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Abstract

Background: Progress in precision psychiatry is predicated on identifying reliable individual-

level diagnostic biomarkers. For psychosis, measures of structural and functional connectivity 

could be promising biomarkers given consistent reports of dysconnectivity across psychotic 

disorders using magnetic resonance imaging.

Methods: We leverage data from 4 independent cohorts of psychosis patients and controls 

with observations from approximately 800 individuals. We use group-level analyses and two 

supervised machine learning algorithms (support vector machines (SVM) and ridge regression) 

to test within, between, and across sample classification performance of white matter and resting-

state connectivity metrics.

Results: Although we replicate group-level differences in brain connectivity, individual-level 

classification was suboptimal. Classification performance within sample was variable across folds 
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(highest AUC range= 0.30) and across datasets (average SVM AUC range= 0.50; average ridge 

regression AUC range= 0.18). Classification performance between samples was similarly variable 

or resulted in AUC values around 0.65, indicating a lack of model generalizability. Furthermore, 

collapsing across samples (rsfMRI N=888, DTI N=860) did not improve model performance 

(maximal AUC= 0.67). Ridge regression models generally outperformed SVM models, although 

classification performance was still suboptimal in terms of clinical relevance. Adjusting for 

demographic covariates did not greatly affect results.

Conclusions: Connectivity measures were not suitable as diagnostic biomarkers for psychosis 

as assessed in the current study. Our results do not negate that other approaches may be more 

successful although it is clear that a systematic approach to individual-level classification with 

large independent validation samples is necessary to properly vet neuroimaging features as 

diagnostic biomarkers.
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Introduction

Decisions related to the diagnosis and treatment of psychotic disorders like schizophrenia, 

bipolar disorder, and schizoaffective disorder, are currently dependent on patient report, 

behavioral observation, and clinical judgment rather than objective laboratory measures(1). 

Unfortunately, reliance on phenomenology limits the field’s attempts to join the 

precision medicine revolution(2) and likely contributes to the underinvestment in novel 

pharmacological treatments for psychotic illness(3). What is needed are biomarkers indexing 

core biological processes that more precisely predict clinical outcomes and provide novel 

insights into the pathophysiology of psychosis, psychosis risk, and psychosis treatment(4).

Neuroimaging measures acquired via magnetic resonance imaging (MRI) could serve 

as such biomarkers by acting as objective endpoints to evaluate treatment response 

or prognostic accuracy(5). Brain connectivity measures(6–8) are particularly promising 

given consistent reports of aberrant functional and structural connectivity across psychotic 

disorders(9–14) and at various stages of illness(15–19). Psychosis-related disruptions 

in functional connectivity (measured by resting state functional MRI-rsfMRI(20)) often 

include hypo-connectivity within and between large-scale cortical networks(6), especially 

those involving frontal and temporal cortex, whereas psychosis-related disruptions in 

structural connectivity (measured by Diffusion Tensor Imaging-DTI(21)) include brain-wide 

reductions in fractional anisotropy (FA), an indirect measure of white matter integrity(22). 

In fact, the two markers themselves are inter-related in both psychotic and healthy 

individuals(23, 24).

Although findings suggest that connectivity measures have great potential as diagnostic 

biomarkers for psychosis, conclusions related to their clinical utility remains unclear. 

Currently, psychotic dysconnectivity is primarily reported at the group level, however a 

successful biomarker should discriminate cases from controls at the individual level(25–27). 

Machine learning may bridge this disconnect(28, 29) by providing objective measures of 
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individual-level classification while integrating large amounts of data that are characteristic 

of MRI connectivity analyses. While machine learning methods have been used to validate 

neuroimaging biomarkers in psychiatry, a recent review by Scheinost and colleagues(30) 

highlighted non-trivial shortcomings in their current implementation, including lack of 

consideration for covariate effects, failure to keep training and testing data independent, 

and lack of reporting metrics beyond accuracy to evaluate classification performance. 

Concerns about sample size and the absence of out-of-sample validation were also 

reported. Indeed, connectivity studies using machine learning seldom exceed 100 people 

per group, with larger sample sizes often failing to improve classification performance(28, 

29, 31). Furthermore, reported classification accuracies are variable, reaching as high as 

100%(28, 32, 33) without independent datasets for validation(34). DTI measures are also 

underrepresented in current studies(33, 35, 36), making their diagnostic utility unclear.

