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Learning mutational signatures and their
multidimensional genomic properties with
TensorSignatures
Harald Vöhringer1, Arne Van Hoeck 2, Edwin Cuppen2,3 & Moritz Gerstung 1,4✉

We present TensorSignatures, an algorithm to learn mutational signatures jointly across

different variant categories and their genomic localisation and properties. The analysis of

2778 primary and 3824 metastatic cancer genomes of the PCAWG consortium and the HMF

cohort shows that all signatures operate dynamically in response to genomic states. The

analysis pins differential spectra of UV mutagenesis found in active and inactive chromatin to

global genome nucleotide excision repair. TensorSignatures accurately characterises

transcription-associated mutagenesis in 7 different cancer types. The algorithm also extracts

distinct signatures of replication- and double strand break repair-driven mutagenesis by

APOBEC3A and 3B with differential numbers and length of mutation clusters. Finally, Ten-

sorSignatures reproduces a signature of somatic hypermutation generating highly clustered

variants at transcription start sites of active genes in lymphoid leukaemia, distinct from a

general and less clustered signature of Polη-driven translesion synthesis found in a broad

range of cancer types. In summary, TensorSignatures elucidates complex mutational foot-

prints by characterising their underlying processes with respect to a multitude of genomic

variables.
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Cancer arises through the accumulation of mutations
caused by multiple processes that leave behind distinct
patterns of mutations on the DNA. A number of studies

have analysed cancer genomes to extract such mutational sig-
natures using computational pattern recognition algorithms such
as non-negative matrix factorisation (NMF) over catalogues of
single nucleotide variants (SNVs) and other mutation types1–8. So
far, mutational signature analysis has provided more than 50
different single base substitution patterns, indicative of a range of
endogenous mutational processes, as well as genetically acquired
hypermutation and exogenous mutagen exposures9.

Mutational signature analysis via computational pattern
recognition draws its strength from detecting recurrent patterns
of mutations across catalogues of cancer genomes. As many
mutational processes also generate characteristic multi nucleotide
variants (MNVs)10,11, insertion and deletions (indels)12–14, and
structural variants (SVs)6,15–17 it appears valuable to jointly
deconvolve broader mutational catalogues to further understand
the multifaceted nature of mutagenesis.

Moreover, it has also been reported that mutagenesis depends
on a range of additional genomic properties, such as the tran-
scriptional orientation and the direction of replication18–20, and
sometimes manifests as local hypermutation (kataegis)1. Addi-
tionally, epigenetic and local genomic properties can also influ-
ence mutation rates and spectra21–23. In fact, these phenomena
may help to more precisely characterise the underlying muta-
tional processes, but the large number of possible combinations
makes the resulting multidimensional data structure unamenable
to conventional matrix factorisation methods.

We present TensorSignatures, a multidimensional tensor fac-
torisation framework incorporating the aforementioned features for
a more comprehensive extraction of mutational signatures. We
apply TensorSignatures to 2778 whole genomes from the Pan
Cancer Analysis of Whole Genomes (PCAWG) consortium24, and
validate our findings in an additional 3824 metastatic cancer whole
genomes from the Hartwig Medical Foundation (HMF)25. The
resulting tensor signatures add considerable detail to known
mutational signatures in terms of their genomic determinants and
broader mutational context. Strikingly, some signatures are being
further subdivided based on genomic properties, illustrating the
differential manifestation of the same mutational process in dif-
ferent parts of the genome. This includes UV-mutagenesis and
tobacco associated mutations, manifesting at differential rates in
active and quiescent chromatin, and enables the algorithm to detect
the prevalence of transcription-associated mutagenesis18,26 in more
cancers than currently appreciated. The incorporation of additional
variant types enables TensorSignatures to delineate two APOBEC
signatures manifesting as replication associated mutations, or highly
clustered SV-associated base substitutions indicative of APOBEC3A
and 3B1,18,19,27–30. Finally, TensorSignatures confirms localised
somatic hypermutation at transcription start sites in lymphoid
neoplasms7, with a distinct spectrum from a mostly unclustered,
genome-wide signature of translesion synthesis found in a range of
other cancer types28. Taken together, TensorSignatures sheds light
on the manifold influences that underlie mutagenesis and helps to
pinpoint mutagenic influences by jointly learning mutation patterns
and their genomic determinants. TensorSignatures is implemented
using the powerful TensorFlow31 backend. The software is available
as a python package on the PyPI repository and results presented in
this study can also be explored on a webserver - see section Code
availability at the end of the article.

Results
Multidimensional genomic features of mutagenesis. It is com-
mon practise in mutational signature analysis to classify single

base substitutions by expressing the mutated base pair in terms of
its pyrimidine equivalent (C > A, C > G, C > T, T > A, T > C and
T > G) plus the flanking 5′ and 3′ bases. We additionally cate-
gorised other mutation types into 91 MNV classes, 62 indel
classes, and used the classification of SVs provided by the
PCAWG Structural Variants Working Group17. In addition to
the immediate base context, a number of genomics features have
been described to influence mutation rates. Here, we use 5 dif-
ferent genomic annotations—transcription and replication strand
orientation, nucleosomal occupancy, epigenetic states as well as
clustered hypermutation—and generate 96-dimensional base
substitution spectra for each possible combination of these
genomic states separately and for each sample. Partitioning var-
iants creates a seven-dimensional count tensor (a multi-
dimensional array), owing to the multitude of possible
combinations of different genomic features (Fig. 1a).

Both transcription and replication introduce a strand specifi-
city, which provides a distinction of pyrimidine and purine base
context, which is considered to be indistinguishable in the
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Fig. 1 A multidimensional tensor factorisation framework to extract
mutational signatures. a Splitting variants by transcriptional and
replicational strand, and genomic states creates an array of count
matrices, a multidimensional tensor, in which each matrix harbours
the mutation counts for each possible combination of genomic states.
b TensorSignatures factorises a mutation count tensor (SNVs) into an
exposure matrix and signature tensor. Simultaneously, other mutation
types (MNVs, indels, SVs), represented as a conventional count matrix are
factorised using the same exposure matrix. c The signature tensor has itself
a lower dimensional structure, defined by the product of strand-specific
signatures, and coefficients reflecting the activity of the mutational process
in a given genomic state combination.
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conventional 96-dimensional representation of single base
substitution spectra. In transcribed genes, mutation rates may
differ between template and coding strand, because RNA
polymerase II recruits transcription-coupled nucleotide excision
repair (TC-NER) upon lesion recognition on transcribed DNA
only. Thus, TC-NER usually leads to lower mutation rates on the
template strand, but also the opposite effect—transcription
associated mutagenesis (TAM)—occurs18,26. Similar effects are
observed between leading and lagging strand replication18,20,
possibly because the leading strand is continuously synthesised by
DNA polymerase ϵ, while lagging strand DNA synthesis is
conducted by DNA polymerase δ, and is discontinuous due to
formation of Okazaki fragments. Since not all mutations can be
oriented either due to absent or bidirectional transcription, or
because of unknown preferred replication direction far from a
replication origin, this creates a total of 3 × 3= (template, coding,
unknown) × (leading, lagging, unknown) combinations of orien-
tation states in the count tensor (Fig. 1a).

