the 
phenomenon lockdown, a non-pharmaceutical way to prevent the spread of the epidemic. The schematic diagram 
of the model is presented in Fig. 6 with several compartments and various model parameters. The following are 
the underlying principles of the present model.

•	 The total population is constant (neglecting the migrations, births and unrelated deaths) and initially every 
individual is assumed susceptible to contract the disease.

•	 The disease is spread through the direct (face-to-face meeting) or indirect (through air current, common used 
or delivery items like door handles, grocery products) contact of susceptible individuals with the infected 
individuals.

•	 The quarantined area or the compartment for corona cases contains only members of the infected population 
who are tested corona-positive.

•	 The virus always kills some percent of the people it infects; the survivors percent represents the recovered 
group.

•	 There is a non-pharmaceutical policy (stay at home), commonly known as lockdown, to stop the spread of 
the disease.

Based on the above principles, we consider several compartments:

•	 Susceptible (S): the group of individuals who can be infected.
•	 Infected (I): the group of people who are spreading the contiguous disease.
•	 Total cases (T): the group of individuals who tested corona-positive (Active cases + Recovered + Deaths).
•	 Lockdown (insusceptible) (L): the group of persons who are keeping themselves safe.

In the model, we assume that there is no overlap between these two compartments, infected(I) and total cases 
(T). In other words, tested corona-positive individuals are assumed to be unable to substantially spread the 
disease due to isolation and are immune to re-infection after recovery30. The goal of the present model is to 
estimate the distribution of the incubation periods of COVID-19. In this goal, we split the compartment T into 
J subcomponents T1, . . . ,TJ , where

(3)T(t) =

J∑

i=1

Ti(t) or T(k) =

J∑

i=1

T
(k)
i .

Figure 6.   Schematic diagram of the compartmental based epidemic model, presented in Eq. (4).
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In (3), k represents the time index and T(k)
i  represents the total corona-positive cases corresponding the 

incubation period τi , presented in Fig. 6. The time-dependent model is the following set of coupled delay dif-
ferential equations:

where α(t) , β(t) , δi(t) , for i = 1, . . . , J and ν(t) are real positive parameters respectively modeling the rate of 
lockdown, the rate of infection, the rate of tested corona-positive corresponding the incubation period τi and 
the rate of transit from lockdown compartment to susceptible compartment, respectively. The coefficient α(t) 
can be expressed in the mathematical form as

where α(1) and α(2) are constants, and the similar expressions are valid for other time-dependent parameters. 
Here t0 , td and t1 are the initial, intermediate and final times, respectively. The variables S(t − τi) and I(t − τi) 
denote the cumulative data of (t − τi) days, i.e., total number of suspected and infected individuals of (t − τi) 
days. The factor δi(t)β(t)S(t − τi)I(t − τi)/N conveys the rate of individuals who were infected τi days ago. It 
follows from (4), that for any t

where N (constant) is the total population size.
We solve (4) using matlab inner-embedded function dde23 with particular sets of model parameters. 

To solve the initial value problem (4), in the interval [t0, t1] , we consider L(t0) , S(t0) , I(t0) and T(t0) as follows:

where T̃(t0) is the available data at time t0 , and q is the initial value adjusting parameters. Initially, there is no 
lockdown individual so that we can consider L(t0) = 0 . It follows from (3) and (6) that

In the present context T̃(t0) = 0 , since there were no corona-positive cases reported on January 22, 2020. As a 
consequence, we also take Ti(t0) = 0 for i = 1, 2, . . . , J.

Parameter estimation of the model.  We focus on the exponential growth phase of the COVID-19 epi-
demic in Canada; one can use the approach to estimate the incubation period distribution for any region affected 
by the infectious disease. The time resolved (daily updated) database28 provides the number of total corona-
positive cases. The optimal values of p(t) = (q,α(t),β(t), δ1(t), . . . , δJ (t), ν)

T , that is the set of initial values and 
model parameters, is obtained by minimizing the root mean square error function E(p(t)) , defined as

where T̃(k) is the available data of total corona-positive cases on the particular kth day, and T(k) is the calculated 
results obtained from System (4). The integer M, used in (8), is the size of the data set. Due to the complexity 
of the error function, the minimization using the matlab function fminsearch requires a very large number 
of iterations.

Numerical experiment.  In this section, we propose a detailed description of the computational procedure 
for the proposed model. On 23 January 2020, a 56-year old man admitted to Toronto hospital emergency depart-
ment in Toronto with a new onset of fever and nonproductive cough, and returning from Wuhan, China, the day 
prior31,32. It is believed this is the first confirmed case of 2019-nCoV in Canada, and according to the government 
report, the novel coronavirus arrived on the Canadian coast on January 25, 2020, first reported case. The above 
information suggests that the start date of the current pandemic in Canada is possibly xsto be January 22, 2020. 
Additionally, some research studies reported that the estimation of the incubation period of COVID-19 is from 2 
to 14 days1,33. As a consequence, in the present study we consider 14 delays, τ1 = 1 day, τ2 = 2 days, . . . , τ14 = 14 
days. Here we consider a calculation of 276 days, from January 22, 2020 to October 23, 2020. We decompose the 
time domain of 276 days into two parts : the time domain splitter is in the interval where the first wave is slowed 

(4)





dS
dt = − β(t) SIN − α(t)S + ν(t)L ,
dI
dt = β(t) SIN −

�J
i=1 δi(t)β(t)

S(t−τi)I(t−τi)
N ,

dTi
dt = δi(t)β(t)

S(t−τi)I(t−τi)
N ,

dL
dt = α(t)S − ν(t)L ,

α(t) =
{
α(1), t0 ≤ t ≤ td
α(2), td < t ≤ t1

(5)L(t)+ S(t)+ I(t)+ T(t) = N ,

(6)





L(t0) = 0 ,
S(t0) = N − L(t0)− I(t0)− T(t0) ,
I(t0) = q ,

T(t0) = �T(t0) ,

(7)
J∑

i=1

Ti(t0) = T(t0) = T̃(t0).