Our goal is to evaluate functional (rsfMRI) and structural (DTI) connectivity measures, 

separately and combined, as diagnostic biomarkers for psychosis(30) while systematically 

addressing the aforementioned concerns regarding machine learning analyses. To achieve 

this, we use four independent datasets with neuroimaging data. Initially, we perform 

group-level univariate analyses to confirm the presence of psychotic dysconnectivity 

in our samples. Next, we leverage our access to multiple independent datasets by 

implementing a multi-level data analysis strategy to evaluate individual-level classification 

performance. First, we perform within sample classification to determine whether functional 

and structural connectivity measures could consistently classify individuals regardless of 

variations in sample characteristics or data collection procedures(37). Second, we evaluate 

generalizability by building models in one dataset and testing in the remaining three, 

satisfying the requirement by the Psychiatric Neuroimaging Working Group of the American 

Psychiatric Association (APA) that biomarkers be validated in at least two independent 

samples(38). Third, we address key factors that could affect classification performance 

including demographic covariates, algorithm choice, and sample size. Finally, we share 

our feature sets and models so that others can implement their preferred machine learning 

technique or predict diagnostic status in their own samples.

Materials and Methods

Subjects

Participants were individuals with and without psychosis with rsfMRI and/or DTI data from 

4 independent samples (Table 1): one from the Icahn School of Medicine at Mount Sinai 

(ISMMS), two from the Olin Center for Neuropsychiatric Research (Olin and a subset of 

BSNIP-2), and one collected at the Olin Center and the University of Maryland School of 

Medicine (BSNIP-1). Recruitment and scanning procedures for each sample are described 

in the Supplemental Materials and Supplementary Table 1. Most psychosis cases were 

mid-course and stably medicated.

Feature Generation

rsfMRI.—MRIQC v0.15.0(39) was used to generate visual reports and quality control 

(QC) metrics for rsfMRI data in each sample (Supplementary Table 2 and Supplemental 
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Materials). Pre-processing was performed with fMRIPrep(40), version 1.3.2. Squares and 

derivatives of six motion parameters, frame-wise displacement, DVARS, and anatomical 

CompCor components(41) were regressed from the data. Residual mean time series were 

extracted from cortical and sub-cortical regions (N=250) using the Brainnetome atlas(42). 

Features for machine learning were unique values from the 250×250 matrix of correlation 

coefficients (converted to z-scores (z=.5×ln(1+r)/(1−r))) between the time courses for each 

pair of nodes for each subject. A second set of features was generated by residualizing for 

age, sex, and site (BSNIP-1 only). Further detail is noted in Supplemental Materials.

DTI.—Diffusion-weighted images were processed using FSL(43), version 5.0.10. 

Preprocessing included brain extraction(44), motion and eddy current correction(45), and 

tensor fitting, resulting in individual FA maps. A summary of QC metrics for each 

sample is listed in Supplementary Table 2. Preprocessed FA maps passing QC procedures 

(see Supplemental Methods) were fed into the Tract-Based Spatial Statistics (TBSS) 

pipeline(46); for each participant, average FA was calculated for 20 tracts from the John’s 

Hopkins University white matter tractography atlas(47). A second set of features was 

generated by residualizing for age, sex, and site (BSNIP-1 only). Further detail is noted 

in Supplemental Materials.

Group-level Univariate Analysis

We tested between-group differences in rsfMRI and DTI features for each sample using 

standard univariate null hypothesis testing methods. For rsfMRI, we performed two-sample 

t-tests comparing connectivity between each pair of nodes using the FSL Nets Analysis 

package, version 0.6.3 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). Significance testing 

was performed using permutation tests via nets_glm (48). For DTI, we performed two-

sample t-tests comparing FA values for each tract, considering FDR corrected p-values(49) < 

0.05 as significant.

For each modality, we also quantified the aggregate effect across samples using random-

effects inverse-variance weighted meta-analyses in R (metafor package, version 2.1–0 

http://www.metafor-project.org/). For rsfMRI, we included connections showing significant 

differences between psychosis cases and healthy participants in one or more samples. To 

quantify how similar findings were in each sample, we performed Pearson correlations 

between case-control effect sizes in each pair of studies for both functional and structural 

connectivity measures.