Numerous studies found a strong influence of chromatin
features on regional mutation rates. Strikingly, these effects range
from the 10 bp periodicity on nucleosomes23 to the scale of kilo-
to megabases caused by the epigenetic state of the genome21. To
understand how mutational processes manifest on histone-bound
DNA, we computed the number of variants on minor groove
DNA facing away from and towards histone proteins, and linker
DNA between two consecutive nucleosomes. Additionally, we
utilised ChromHMM annotations from 127 cell-lines32 to
annotate genomic regions with consensus epigenetic states, which
we used to assign SNVs to epigenetic contexts. Together this adds
two dimensions of size 4 and 16 to the count tensor (Fig. 1a).

Finally, there are mutational processes capable of introducing
large numbers of clustered mutations within confined genomic
regions. This phenomenon is termed kataegis1 and is thought to
be caused by multiple mutational processes28. To detect such
mutations, we developed a hidden markov model (HMM) to
assign the states clustered and unclustered to each mutation based
on the inter-mutation distance between consecutive mutations.
Separating clustered from unclustered mutations adds the final
dimension in the mutation count tensor, which has a total of 6
dimensions with 2 × 576= 1152 combinations of states (Fig. 1a).

TensorSignatures learns signatures based on mutation spectra
and genomic properties. At its core, mutational signature ana-
lysis amounts to finding a finite set of prototypical mutation
patterns and expressing each sample as a sum of these signatures
with different weights reflecting the variable exposures in each
sample. Mathematically, this process can be modelled by non-
negative matrix factorisation into lower dimensional exposure
and signature matrices. TensorSignatures generalises this frame-
work by expressing the (expected value of the) count tensor as a
product of an exposure matrix and a signature tensor (Fig. 1b;
Methods). Counts are modelled by an overdispersed negative
binomial distribution, which is a robust statistical model that also
enables to choose the number of signatures with established
statistical model selection criteria, such as the Bayesian Infor-
mation Criterion (BIC) as evidenced by extensive simulations
(Supplementary Fig. 1).

The key innovation of TensorSignatures is that the signature
tensor itself has a lower dimensional structure, reflecting the
effects of different genomic features (Fig. 1c). This enables
the model to simultaneously learn mutational patterns and their
genomic properties by drawing information from the whole
dataset, even when the number of combinations of genomic states
becomes high (1152). In this parametrisation each signature is
represented as a set of 2 × 2 strand-specific mutation spectra and

a set of defined genomic activity coefficients, measuring the
relative activity of every signature in each state of a given genomic
feature. Simulation studies show that this joint inference of
mutation spectra and genomic features provides a more accurate
inference in comparison to conventional NMF relying on a 96-
trinucleotide channel decomposition only and subsequent
assessment of signature properties, or post-hoc posterior prob-
ability calculations (Supplementary Figs. 2 and 3, Methods).

Furthermore, TensorSignatures incorporates the effect of other
variants (MNVs, indels, SVs), which remain unoriented and are
expressed as a conventional count matrix, by sharing the same
exposure matrix as SNVs. This enables to jointly learn mutational
processes across different variant classes more robustly in
comparison to approaches which rely on (post-hoc) matching
mutational spectra (Supplementary Fig. 4, Methods).

Most mutational signatures are composed of diverse mutation
types and vary across the genome. To assess the capabilities of
TensorSignatures, we analysed the somatic mutational catalogue
of the PCAWG cohort comprising 2778 curated whole-genomes
from 37 different cancer types containing a total of 48,329,388
SNVs, 384,892 MNVs, 2,813,127 deletions, 1,157,263 insertions
and 157,371 SVs. Applying TensorSignatures to the PCAWG
dataset and using the conservative BIC (Supplementary Fig. 5)
produced 20 tensor signatures (TS) encompassing mutational
spectra for SNVs and other mutation types (Fig. 2a), and asso-
ciated genomic properties (Fig. 2b). Reassuringly, we extracted a
number of signatures with SNV spectra highly similar to the well
curated catalogue of COSMIC signatures9,33. 14/20 signatures
were similar to those detected by a de novo analysis of
SigProfiler34, which detected 22 signatures, two of which con-
sidered to be sequencing artefacts (Supplementary Fig. 6).

Interestingly, our analysis revealed a series of signatures that
have similar SNV spectra in common, but differ with regard to
their genomic properties or mutational composition. These
signature splits indicate how mutational processes change across
the genome and will be discussed in further detail below. In the
following, we refer to signatures via their predominant mutation
pattern and associated genomic properties. Of the 20 signatures, 4
were observed in nearly every cancer type (Fig. 2c): TS01,
characterised by C > T mutations in a CpG context, most likely
due to spontaneous deamination of 5meC, similar to COSMIC
SBS1, TS02 of unknown aetiology, and two signatures with
relatively uniform base substitution spectra, TS03 (unknown/
quiet chromatin), and TS04 (unknown/active chromatin), which
loosely correspond to SBS40 and SBS5.

While the most prevalent mutations are single base substitutions,
there are 16/20 signatures with measurable contributions from other
mutation types (>1%; Fig. 2b). The most notable cases are TS15,
which is similar to a compound of COSMIC signatures SBS6/15/26
+ ID1/2 and characterised by C > T transversions in a GCN context
and frequent mononucleotide repeat indels indicative of mismatch
repair deficiency (MMRD). Similarly, TS16, likely to reflect
concurrent MMRD and POLE exonuclease deficiency, exhibits large
probabilities for deletions and a base substitution pattern similar to
SBS14. Large proportions of SVs (~25%) were found in TS11, which
reflects SV-associated APOBEC mutagenesis caused by double
strand break repair with a base substitution spectrum similar to
SBS2/13. Furthermore, TS19 apparently reflects a pattern of
homologous recombination deficiency (HRD), characterised by a
relatively uniform base substitution pattern similar to SBS3, but a
high frequency of SVs, in particular tandem duplications (Supple-
mentary Note 1 and Fig. 93).

9/20 signatures displayed a measurable propensity to generate
clustered mutations (>0.1%; Fig. 2b). The proportions of clustered
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mutations produced by each mutational process were highest in
signatures associated with APOBEC and activation-induced
deaminase (AID) activity: Up to 79% and 0.6% of SNVs attributed
to TS11 and TS12, respectively, were clustered, with otherwise
indistinguishable base substitution spectra. A similar phenomenon
was observed in two signatures reflecting Polη driven somatic

hypermutation (SHM). While both TS13 and TS14 have only
mildly diverging base substitution spectra, with TS14 being similar
to SBS9, they dramatically differ in the rates at which they generate
clustered mutations, which are 59% and 1%, respectively (Fig. 2b).

5/20 signatures exhibit substantial transcriptional strand bias
(TSB ≥10%; Fig. 2b). This is strongest in the UV-associated