(8)E(p(t)) =
1

M

√√√√
M∑

k=1

(T(k)(p(t))− T̃(k))2 ,
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down and the “second wave” begins, i.e. the splitter is in the interphase of two different scenarios. In this goal, 
we can choose the parameters p(t) as

where p(1) = (q,α(1),β(1), δ
(1)
1 , . . . , δ

(1)
14 , ν

(1))T and p(2) = (α(2),β(2), δ
(2)
1 , . . . , δ

(2)
14 , ν

(2))T are some constants. 
The capability of an optimization package depends on the initial values of the parameters: for q, α , β , ν we 
consider any positive random number less than unity, where as a choice of δ = (δ1, . . . , δ14)

T is tricky. For this 
purpose, we consider a vector of 14 positive random numbers δ such that δ1 < · · · < δ4 > δ5 > δ6 > · · · > δ14 
and 

∑14
i=1 δi = 0.9 . We observe, from numerous numerical experiments, the renormalization factor 0.9 works 

perfectly for the computation.
For a complete calculation, we run the matlab code twice. Firstly, we run the code for the period January 

22, 2020 to July 19, 2020 to obtain the estimated value p(1)est of p(1) , presented in Table 2, and the value of the 
error function E(p(1)est ) = 54.92 for q = 0.005. Then, we run the code for the entire period from January 22, 2020 
to October 23, 2020, but using the estimated value p(1)est for the interval January 22, 2020 to July 19, 2020, and 
obtain the estimated value p(2)est of p(2) for the rest of the period, presented in Table 2, and the value of the error 
function E(p(1)est , p

(2)
est ) = 48.38 , defined as

where M1 corresponds the date July 19, 2020.

Conclusion
In this paper, we have derived a mathematical model based on a set of coupled delay differential equations, which 
was used to estimate the incubation period with good agreement with statistical works. Using the proposed 
model and publicly available data of confirmed cases, one could accurately estimate the incubation period in 
any region. We obtain the distribution of the incubation period from the population, so that it is better than any 
sample-dependent result. We have considered fourteen delays, but it is possible to consider an arbitrary number 
of delays. We can still use the model in the early stages of the disease, when the incubation period is unknown. 
We can select the maximum incubation period and then calculate the split confirmed corona cases (as shown 
in Fig. 2). The fit log-normal distribution of the split data with sufficiently small p-value will provide the good 
estimation. On the other hand, for example, suppose that the maximum incubation period is 16 days, and we 
consider 18 days. After calculation, we will only get few corona-positive cases for the incubation periods 17 and 
18 days. After estimating the model parameters, one can estimate the incubation period of confirmed cases over 
a long period, over a small time interval, and even over a single day. The present approach can be used with a 

(9)
{
p(t) = p(1) from January 22, 2020 to July 19, 2020 ,

p(t) = p(2) from July 20, 2020 to October 23, 2020 ,

(10)E(p
(1)
est , p

(2)
est ) =

1

M

√√√√
M1∑

k=1

(T(k)(p
(1)
est )− T̃(k))2 +

M∑

k=M1+1

(T(k)(p
(2)
est )− T̃(k))2 ,

Table 2.   The estimated values of the model parameters for two different time domains defined in Eq. (9).

Parameters Estimated value Parameters Estimated value

α(1) 0.01376 α(2) 0.00102

β(1) 0.44952 β(2) 0.73348

δ
(1)
1

0.01331 δ
(2)
1

0.02180

δ
(1)
2

0.07014 δ
(2)
2

0.02454

δ
(1)
3

0.07104 δ
(2)
3

0.04129

δ
(1)
4

0.09705 δ
(2)
4

0.05931

δ
(1)
5

0.15866 δ
(2)
5

0.11374

δ
(1)
6

0.13964 δ
(2)
6

0.14658

δ
(1)
7

0.06694 δ
(2)
7

0.13907

δ
(1)
8

0.08066 δ
(2)
8

0.10781

δ
(1)
9

0.08007 δ
(2)
9

0.08989

δ
(1)
10

0.12072 δ
(2)
10

0.06755

δ
(1)
11

0.04584 δ
(2)
11

0.05151

δ
(1)
12

0.02497 δ
(2)
12

0.03834

δ
(1)
13

0.00901 δ
(2)
13

0.03833

δ
(1)
14

0.00427 δ
(2)
14

0.02056

ν(1) 0.00114 ν(2) 0.00085
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large-scale computation to estimate the recovery period of COVID-19, and to estimate the incubation period 
for different age-groups.
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