Supervised Machine Learning

We used two machine learning algorithms, linear support vector machines (SVMs) and 

L2 logistic regression (ridge regression). For each algorithm, parameter optimization 

was performed using a grid search and nested cross validation (with 5 folds for both 

the outer and inner loops) over a range of values chosen to span several orders 

of magnitude, large enough to identify the optimal parameter space. SVMs classify 

individuals by projecting features into a multi-dimensional feature space and constructing 

a hyperplane that maximizes distances between data points of opposing groups by 

minimizing a cost function(50). Nested cross validation was performed with cost values 
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[1,2,5,10,25,50,100,200,500,750,1000,5000]. Results were reported for models with a 

cost of 1 given that classification accuracies were not altered when optimizing the cost 

parameter. Ridge regression is a regularized form of logistic regression that mitigates multi-

collinearity(51) by using a regularization parameter (λ). Optimization of λ was performed 

over 80 linearly spaced values between 1 and 5000. Regression model results are reported 

for lambda values that yielded the minimum mean cross-validated RMSE over training 

folds. In practice we found a high value of lambda was needed to sufficiently penalize the 

model. Training and testing datasets for all analyses were identical for each algorithm and 

covariate condition to ensure comparability.

For each covariate and algorithm condition, we considered features from each modality 

in separate and combined models and implemented three levels of analysis (outlined in 

Supplementary Figure 1). First, we evaluated within sample classification performance for 

each dataset using k-fold (k=5) cross-validation implemented with the “createDataPartition” 

function from the Caret package in R (52). Data was partitioned into training and testing 

folds using random selection with p = .8 (i.e. 80% of the data was used for training, 20% 

for testing), while preserving the proportion of psychosis cases to controls in the overall 

sample within each fold. Next, we tested model generalizability by systematically using each 

sample as a training dataset and testing classification performance on the remaining samples 

separately. Finally, we evaluated the effect of sample size on classification performance by 

combining all samples into one dataset and performing k-fold (k=5) cross-validation using 

the same procedures as within-sample classification. Note that in the combined sample case, 

we did not use sample as a confounding covariate due to concern that this could induce 

spurious associations (via condition on a collider (53)) since site is not randomly assigned 

and could be associated with psychological or biological factors (e.g. common effects of 

socioeconomic status). Classification performance for all models was evaluated using the 

area under the receiver operating curve (AUC of the ROC), a comprehensive measure of 

algorithm discriminability that is threshold-independent and results in a singular measure 

by which to compare classification success. We also report accuracy, sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value (NPV) from the midpoint of 

the ROC curve to compare our results to studies without ROC-based measures.

Results

Group-level Psychotic Dysconnectivity

Psychosis cases showed wide-spread reductions in resting state functional connectivity 

compared to heathy participants, but results were variable across samples (Figure 1 and 

Supplementary Figure 2 and 3). The ISMMS sample showed few significant case-control 

differences, with most disrupted connections linking the supplementary motor (SM) and 

default mode networks (DMN). In contrast, case-control differences in the Olin sample were 

dominated by connections within and between cognitive control networks [DMN, ventral 

attention network (VAN), and salience (SAL)] and between cognitive control networks and 

the auditory and SM networks. Case-control differences in BSNIP-1 were between visual 

networks and both lower-order sensory and higher-order association networks. BSNIP-1 

psychosis cases also showed stronger connectivity than healthy participants in limbic and 
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DMN networks, although only when residualizing features for covariates such as age, 

sex, and site. Lastly, case-control differences in BSNIP-2 were dominated by reductions 

in connectivity between sensory networks (visual and SM/auditory and SM) and between 

the DMN and the SAL and VAN networks. The aggregate effect across datasets included 

most connections that were weaker in psychosis in all four samples. In-scanner motion was 

significantly higher in cases than in healthy participants (ISMMS: t(106)= −2.31, p= 0.02; 

Olin: t(205.77)= −1.98, p= 0.05; BSNIP-1: t(250.96)= −4.43, p= 1.40 × 10−5; BSNIP-2: 

t(113.02)= −2.52, p= 0.01), although motion effects were regressed from time series before 

group-level analyses.

Psychosis cases also showed reductions in structural connectivity, with lower FA values than 

healthy participants in most white matter tracts (Figures 1 and Supplementary Figure 2). 