Fig. 2 Applying TensorSignatures on 2778 whole genomes from the ICCG PCAWG consortium revealed 20 tensor signatures and their genomic
properties. a Upper panels depict SNV spectra, and a summarised representation of associated other mutation types (error bars determine 95% bootstrap
confidence intervals). SNV mutations are shown according to the conventional 96 single base substitution classification based on mutation type in a
pyrimidine context (blue C > A, black C > G, red C > T, green T > A, grey T > C, salmon T > G) and 5' and 3' flanking bases (in alphabetical order). The panel
under each SNV spectrum indicates transcriptional (red), and replicational strand biases (blue) for each mutation type, in which negative deviations
indicate a higher probability for template or lagging strand pyrimidine mutations, and positive amplitudes a larger likelihood for coding or lagging strand
pyrimidine mutations (and vice versa for purine mutations). b Heatmap visualisation of extracted tensor factors describing the genomic properties of each
tensor signature. Proportions of other mutation types and clustered SNVs are indicated in percentages. Transcriptional and replicational strand biases
indicate shifts in the distribution of pyrimidine mutations on coding/template and leading/lagging strand. Coefficients < 1 (pink) indicate signature
enrichment on template or lagging strand DNA, and conversely values > 1 (green), a larger mutational burden on coding or leading strand (a value of 1
indicates no transcriptional or replicational bias). Relative signature activities in transcribed/untranscribed and early/late replicating regions. Coefficients >
1 (turquoise) indicate enrichment in transcribed and early replicating regions, while values < 1 (brown) indicate a stronger activity of the mutational process
in untranscribed or late replicating regions. Relative signature activities on nucleosomes and linker regions, and across epigenetic states as defined by
consensus ChromHMM states. Scores indicate relative signature activity in comparison to genomic baseline activity. A value of 1 means no increase or
decrease of a signature’s activity in the particular genomic state, while values > 1 indicate a higher, and values < 1 imply a decreased activity. c Signature
activity in different cancer types (Exposures). Upper triangles (green) indicate the mean number of mutations contributed by each signature, lower
triangles show the percentage of samples with a detectable signal of signature defined as the number of mutations attributed to the signature falling into a
signature-specific typical range (Methods). Greyed boxes indicate cancer types for which a signature was not found to contribute meaningfully. Source
data are provided as a Source Data file.
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signature TS06, similar to SBS7b, where the rate of C > T
substitutions on the template strand was half of the correspond-
ing value on the coding strand, highly indicative for active TC-
NER. In contrast, TS08, similar to SBS16, shows largest activities
in liver cancers and preferably produces T > C transitions on
template strand DNA. In line with a transcription-coupled role,
the activity of TS08 shows a noteworthy elevation in transcribed
regions. Both signatures will be discussed in more detail later on.

Analysis of pyrimidine/purine shifts in relation to the direction
of replication indicated 9/20 signatures with replication strand
biases (RSB ≥10%). In accordance with previous studies, TS12
asserts a higher prevalence of APOBEC-associated C > D
mutations, consistent with cytosine deamination, on lagging
strand DNA which is thought to be exposed for longer periods as
opposed to more processively synthesised leading strand
DNA18–20. Conversely, TS17, associated with POLE exonuclease
variants (SBS10a/b), displays a pyrimidine bias towards the
leading strand18 (Fig. 2b). Since DNA polymerase ϵ performs
leading strand synthesis, the strand bias indicates that C > A (G >
T) mutations arise on a template C, presumably through C ⋅ dT
misincorporation35. Further examples with replication strand
biases include the MMRD-associated signatures TS15 and TS16
discussed above. Of note, the two SHM-associated signatures
TS13 and TS14 displayed opposing patterns with respect to their
activity in oriented (early) and unoriented (late) replicating
regions (Fig. 2b).

Furthermore, all signatures showed signs of differential activity
with respect to their genomic features. This was particularly
pronounced for epigenetic effects and could be grouped in
broadly two classes: Those that are elevated in active (TssA,
TssAFlnk, TxFlnk, Tx and TxWk) and depleted in quiescent
regions (Het, Quies), and vice versa. This phenomenon includes
the two omnipresent signatures with relatively uniform spectra
TS03 and TS04, suggesting a mechanism associated with the
chromatin state behind their differential manifestation (Fig. 2a).
This also applies to two signatures associated with UV exposure,
TS05 and TS06, and also two signatures of unknown aetiology,
most prominently found in Liver cancers, TS07, similar to SBS12,
and TS08, which we will discuss in more detail in subsequent
sections. To ensure that these epigenetic associations were not an
artefact of the consensus annotation, we matched cancers to their
closest Roadmap cell-line(s) (Supplementary Table 1) and
performed a TensorSignatures extraction, which yielded highly
concordant epigenetic signature activities (Supplementary Fig. 7).

Validation of TensorSignatures in the HMF cohort. The
aforementioned observations were replicated in a fully indepen-
dent second cohort of whole genomes from the Hartwig Medical
Foundation with 3,824 samples from 31 cancers encompassing
95,531,862 SNVs, 1,628,116 MNVs, 9,228,261 deletions,
5,408,915 insertions and 1,001,433 structural variants25. Applying
TensorSignatures to this data set produced 27 tensor signatures
(Supplementary Fig. 8a). Of these 10 closely resembled (cosine
distance < 0.2) signatures of the discovery analysis with closely
matching genomic activity coefficients (Fig. 3d, Supplementary
Fig. 8b). These include the signatures of spontaneous deamina-
tion TS01, the two signatures of UV mutagenesis TS05/06, SV-
associated APOBEC mutagenesis TS11, as well as signatures of
MMRD TS16, POLEexo mutations TS17, as well as MUTYH
deficiency TS18, HRD TS19 and TS20.

A further 7 signatures seemingly constitute splits of tensor
signatures from the PCAWG cohort (Fig. 3b). A complex three-
way split appeared to occur for TS03 and TS04, which were found
in a broad range of cancer types. One of the derivative signatures
resembles the mutation spectrum of SBS8 from the COSMIC

catalogue, however without measurable transcriptional strand
bias. A second derived signature is similar to SBS39; our analysis
reveals replication strand bias for C > G variants and a potentially
wider range of cancer types for both signatures. Further, signature
TS12, resembling replication associated APOBEC mutagenesis,
split into two signatures with base substitution spectra similar to
SBS2 (C > T) and SBS13 (C > G), but preserving the strong
replication strand bias. Lastly, a split of TS10, likely attributed to
mutagens included in tobacco smoke, was observed.

Finally, a set of 10 signatures without close match to those in
the PCAWG cohort was found (Fig. 3c). This includes five spectra
linked to cancer therapies, illustrating the additional insights on
preceding therapies provided by the HMF metastatic cancer
cohort. TS21 is characteristic of treatment with the methylating
agent temozolomide (SBS11); the observed transcriptional strand
bias reflects a higher rate of G > A mutations on the coding strand
(equivalent to higher rates of C > T on the template strand),
consistent with methyl guanine being removed by TC-NER in the
absence of MGMT. TS22 and TS23 have been previously
associated with cisplatin (termed E-SBS21 and E-SBS14)36,37.
While both signatures exhibit mild transcriptional strand biases,
only TS23 shows a strong association with MNVs going in line
with the propensity of cisplatin/oxaliplatin to form intrastrand
DNA adducts (Supplementary Fig. 8c). TS24 displays the
characteristics of treatment with 5-FU, which inhibits thymine
synthesis and has been proposed to be mutagenic via genomic
fluorouracil incorporation37. TS28, with similarity to SBS41, was
only found in two samples, possibly due to treatment with the
experimental drug SYD985, which consists of a duocarmycin-
based HER2-targeting antibody-drug conjugate25.

Further, TensorSignatures detected a signature of colibactin,
TS25, which has been previously characterised36,38. TS25 displays
contributions of MNVs and short indels, activity in active
genomic regions and concomitant transcriptional strand bias of
T > C mutations (Fig. 3c, d). TS26’s indels and similarity to
SBS15 suggests an association with MMRD; TS27 has an
unknown aetiology and displays strong replicational strand bias.
The large proportion of structural variants and the flat SNV
spectrum of TS29 may represent non-specific mutagenesis at SVs.
TS30 was found in lymphoid and other cancers and had a high
proportion of clustered mutations, similar, but not identical to
TS14 (Fig. 3d).