Effect sizes varied across samples (Supplementary Figure 3), although the aggregate effect 

included most white matter tracts. There were no significant group differences in in-scanner 

motion (average root mean square difference from the first volume)(ISMMS: t(177)= −0.51, 

p= 0.61; Olin: t(274)= −1.04, p= 0.30; BSNIP-2: t(103)= −0.29, p= 0.77); as we obtained 

preprocessed BSNIP-1 data that matched our standardized pipeline, the sample did not 

include the necessary information to obtain motion estimates).

Inclusion of demographic covariates (age, sex, and site (where appropriate)) did not 

significantly alter the pattern of group-wise results for either modality, except for BSNIP-1, 

where there was a large increase in the number of significantly weaker functional 

connections in the psychosis group, likely given the inclusion of site as a covariate.

Individual-level Classification Within-Sample Classification

SVM.—Classification performance was modality- and sample-specific (Figure 2A and 

Supplementary Table 3). rsfMRI model performance varied widely across samples (AUC 

range 0.26–0.73). DTI models were more consistent across samples but performed poorly 

(AUC values mostly < 0.50). Combining modalities did not improve either performance 

or variability. Model feature weights were also inconsistent across samples (Supplementary 

Figure 4A). For example, connections between the SM and limbic network, which had the 

largest positive weights in the rsfMRI model constructed in the ISMMS sample, were close 

to zero for models built in the Olin and BSNIP-2 samples, and negative in the BSNIP-1 

sample. Within samples, fold-wise variability was also apparent with non-trivial standard 

deviations in AUC values and feature weights. Adjusting for covariates did not greatly affect 

classification performance (Supplementary Figure 5A and Supplementary Table 3) or feature 

weightings (Supplementary Figure 6A).

Ridge Regression.—Classification performance was similar to, or numerically better 

than, SVM performance (Figure 2B and Supplementary Table 3) (AUC values generally 

above 0.50). However, variability in performance across samples for each modality 

persisted. Inconsistency in feature weightings across datasets (Supplementary Figure 4B) 

and fold-wise variability in AUC also persisted. Adjusting for covariates did not globally 

affect results (Supplementary Figure 5B,6B, and Supplementary Table 3).
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Between-Sample Classification

SVM.—Figure 3A shows classification performance for each sample as a training set (rows) 

and the remaining samples as independent test sets (colored bars/lines within panels) (also 

see Supplementary Table 4a). Performance was either inconsistent across testing datasets or 

poor regardless of the modality or dataset used for training. For example, rsfMRI models 

trained in BSNIP-2 had the most consistent performance across testing sets, although no 

AUC value exceeded 0.65. Classification success was also heavily dependent on which 

dataset was used to train the model. For example, BSNIP-1 AUCs for rsfMRI models 

were 0.41 when the model was trained in the ISMMS sample, 0.50 when trained in the 

Olin sample, and 0.65 when trained in the BSNIP-2 sample. Again, combining modalities 

did not result in superior model performance and results were unaffected by covariates 

(Supplementary Figure 7A and Supplementary Table 4a).

Ridge Regression.—Classification performance was similar to, or numerically better 

than that observed for SVM (Figure 3B and Supplementary Table 4b) with AUC values 

improving most for models using both feature modalities (compare right most panels in 

Figures 3B and 3A). While variability across datasets within a test set and variability within 

a test set across training sets was reduced, performance was still suboptimal with most 

AUC values below 0.70. Results were unaffected by adjusting for covariates (Supplementary 

Figure 7B Supplementary Table 4b).

Across-sample Classification

SVM.—Pooling data across samples resulted in ~500 psychosis cases and ~300 healthy 

participants (rsfMRI: HC=362, psychosis = 525; DTI: HCs = 353, Psychosis=506; 

rsfMRI+DTI: HC=287, Psychosis=413; see also Supplemental Table 5). Despite increases in 

sample size, there was no numerical advantage over models built within a dataset (Figure 

4,Supplementary Figure 8, and Supplementary Table 6). Using features residualized for 

covariates reduced rsfMRI model performance (AUC=0.73 to AUC=0.53) and improved 

combined modality model performance (AUC=0.29 to AUC=0.50). DTI model performance 

was not dependent on adjusting for covariates.