Taken together, the TensorSignatures analysis of the PCAWG
and HMF cohorts revealed that mutational signatures are
composed of diverse mutation types and vary extensively across
the genome. In the following, we explore some of the genomic
activity patterns and properties of selected TensorSignatures in
further detail. An emerging feature was differential mutagenesis
in active and quiet areas of the genome.

The spectrum of UV mutagenesis changes from closed to open
chromatin, reflecting GG- and TC-NER. Two signatures, TS05
and TS06, were exclusively occurring in Skin cancers of both
cohorts and displayed almost perfect correlation (Spearman R2=
0.98, Supplementary Fig. 9a) of attributed mutations, strongly
suggesting UV mutagenesis as their common cause. Both signatures
share a very similar SNV spectrum, only differing in the relative
extent of C[C > T]N and T[C > T]N mutations, which is more
balanced in TS06 (Fig. 2a). However, they strongly diverge in their
activities for epigenetic contexts and transcriptional strand biases:
TS05 is enriched in quiescent regions, and shows no transcriptional
strand bias, while the opposite is true for TS06, which is mostly
operating in active chromatin (Fig. 2b). Of note, the spectra of these
signatures closely resemble that of COSMIC SBS7a and SBS7b,
which have been suggested to be linked to different classes of UV

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23551-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3628 | https://doi.org/10.1038/s41467-021-23551-9 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


damage39. However, as our genomically informed TensorSignatures
inference and further analysis show, the cause for the signature
divergence may be found in the epigenetic context, which seemingly
not only determines mutation rates, but also the resulting muta-
tional spectra.

A characteristic difference between the two signatures is the
presence of a strong transcriptional strand bias in signature TS06,

which is almost entirely absent in signature TS05 (Fig. 4a). To
verify that this signature inference is correct, and the observed
bias and spectra are genuinely reflecting the differences between
active and quiescent chromatin, we pooled C > T variants from
Skin-Melanoma samples which revealed that the data closely
resembled predicted spectra (Fig. 4b). In addition, quiescent
chromatin also displays a predominant T[C > T]N substitution
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Fig. 3 Tensor signatures of the HMF cohort. a Validated tensor signatures with high similarity (indicated as cosine distance) to the mutational processes
extracted in our discovery analysis using PCAWG data. b TensorSignatures splits that seemingly represent derivatives of tensor signature TS03, TS04,
TS10 and TS12. c Tensor signatures of the HMF cohort. d Extracted tensor factors, exposures and summed squared errors of tensor factors from the
discovery and validation analysis. Source data are provided as a Source Data file.
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spectrum (5’C/5’T= 0.3), while the spectrum in active chromatin
is closer to Y[C > T]N (5’C/5’T= 0.58), as predicted by the
signature inference (Fig. 4a). This difference does not appear to be
related to the genomic composition, and holds true even when
adjusting for the heptanucleotide context (Supplementary
Fig. 9b).

To illustrate how the mutation spectrum changes dynamically
along the genome in response to the epigenetic context, we
selected a representative 10 Mbp region from chromosome 1
comprising a quiescent and active genomic region as judged by
consensus ChromHMM states, and the varying mutational
density from pooled Skin-Melanoma samples (Fig. 4c). As
expected, actively transcribed regions display a strong transcrip-
tional strand bias (Fig. 4d). Further, this change is also
accompanied by a change of the mutation spectrum from a T
[C > T]N pattern to a Y[C > T]N pattern with the ratios indicated
by our TensorSignatures inference (Fig. 4e).

These observations are further corroborated by RNA-seq data
available for a subset of samples (n= 11): The transcriptional
strand bias is most pronounced in expression percentiles greater
than 50 leading to an increased ratio of coding to template strand
mutations (Fig. 4f). Again, the decline is accompanied by a shift
in the mutation spectrum: While both C[C > T]N and T[C > T]N
variant counts decline steadily as gene expression increases, the
reduction of C[C > T]N mutations is larger in comparison to

T[C > T]N mutations, which manifests as an increasing C[C > T]
N and T[C > T]N ratio, reaching a ratio of approximately 0.5 in
the highest expression quantiles (Fig. 4f).

The diverging activity in relation to the chromatin state
suggests an underlying differential repair activity. Global genome
nucleotide excision repair (GG-NER) clears the vast majority of
UV-lesions in quiescent and active regions of the genome and is
triggered by different damage-sensing proteins. Conversely, TC-
NER is activated by template strand DNA lesions of actively
transcribed genes. As TS05 is found in quiescent parts of the
genome, it appears likely that it reflects the mutation spectrum of
UV damage as repaired by GG-NER. Based on the activity of
TS06 in actively transcribed regions and its transcriptional strand
bias, it seemingly reflects the effects of a combination of GG- and
TC-NER, which are both operating in active chromatin. This
joint activity also explains the fact that the spectrum of TS06 is
found on both template and coding strands.

This attribution is further supported by data from n= 13
cutaneous squamous cell carcinomas (cSCCs) of n= 5 patients
with Xeroderma Pigmentosum, group C, who are deficient of
GG-NER and n= 8 sporadic cases which are GG-NER
proficient40. XPC/GG-NER deficiency leads to an absence of
TS05 in quiescent chromatin and to a mutation spectrum that is
nearly identical in active and quiescent regions of the genome
(Supplementary Fig. 9c). Furthermore, the UV mutation

Fig. 4 The spectrum of UV mutagenesis changes from open to closed chromatin. a C > T mutation probabilities of TensorSignatures TS05 and TS06 for
coding and template strand DNA (error bars determine 95% bootstrap confidence intervals). b Pooled PCAWG Skin-Melanoma C > T variant counts from
coding and template strand DNA in epigenetically active (TssA, TssAFlnk, TxFlnk, Tx and TxWk, right) and quiescent regions (Het and Quies, left).
c Consensus ChromHMM states from a representative 10 Mbp region on chromosome 1, and the corresponding mutational density of pooled Skin-
Melanoma samples. d N[C > T]N and N[G > A]N counts in 50 kbp bins, and their respective ratios (thin blue line: ratio; thick blue line: rolling average over
5 consecutive bins) illustrate the transcriptional strand bias of C > T mutations in quiescent and active regions of the genome. e Relationship between
expression strength and the spectral shift of C > T mutations in terms of binned C > T variant counts in TpC and CpC context and their respective ratios
(thin blue line) as well as a rolling average (thick blue line). f Gene expression strength vs. transcriptional strand bias (measured by the ratio normalised C
> T variants in Skin-Melanoma on coding and template strand), and gene expression strength vs. C[C > T]/T[C > T] spectral shift (indicated as the ratio of
normalise C > T mutations in 5'C and 5'T context). g Transcriptional strand bias and C[C > T]/T[C > T] spectral shift in GG-NER deficient XPC−/− cSCC
genomes. Blue curves: quadratic fit. Source data are provided as a Source Data file.
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spectrum of XPC/GG-NER deficiency, which is thought to be
compensated by TC-NER, differs from that of TS06, reinforcing
the notion that TS06 is a joint product of GG- and TC-NER. This
is further supported by the observation that XPC/GG-NER
deficiency leads to a near constant coding strand mutation rate,
independent of transcription strength40 (Fig. 4g), indicating that
the transcriptional dependence of coding strand mutations in
GG-NER proficient melanomas and cSCCs is due to transcrip-
tionally facilitated GG-NER.