Ridge Regression.—Models using ridge regression performed equally across modalities 

with AUC values below 0.70 and were unaffected by covariate condition (gray bars in Figure 

4, Supplementary Figure 8, and Supplementary Table 6).

Discussion

Successful biomarkers are reproducible, reliably identify case-control status at the individual 

level across samples(37), and generalize to independent samples(38). The MRI-based 

functional and structural connectivity measures examined here did not meet these standards, 

indicating that these measures are unsuitable for individual subject-level classification 

using SVM and ridge regression. As we describe below, it is possible that advances 

in acquisition or different classification algorithms (e.g. nonlinear) could improve the 

utility of connectivity measures as biomarkers for psychosis. Furthermore, given the 

myriad of machine learning approaches currently available and the rapid pace of 
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algorithm development, we provide the feature sets utilized in these analyses to the 

research community (https://doi.org/10.5281/zenodo.4374644) in order to facilitate the 

direct comparison of classification methodologies. Our hope is that these data can facilitate 

new analytic approaches which may lead to more optimistic outcomes for connectivity-

based psychosis biomarkers.

Despite confirming that functional and structural dysconnectivity are features of psychosis 

via group-level univariate analyses, we found substantial heterogeneity across samples 

(Figure 1; Supplementary Figure 2 and 3). Across-sample heterogeneity has major 

implications for biological models of psychosis based on neuroimaging data. For example, 

interpretation of group differences in functional connectivity would likely result in different 

conclusions about the nature of psychosis, from a disorder involving primarily sensory 

networks to one involving various higher order association networks. Yet, each of our 

findings is not unique and has been reported in other independent studies(6, 54–57) . Group 

differences in structural connectivity were more stable, although effect sizes were sample-

dependent (Figure 1; Supplementary Figure 2 and 3). Effect size variability, however, was 

consistent with individual studies included in the recent ENIGMA meta-analysis(22). For 

both functional and structural connectivity, within-sample classification provided further 

evidence of sample heterogeneity as there was little overlap in the features utilized when 

building models in one sample vs. another. Variability across studies in either context 

could arise from multiple sources including methodological and/or biological variation. 

We attempted to minimize both by implementing nearly identical analytic pipelines and 

accounting for confounding factors such as age and sex. Additional factors, such as scanning 

protocols or other subject-specific factors (e.g. type of individuals included in the patient or 

control group) may have also contributed.

Results of within sample classification provided valuable information regarding the 

consistency of predicting an individual’s case-control status, even when capitalizing on 

sample-specific features. While we replicated within sample classification performance in 

other studies with AUC values as high as 0.80(58), this performance did not generalize 

across datasets with AUC values in some samples at or below 0.50. Classification 

performance was likewise inconsistent when building models within a dataset using 5-fold 

cross validation. For each dataset, AUC values over the five folds varied as little as 0.06 to 

as much as 0.38 (Supplementary Figure 9 and Supplementary Table 3), suggesting model 

performance was highly dependent on the exact participants included in the training and 

testing datasets.

Between sample classification performance is arguably the most important estimator of 

model validation and generalizability and is critical for future clinical applications(38). 

Our results did not wholly support the generalizability of the examined features. Some 

between sample models had modest performance (AUC approaching 0.80), but this was 

not observed across testing datasets for a given training dataset. Models using ridge 

regression and rsfMRI features were more consistent both across testing sets for a given 

training set and for a given testing set across training sets, although most AUC values 

were below .7. While these AUC values were above chance and their consistency is 

promising, this performance unfortunately falls short of requirements for practically useful 
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and clinically relevant biomarkers. Furthermore, our between -sample classification results 

do not appear to be unique as we replicated two prior studies which reported similarly 

suboptimal classification performance when attempting to validate rsfMRI-derived models 

in independent datasets(59, 60).

Several methodological issues could have influenced the present findings, many of which we 

addressed directly. One was the effect of sample size. Both real and simulated data show 

that smaller sample sizes result in highly variable accuracy estimates with substantial errors 

(~10%)(61), which some suggest can be remedied by increasing the number of observations 

despite likely increases in heterogeneity(62). In our study, models utilizing all available 

participants (approximately 800 individuals) performed similar to, or slightly worse than, 

models built within datasets (Figure 4), although fold-wise stability was numerically better 

than that for within sample classification. Given the high level of inter-individual variation 

in our samples, it may be necessary to include vary large samples akin to those used in 

genetic studies for individual-level classification to be successful. This is particularly true 

if psychotic disorders are so heterogeneous that only small sub-samples share the same 

features.

Including a singular diagnosis like schizophrenia, as is common in most studies(63), may 

qualify as such a sub-sample. The present study was designed under the premise that a 

cross-diagnostic sample would improve the likelihood of discovering a marker for psychosis 

itself, given robust evidence that 1) traditional diagnoses do not reflect biologically distinct 

categories(64, 65) and 2) core psychotic features (cognitive-behavioral disorganization, 

hallucinations, delusions, etc.) may reflect a more homogeneous biological substrate than 

clinical diagnosis per se(65). This premise appears to be supported by a post-hoc analysis 

where we performed within-sample classification with our most promising metrics (ridge-

regression and rsfMRI features) in our largest cohort (BSNIP-1) with only schizophrenia 

participants in the patient group. While performance was slightly better, it was still below .7 

and fold-wise variability was increased (see supplemental Figure 10). We do not, however, 

negate the possibility that connectivity measures may be more suitable for predicting 

different criteria, be it continuous metrics (e.g. symptom severity, functional outcome, 

etc.) or other types of classification structures like the biotypes developed by the BSNIP 

consortium(65, 66). Changes in predicted targets may also ease projected sample size 

requirements mentioned previously. While we were unable to test these kinds of hypotheses 

given the variability and/or lack of data available for each sample, this should be a focus of 

future work.

An additional consideration was the inclusion of covariates. Adjusting for covariates did 

not largely alter results. The exception was for models built across samples using rsfMRI 

or combined features (a decrease and increase in AUC values respectively), although the 

difference was minimal and only apparent when using the SVM algorithm (Figure 4; 

Supplementary Figure 8). Algorithm choice appeared to influence performance in other 

classification contexts in that ridge regression performance metrics were often more stable 

across datasets and numerically higher than those achieved using SVM. However, using 

ridge regression did not resolve issues of variability or suboptimal performance to a 

sufficient degree to warrant that connectivity metrics are valid biomarkers for psychosis. 
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We chose the current algorithms because they have shown promise in previous studies 

using machine learning and MRI features in schizophrenia and psychosis(67–69). We do not 

negate that more complex algorithms (e.g. non-linear models) or machine learning methods, 

like deep learning, may better classify individuals with psychosis. However, Schultz and 

colleagues(70) showed that simple linear models perform on par with complex techniques 

when using neuroimaging data for individual-level classification. Furthermore, increasingly 

complex models are more likely to overfit a singular dataset and subsequently less likely to 

translate to independent data.

Lastly, combining modalities did not consistently improve classification performance, 

regardless of the training/testing strategy, and despite evidence of different imaging data 

capturing unique and additive aspects of psychopathology(71, 72). This result was similar 

to those of Guo et al. (2018) which showed similar classification performance between 

rsfMRI features alone and a fusion of features from multiple modalities (73). Alternatively, 

it could be that different features altogether would perform better. We chose the features 

here because they were the most commonly used measures in the literature and there was 

consistent evidence for case-control differentiation at the group level with adequate sample 

sizes. For example, tractography measures may be better suited for classification using DTI 

data, however, we though it important to vet one of the most robustly demonstrated potential 

biomarkers provided via the ENIGMA meta-analysis(22). Given that those potential 

biomarkers were largely unsuccessful, it begs the question of what large differences at 

the group level tells us about individual-level prediction. Additionally for resting state, we 

used the Brainnetome atlas given reports that it may be superior to measures constructed 

using anatomical parcellations(74), whole-brain, or graph-based methods(58). As there were 

already a large number of model comparisons, we did not address the effect of feature 

selection. We do, however, recognize its importance and suggest that it and alternative 

feature types be the focus of future work.