While the activity patterns of TS05 and TS06 appear to be well
aligned with GG-NER and GG/TC-NER, these observations,
however, do not explain the observed differences in mutation
spectra. The fact that the rates of C[C > T]N and T[C > T]N
mutations change between active and quiescent chromatin—and
the fact the these differences vanish under XPC/GG-NER
deficiency—suggests that DNA damage recognition of CC and
TC cyclobutane pyrimidine dimers by GG-NER differs between
active and quiescent chromatin, with relatively lower efficiency of
TC repair in quiescent genomic regions, as evidenced by TS05.

A differential mutation spectrum of tobacco-associated muta-
tions in regions with TC-NER. A similar split of an exogenous
mutational signature into quiet and active chromatin was
observed in lung cancers of the HMF cohort where TS10 splits
into two signatures, HMF TS10-q, which shows largest activity in
heterochromatin, while HMF TS10-a is enriched in actively
transcribed regions, and exhibits a strong transcriptional strand
bias with lower rates of C > A changes on the coding strand,
equivalent to G > T transversions on the template strand (Figs. 3b,
d and 5a). This strand bias has been attributed to TC-NER
removing benzo[a]pyrene derived adducts on guanines from the
template strand41.

The emergence of two mutational signatures indicates that this
repair process also changes the mutation spectrum. The suggested
split is also evident in pooled mutations from HMF lung cancers
in quiescent and active genomic regions, respectively, revealing
that predicted spectra coincide with corresponding tensor
signatures HMF TS 10-q and TS10-a (Fig. 5b). The C > A (G >
T) mutation spectrum observed in quiescent regions, extracted by
HMF TS10-q, displays highest rates of mutations in a CCN
(NGG) context (Fig. 5a). Interestingly, the same pattern is also
observed in actively transcribed regions for C > A on the template
strand, equivalent to G > T mutations on the coding strand. This
is in contrast to the C > A coding strand pattern, and HMF TS10-
a, for which this difference is largely eroded. These observations
reflect how TC-NER removes genotoxic guanine adducts from
the template strand, which leads to lower mutation rates and also
a more homogeneous base context of G > T mutations. The
differentential mutation spectrum indicates that either the
efficiency of TC-NER—or the mutagenicity of residual genomic
alterations—differs depending on the base context, analogous to
observations in UV-induced mutagenesis. The result being that
the mutation types and rates caused by tobacco-associated
carcinogens differ between coding and template strand in
transcribed regions and also to different mutation spectra in
quiescent and active genomic regions.

Transcription-associated mutagenesis is common in highly
transcribed genes. A third split of mutational signatures between
active and quiet regions was observed in Liver and other cancer
types (Fig. 2b, c), driven by differential activity of TS07 and TS08,
which closely resemble COSMIC signatures SBS12 and SBS16,
respectively. In line with previous findings18,26, there was a strong
transcriptional bias of TS08, introducing 1.6 × more T > C var-
iants on the template strand (Fig. 2b). While both signatures are

most frequently found in Liver cancers, where they are strongly
correlated (R2= 0.68, Supplementary Fig. 10a), they are also
observed in a range of other cancers, indicating that they are
reflecting endogenous mutagenic processes.

The most prominent difference between these signatures is the
depletion of mutation types in 5’-B context on coding strand
DNA in TS08 (Fig. 5c; B= C, G, or T). Signature TS08 displays a
strong transcriptional strand bias, as previously noted for
SBS1626, and is confirmed here by a direct investigation of
variant counts (Fig. 5d). A further defining feature of TS08 are
indels ≥2 bp (Fig. 2a, Supplementary Note 1 Fig. 38), which were
reported to frequently occur in highly expressed lineage-specific
genes in cancer12, consistent with experimental data of
transcription-replication collisions42. In line with this, mutation
rates showed a dynamic relation to transcriptional strength
(Fig. 5e). Normalised counts of T > C mutations on coding and
template strand initially decline for low transcription. Yet this
trend only continues on the coding strand for transcription
quantiles (>50), but reverses on the template strand, producing
more N[T > C]N, and most commonly A[T > C]N, mutations the
higher the transcription, in line with previous reports of TAM18.

While this effect is most common in Liver-HCC samples,
where it has been described in detail, it has been observed that
SBS5, one of three broadly active signatures, displays signs of
potential contamination by SBS16/TS08 in the absence of further
intra-genomic stratification. Accordingly, a genomically informed
analysis by TensorSignatures also discovers this signature in
highly transcribed genes of Head-SCC, Stomach-AdenoCa and
Biliary-AdenoCa (Fig. 5f, Supplementary Fig. 10b), showing that
A[T > C]W TAM and N[T > C]N mutagenesis in heterochro-
matic regions occur in a broad range of cancers.

Replication- and DSBR-driven mutagenesis by APOBEC3A
and 3B. APOBEC mutagenesis has been previously studied in
detail in cancer genomes1,30,43, revealing and localisation to
double strand breaks (kataegis)1 and replication strands bias18–20.
Further investigations in experimental systems and cancer gen-
omes discovered an extended base context characteristic of the
enzymes APOBEC3A and APOBEC3B, respectively revealing a
high contribution of APOBEC3A27 across the genomic back-
ground and elevated contributions of APOBEC3B to SV-
associated mutation clusters28,44. Still, these facets are not part
of current reference catalogues; instead SBS2 and SBS13 dis-
criminate the effects base excision repair operating downstream
of APOBEC induced uracil, producing C > G (SBS2) and C > T
substitutions (SBS13), respectively. The unified approach of
TensorSignatures may help consolidate some of the observed
facets of APOBEC mutagenesis. For example, it has not been
studied whether the sparse set of clusters attributed to APO-
BEC3A display a replication strand bias, which would confirm
them to arise during (lagging strand) replication.

TensorSignatures TS11 and TS12 share a common base
substitution spectrum, but differ greatly with regard to their
genomic properties: While TS12 is dominated by SNVs (99%)
with strong replicational strand bias, SNVs in TS11 make up only
64% of the overall spectrum and are highly clustered. The rest of
the spectrum is mostly dominated by structural variants (Figs. 2a
and 6a, Supplementary Note 1 Fig. 53). Reassuringly, the
difference in clustering propensity and replication strand bias
are also directly apparent in the mutation spectra and rainfall
plots of samples with high contributions of either signature
(Fig. 6b, c). SV proximal and distal clustered variants do not
display a replicational strand bias, indicating that both arise in a
DSB driven manner, the latter presumably during successful
DSBR, which did not manifest as SV (Supplementary Fig. 11a).
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However, clusters at SVs tend to be larger (Median 717 vs. 490
bp) and tend to have more mutations per cluster (Median 5 vs 4
variants; Fig. 6d), suggesting a higher processivity of APOBEC
mutagenesis during DSBR. To further the link of these signatures
to APOBEC3A and APOBEC3B mutagenesis, we studied the
extended motifs YT[C > T]A and RT[C > T]A, which suggest a
higher prevalence of purines (R) over pyrimidines (Y) at the -2 5’
nucleotide27. Indeed, clustered TS12 mutations comprise only a
low fraction of purines, indicative of APOBEC3B, while this
proportion increases to approximately 50% in TS11 samples,
consistent with the reported motif of APOBEC3A (Fig. 6e,
Supplementary Fig. 11b).

Finally, we note that, using data from the HMF cohort, TS12,
was further split into C > T and C > G akin to mutational
signatures SBS2 and 13 from the COSMIC catalogue (Fig. 3b).
These two signatures were attributed to differential activity of
OGG/UNG-driven base excision repair of uracil created by
APOBEC-induced cytosine deamination45. The observation that
this split occurs for TS12 rather than TS11, suggests that repair of
replication-driven APOBEC3A mutagenesis, may be subject to
higher variation in downstream BER than DSBR-driven APO-
BEC3B mutagenesis.

Targeted somatic hypermutation at TSS and dispersed clus-
tered translesion synthesis. Two other TensorSignatures pro-
duced substantial amounts of clustered variants with, but
different epigenomic localisation. TS13 showed largest activities
in lymphoid cancers and produced 60% clustered variants
(Fig. 2b). The SNV spectrum resembles the c-AID signature

reported previously7, suggesting an association with activation-
induced cytidine deaminases (AID), which initiates somatic
hypermutation in immunoglobulin genes of germinal centre B
cells46,47.

TensorSignatures analysis finds that TS13 activity is 9 × and 8×
enriched at active transcription start sites (TssA) and flanking
transcription sites (TxFlnk, Fig. 2b), respectively. To illustrate
this, we pooled single base substitutions from Lymph-BHNL
samples and identified mutational hotspots by counting muta-
tions in 10 kbp bins (Fig. 7a, b), which revealed that clustered
mutations often fell accurately into TssA regions (Fig. 7c). The
aggregated clustered mutation spectrum in TssA/TxFlnk regions
across lymphoid neoplasms (Lymph-BNHL/CLL/NOS, n= 202)
indeed showed high similarity to TS13, possibly with an even
more pronounced rate of C > K (K=G or T) variants similar to
SBS849 (Fig. 7d). Conversely, the clustered mutational spectrum
from all other epigenetic regions was characterised by a larger
proportion of T > C and T > G mutations, similar to TS14, which
only produces about 1% clustered mutations and closely
resembles SBS9, attributed to Polη-driven translesion synthesis
(TLS) during somatic hypermutation45.

While TS13 and TS14 are strongly correlated (R2= 0.88,
Supplementary Fig. 12), the diverging localisation pattern and
SNV spectrum, characterised by higher rates of C > K mutations
in TS13, indicates that a related, but different mutational process
drives TSS hypermutation, seemingly linked to AID. The
differential mechanism behind TS13 also manifests as longer
clusters (Median: 1068 vs. 183 bp), which contain more variants
per cluster (Median: 8 vs. 3 mutations) in comparison to TS14
(Fig. 7e). As a further distinction, the weakly clustered TLS

Fig. 5 Genomically dependent T > C mutagenesis in Liver-HCC and other cancer types. a C >A mutation type probabilities of HMF TS10-q and TS10-a for
coding and template strand DNA. b Pooled HMF lung samples C > A variant counts from coding and template strand DNA in quiescent (Het and Quies,
left) and epigenetically active regions (TssA, TssAFlnk, TxFlnk, Tx and TxWk, right). c T > C mutation type probabilities of PCAWG TS07 and TS08 for
coding and template strand DNA. d Pooled PCAWG Liver-HCC T > C variant counts for coding and template strand DNA in epigenetically active and
quiescent regions. e, f Transcriptional strand bias and A[T > C]/B[T > C] spectral shift in samples from different cancers with TS07 and TS08
contributions. Lines correspond to quadratic fits. Source data are provided as a Source Data file.
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signature TS14 can be found in more than 15 cancer types,
suggesting a broad involvement of this mutagenic process in
resolving endogenous and exogenous DNA alterations28. Finally,
a third mutational signature of somatic hypermutation, TS30, was
found in lymphoid and other cancers of the HMF cohort. This
signature displayed a large proportion of clustered mutations and
an enrichment in early replicating regions similar to TS13,
combined with an SNV spectrum that was closer to TS14 (Cosine
distance d= 0.13 vs. 0.25), suggesting that TS30 may represent a
combination of TS13 and TS14.

Discussion
We presented TensorSignatures, a framework for learning
mutational signatures jointly from their mutation spectra and
genomic properties to better understand the underlying muta-
tional processes. We illustrated the capabilities of this algorithm
by presenting a set of 20 mutational signatures extracted from
2778 cancer genomes of the PCWAG consortium, and validated
our analysis on additional 3824 metastatic samples from the HMF
cohort. The analysis demonstrated that the majority of muta-
tional signatures comprised different variant types, and that no
single mutational signature acted uniformly along the genome.
Measuring how mutational spectra are influenced by their asso-
ciated genomic features sheds light on the mechanisms under-
lying mutagenesis, as demonstrated by multiple previous
investigations18–20. However, as such calculations have been
carried out after defining mutational signatures, they cannot
detect more subtle signature changes associated with genomic
features and struggle to localise very similar mutational sig-
natures. A joint inference also helps to dissect mutational pro-
cesses in situations where mutation spectra are very similar, such

that genomic associations cannot be unambiguously attributed
based on the mutation spectrum alone.

In comparison to comparable tools for mutational signature
analysis, TensorSignatures is currently not optimised to maximise
the number of extracted signatures, but rather to characterise
the properties of recurrent mutational processes. Compared
to the curated COSMIC catalogue of mutational signatures, the
automated analysis with TensorSignatures currently misses
the signatures of of Aflatoxin (SBS24, n= 2 samples with relative
exposure >5%), platinum therapy (SBS31, n= 2; SBS35, n= 11)
and a signature characteristic of base excision deficiency by
NTHL1 defects (SBS30, n= 45), which in aggregate are estimated
to contribute 0.2% of single base substitutions in the PCAWG
cohort. One reason for this discrepancy is that the COSMIC
catalogue is informed by an additional 1865 whole genome
samples from other sources, which provide stronger evidence for
rarely recurring mutational signatures. In order to maximise the
yield of novel signatures—a somewhat different objective to
characterising genomic properties of recurrent processes—a more
bespoke analysis recognising each cancer type and its preferred
set of mutational signatures as well as a careful assessment of
potential sequencing and analysis artefacts is necessary.

Nevertheless, the number of signatures in our discovery ana-
lysis closely matched the decomposition rank suggested by
SigProfiler (default settings, v1.0.17), indicating that Tensor-
Signatures is similarly sensitive, while providing the benefit of
characterising extracted mutational processes with respect to a
multitude of genomic variables. The observed discrepancy of
approximately 30% between methods highlights some of the
challenges in mutational signature analysis, which needs to dis-
criminate between genuine biological signal and noise. As our

Fig. 6 Double-strand break and replication induced APOBEC mutagenesis. a C > G and C > T spectra of TS11 and TS12 for leading and lagging strand DNA
(error bars determine 95% bootstrap confidence intervals). Pie charts underneath indicate percentages of clustered mutations and the contribution of
other mutation types in TS11 and TS12. b Observed unclustered (top) and clustered variants (bottom) in TS11 and TS12 high samples (TS11 and TS12
contributions > 10% and 70% respectively). c Rainfall plots with SV annotations from a typical sample with high TS11 (top) and TS12 contributions
(bottom). d Size distribution of mutation clusters (consecutive clustered mutations), and the distribution of number of variants per mutation cluster in TS11
and TS12 high samples respectively. Curves depict corresponding kernel density estimates. e Motif logo plots of the tetranucleotide context at mutated
TCA sites in yeast cells exposed to APOBEC3A/3B mutagenesis respectively27, and similar motif logo plots extracted at clustered mutations from samples
with high TS11 or TS12 exposures. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23551-9

10 NATURE COMMUNICATIONS |         (2021) 12:3628 | https://doi.org/10.1038/s41467-021-23551-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


simulations showed, using more types of mutations and genomic
features may increase the accuracy of extracting signatures and of
measuring their local activities. Further refinements may include
to model a preferred activity of a particular signature in a given
tissue type; including such preference may help better ascertain
the sets of signatures found in a particular genome. Also, incor-
porating more genomic features, potentially so in quantitative
ways, and ideally matching these annotations to each tumour type
are likely to increase the power of the analysis. TensorSignatures
appears to be well suited for such refined and future analyses as
tumour specific genomic annotations are likely to be assembled
over the next years. Accompanying these anticipated develop-
ments, further simulation tools cognisant of various genomic
features have to be developed, as current frameworks do not
recognise the genomic distribution of point mutations9.