In summary, leveraging data from over 800 individuals allowed us to confirm that measures 

of aberrant functional and structural connectivity are indeed present in psychosis at the 

group level(9, 15), but were not suitable for individual-level classification, at least with the 

algorithms and measures used here. Variability observed at both levels of analysis suggest 

that the field must focus on identifying measures that are more reproducible across sites 

and datasets. While it is possible that successful connectivity biomarkers may result from 

future innovation in technology, analytic pipelines, or perhaps other techniques that were not 

utilized in our analysis, neuroimaging researchers and clinicians awaiting useful biomarkers 

of the type they could employ to make consequential, person-level diagnoses should remain 

cautious.
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Figure 1. Group-wise Differences in Connectivity between Psychosis Cases and Healthy 
Participants: Non-Residualized Features.
Reported N’s are the number of healthy participants and number of psychosis cases 

respectively. For rsfMRI (top), red lines show significant reductions in functional 

connectivity between nodes in psychosis cases compared to healthy participants for each 

sample (after permutation testing) and for the metanalysis across all samples (after FDR 

correction). To improve interpretability, Brainnentome nodes were assigned to one of the 

17 networks defined in Yeo et al.(75) (https://github.com/ThomasYeoLab/CBIG/tree/master/

stable_projects/brain_parcellation/Schaefer2018_LocalGlobal). See supplemental Table 7 

for node order in circular plots. We further subdivided the “NONE” category into 

subcortical regions (AMY, HIPP, BG, and THALAMUS) for clarity. For DTI (bottom), 

bars show the Cohen’s d effect size for t-tests performed for the 20 white matter 

tracts in each sample and the metanalysis (error bars are confidence intervals). Negative 

effect sizes (pink/red) indicate psychosis cases FA < healthy participant FA. Darker 

shades indicate significant differences (FDR-corrected). Positive effect sizes (blue) 

indicate psychosis cases FA > healthy participant FA. rsfMRI= resting state MRI, DTI= 

Diffusion Tensor Imaging, SM=Supplementary Motor, DMN=Default Mode Network, 

DAN=Dorsal Attention Network, VAN=Ventral Attention Network, SAL=Salience Network, 

AMY=Amygdala, HIPP=Hippocampus, BG=Basal Ganglia, ATR=Anterior Thalamic 

Radiation, CgC=Cingulum Cortex, CgH=Cingulum Hippocampus, CST=Corticospinal 

Tract, Fmaj=Forceps major, Fmin=Forceps minor, IFOF=Inferior Fronto-Occipital 

Fasciculus, ILF=Inferior Longitudinal Fasciculus, SLF=Superior Longitudinal Fasciculus, 

tSLF=Superior Longitudinal Fasciculus Temporal Part, UF=Uncinate Fasciculus.
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Figure 2. Within Sample Classification Results: Non-Residualized Features.
A. Performance profiles for the SVM algorithm and each feature modality. Colors 

correspond to samples. Bars show AUC (overall algorithm performance), while lines show 

point estimates from the midpoint of the ROC curve. Values on the y-axis are average 

values over 5 folds and error bars represent the standard deviation over folds. Values 

are for models using non-residualized features. Results for models using residualized 

features are shown in Supplementary Figure 5A and are largely similar. B. Same as A. 

but for ridge regression. Results for models using residualized features are shown in 

Supplementary Figure 5B. rsfMRI=resting state functional MRI, DTI=Diffusion Tensor 

Imaging, PPV=Positive Predictive Value, NPV=Negative Predictive Value, AUC=Area 

Under the Curve.
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Figure 3. Between Sample Classification Results: Non-Residualized Features.
A. SVM performance profiles for between-sample sample classification for each feature 

modality (columns) when each sample is used as the training sample (rows). Each bar 

and line within a panel represents an independent testing sample for each training sample 

(n=3). Values are for models using non-residualized features; results for models using 

residualized features are shown in Supplementary Figure 7A and are largely similar B. 
Same as A but for the ridge regression algorithm. Again, models using residualized features 

are similar and shown in Supplementary Figure 7B. rsfMRI=resting state functional MRI, 

DTI=Diffusion Tensor Imaging, PPV=Positive Predictive Value, NPV=Negative Predictive 

Value, AUC=Area Under the Curve.
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Figure 4. Across Sample Classification.
Bars are average AUC values over five folds with error bars representing the standard 

deviation over folds. Gray bars show across sample classification for each machine learning 

algorithm using residualized and non-residualized features compared to within sample 

classification for each dataset and each modality (colored bars). rsfMRI=resting state 

functional MRI, DTI=Diffusion Tensor Imaging, AUC=Area Under the Curve.
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