Epigenetic annotations, for example, currently exist only for a
subset of cancer types—and it may even be that individual cancer
subtypes derive from distinct cells of origin with unique epige-
nomic characteristics. To facilitate a pan-cancer analysis, Ten-
sorSignatures uses, similar to previous studies18,23, consensus
annotations comprising those genomic regions found to vary only
lowly between different cell types. This reduces the number of

annotated variants by approximately 30% as many parts of the
genome are annotated as ‘variable’ (an extra state introduced by
TensorSignatures). An analysis based on partially matched tissues
showed that this approach is likely to underestimate the effect of
genomic factors on mutagenesis and that the reduction of signal
makes the analysis of rare elements, such as enhancers, noisier
(Supplementary Fig. 7). As more and more tissues are being
genomically profiled, we expect that further tissue-specific
annotations—and also entirely new genomic features—will
emerge, which will produce more accurate and novel insights into
the determinants of mutagenesis.

Studying the signatures discovered in the PCAWG and HMF
data sets revealed that the SNV spectra of TS05 and TS06 show
high similarity to signatures SBS7a and SBS7b of the COSMIC
catalogue of mutational signatures. Due to the high similarity of
the mutational spectra, it is difficult to unambiguously attribute
individual mutations to these signatures and measure their
genomic activity and transcriptional strand biases based on the
mutation spectra alone. TensorSignature analysis reveals that the
two processes are strongly differing with respect to their epige-
netic context and transcriptional strand bias pointing towards
differentially active GG-NER to be the underlying cause of the

Fig. 7 Identification of a highly clustered mutational signature at active TSS. a Rainfall plot of pooled variants from Lymph-BHNL samples on
chromosome 1 (highlighted dots indicate clustered mutations). b Binned (10 kb) SNV counts of chromosome 1. Numbers 1-4 indicate mutation hotspots.
c Consensus ChromHMM states and rainfall plots at mutation hotspots. d Pooled clustered variants from PCAWG Lymph-BHNL/CLL/NOS samples from
TssA or TxFlnk (TS13-like), and all other epigenetic states (TS14-like). e Size distribution of mutation clusters (consecutive clustered mutations), and the
distribution of number of variants per mutation cluster in TS13 and TS14 high samples respectively. Source data are provided as a Source Data file.
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regional signature, which is confirmed by analysing cSCCs from
GG-NER deficient XPC patients.

A similar change of the mutation spectrum was observed in
Liver-HCC and other cancer types, reflected by the diverging
activity of TS07 and TS08. The activity of TS08 is most prominent
in highly transcribed genes, indicative of transcription-associated
mutagenesis12,18. TensorSignatures unifies the overarching
mutational spectrum of this process and sheds light on its
genomic determinants. Furthermore, its ability to detect muta-
tional signatures in specific genomic regions also increases the
sensitivity to detect signature activity, which may only contribute
low levels of mutation at a genome wide scale. Here, we find TS08
also in Bladder-TCC, ColoRectal-AdenoCa, Lung-AdenoCa,
Prostate-AdenoCa and Stomach-AdenoCa in addition to Billiary-
AdenoCa, Head-SCC, and Liver-HCC, where it has been
previously found9.

TensorSignatures’ capability to detect signatures with a con-
fined regional context was also highlighted by detecting a highly
localised signature associated with AID, TS13, which specifically
manifests in and around transcription start sites in lymphoid
neoplasms7. This signature has a base substitution spectrum
similar to TS14 (SBS9), which does not display the tight locali-
sation to TSS and is found in a range of cancer types, likely
reflecting Polη-driven TLS during replication.

Inclusion of other mutation types led to the discovery of two
APOBEC-associated signatures representative for mutagenesis
during replication and at DSBRs, which differ with regard to their
replicational strand bias and clustering propensity and are likely
to reflect differential activity of APOBEC3A and 3B. While such
associations have been reported previously, these two processes
are currently not reported as distinct mutational signatures due to
their identical base substitution spectrum. TensorSignatures
shows that such a distinction can be formally achieved by a joint
analysis of overarching mutation spectra and genomic features
and shed light on the exact properties and activity of either
process.

Taken together, this analysis maps out the regional activity of
mutational processes across the genome and pinpoints their
various genomic determinants. As mutational signature analysis
is an essential element of the cancer genome analysis toolkit,
TensorSignatures will help make the growing catalogues of
mutational signatures more insightful by highlighting mutagenic
mechanisms, or hypotheses thereof, to be investigated in
greater depth.

Methods
Data acquisition. We performed the primary analysis on WGS data of primary
tumours of the PCAWG dataset, and used WGS data of metastatic tumours from
the HMF25 cohort for the validation analysis. Additionally, we analysed WGS data
from XPC defcient cSCCs48. We obtained GENCODE v19 definitions and Repli-
seq data for GM12818, K564, Hela, Huvec and Hepg2 cell lines from the ENCODE
consortium49,50 to annotate SNVs with transcription and replication orientation.
Further, we downloaded 15-state ChromHMM annotations32 as well as nucleo-
some dyad positions from MNase cut efficiency experiments23 to assign epigenetic
and nucleosomal annotations to SNV data.

Count tensor
Transcription. To assign single base substitutions to template and coding strand, we
partitioned the genome by transcription directionality (trx(+)/trx(−)) using
GENCODE v19 definitions. Nucleic acids can only be synthesised in 5’→ 3’
direction implying that template and coding strand of trx(−) genes are 5’→ 3’ and
3’→ 5’ oriented, and vice versa for trx(+) genes. Since mutations are called on the
+ strand of the reference genome, and representing single base substitutions in a
pyrimidine base context, we can unambiguously determine whether the pyrimidine
of the mutated Watson-Crick base pair was on the coding or template strand. For
example, a G > A substitution in a trx (−) gene corresponds to a coding strand C >
T mutation, because the transcription directionality dictates that the mutated G sits
on the template strand. Splitting all SNVs in this fashion requires us to introduce

an additional dimension of size three (coding, template and unknown strand) to
the count matrix (CSNV 2 N3 ´ p ´ n

0 where p= 96 and n is the number of samples).

Replication. To assign single base substitutions to leading and lagging strand, we
leveraged Repli-seq data from the ENCODE consortium49,50, which map the
sequences of nascent DNA replication strands throughout the whole genome
during each cell cycle phase. Repli-seq profiles relate genomic coordinates to
replication timing (early and late), where local maxima (peaks) and minima
(valleys) correspond to replication initiation and termination zones. Regions
between those peaks and valleys are characterised by steep slopes, whose sign (rep
(+) or rep(−)) indicates whether the leading strand is replicated into the right
(right-replicating) or left direction (left-replicating) when the DNA is viewed in
standard orientation, respectively. To partition the genome into non-overlapping
right and left replicating regions, we computed the mean of slopes from Repli-seq
profiles of five cell lines (GM12818, K564, Hela, Huvec and Hepg2) using finite
differences. We marked regions with a plus (+) if the slope was positive (and
therefore right-replicating) and with minus (−) if the slope was negative (and
henceforth left-replicating). To confidently assign these states, we required that the
absolute value of the mean of slopes was at least larger than two times its standard
deviations, otherwise we assigned the unknown (*) state to the respective region.
Using this convention, a C > A variant in a rep(+) region corresponds to a tem-
plate C for leading strand DNA synthesis (and a template G for lagging strand).
Subsequent assignment of single base substitutions to leading and lagging strand is
analogous to the procedure we used for transcription strand assignment, and adds
another dimension of size of three to the count tensor (CSNV 2 N3 ´ 3 ´ p ´ n

0 ).

Nucleosomal states. To assign single base substitutions to minor grooves facing
away from and towards histones, and linker regions between nucleosomes, we used
nucleosome dyad (midpoint) positions of human lymphoblastoid cell lines mapped
in MNase cut efficiency experiments23. Although nucleosomal DNA binding is
mediated by non-sequence specific minor groove-histone interactions, histone
bound DNA features 5 bp AT-rich (minor in) followed by 5 bp GC-rich (minor
out) DNA, as this composition bends the molecule favourably, while its char-
acteristic structure may lead to differential susceptibility for mutational processes.
Therefore, we partitioned nucleosomal DNA by first adding 7 bp to both sides of a
dyad, and assigning the following 10 alternating 5 bp DNA stretches to minor out
and minor in DNA, followed by a linker region with a maximum of 58 bp. Sub-
sequent assignment of SNVs to these states adds another dimension of size four to
the count tensor (CSNV 2 N3´ 3´ 4´ p´ n

0 ).

Epigenetic states. To assign single base substitutions to different epigenetic envir-
onments, we used functional annotations from the 15-state ChromHMM model
provided by the Roadmap epigenomics consortium32, which integrates multiple
chromatin datasets such as ChIP-seq data of various histone modifications. To find
state annotations that are robust across all cancer tissues, we defined an epigenetic
consensus state by combining state annotations from 127 different Roadmap cell
lines. Here, we required that at least 70% of the cell lines agreed in the Chrom-
HMM state to accept the state for a given genomic region. Partitioning SNVs by
Chrom-HMM states adds another dimension of size 16 to the count tensor
(CSNV 2 N3´ 3´ 16 ´ 4 ´ p ´ n

0 ).
Currently available data does not allow to obtain a comprehensive set of epigenetic

annotations matched to the cell of origin for every cancer type. Using a consensus
annotation assigns many regions to a variable (NA) state. While it is currently
possible to match 31/37 PCAWG cancer types to cell lines closely corresponding to
the presumed cell of origin, we note that only 9,870,018/48,329,388 mutations change
category using this partially matched annotation (Supplementary Fig. 7).

Clustered mutations. To identify clustered single base substitutions, we used inter
mutation distances (Yk in bp) between consecutive mutations on a chromosome as
observations for a two state (Xk = clustered, unclustered) hidden markov model
with initial/transition distribution

pX1
ðx1Þ ¼

0:01 if x1clustered

0:99 if x1unclustered

�
pXkþ1 jXk

ðxkþ1jxkÞ
0:99 if xkþ1 ¼ xk
0:01 if xkþ1 ≠ xk

�
ð1Þ

and observation distribution

pYk jXk
ðykjxkÞ ¼

Geomðp ¼ 1=100Þ if xk clustered

Geomðp ¼ ð1n∑n
k¼1 ykÞ�1Þ if xk unclustered:

(
ð2Þ

We then computed the maximum a posteriori (MAP) state using the Viterbi
algorithm to assign to each mutation the state clustered or unclustered,
respectively. All steps described in this section were performed in R 3.4 (Packages:
BiocInstaller/Bioconductor (1.24.0), Biostrings (2.42.1), BSgenome (1.42.0),
GenomicRanges (1.26.4), VariantAnnotation (1.20.3), rhdf5 (2.18.0)).

Signature tensor. In mutational signature analysis, NMF is used to decompose a
catalogue of cancer genomes C to a set of mutational signatures S and their
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constituent activities or exposures E. This operation can be compactly expressed as

E C½ � ¼ S ´ E whereC 2 Np´ n
0 ; S 2 Rp ´ s

þ ; and E 2 Rs ´ n
þ ð3Þ

where p is the number of mutation types (usually p= 96), n the number of cancer
genomes and s the number of mutational signatures.

Similarly, TensorSignatures identifies a low dimensional representation of a
mutation count tensor, but decomposes it to mutational spectra for coding and
template strand, leading and lagging strand, and signature specific multiplicative
factors quantifying the propensities of mutational processes within specific
genomic contexts. This is conceptually similar to a Tucker decomposition, a
multidimensional generalisation of a single value decomposition. Yet it has the
advantage over the latter that the extracted factors each have a defined biological
meaning.

To enable strand specific extraction of mutational spectra requires to increase
the dimensionality of the p × s sized signature matrix. To understand this, consider
that two p × s matrices are at least needed to represent spectra for coding (C) and
template (T) strand, suggesting a three dimensional (2 × p × s) signature
representation. Our model, however, also considers replication, which adds another
dimension of size two for leading (L) and lagging (G) strand, and thus we represent
mutational spectra in the four dimensional core signature tensor T0 2 R2´ 2´ p´ s

T0 ¼
TC=L
0 TC=G

0

TT=L
0 TT=G

0

" #
where TC=L

0 ;TC=G
0 ;TT=L

0 ;TT=G
0 2 Rp´ s

þ : ð4Þ

The mutation spectra T�=�
0 are normalised to 1 for each signature s, i.e.,

∑p
i¼1 ðT�=�

0 Þis ¼ 1 8 s. However, the mutation count tensor also contains mutations
from genomic regions for which strand assignment was not applicable. To still use
these data for the factorisation, we map such counts to a linear combinations of
T0’s sub matrices. This is enabled by stacking strand specific p × s matrices of the
core signature tensor. For example, coding strand mutations for which replicational
strand assignment was not applicable, are mapped to a linear combination of both

coding strand specific sub matrices TC=L
0 and TC=G

0 . Stacking sub matrices of T0

results in T1 2 R3 ´ 3 ´ p ´ s
þ

T1 ¼
TC=L
0 TC=G

0
1
2 ðT

C=L
0 þ TC=G

0 Þ
TT=L
0 TT=G

0
1
2 ðT

T=L
0 þ TT=G

0 Þ
1
2 ðT

C=L
0 þ TT=L

0 Þ 1
2 ðT

C=G
0 þ TT=G

0 Þ Tavg:
0

2
664

3
775 ð5Þ

where Tavg
0 ¼ 1

4 ðT
C=L
0 þ TT=L

0 þ TC=G
0 þ TT=G

0 Þ.

Tensor factors. We use the term tensor factor for variables of the model that are
factored into the signature tensor to quantify different genomic properties of a
mutational signature. The key idea is to express a mutational process in terms of a
product of strand specific spectra and a set of scalars, which modulate the mag-
nitude of spectra dependent on the genomic state combination presented in the
count tensor. However, to understand how tensor factors enter the factorisation, it
is necessary to introduce the concept of broadcasting, which is the process of
making tensors with different shapes compatible for arithmetic operations.

It is important to realise that it is possible to increase the number of dimensions
of a tensor by prepending their shapes with ones. For example, a three dimensional
tensor X of shape R2´ 3´ 5

þ has 2 rows, 3 columns and a depth of 5. However, we
could reshape X to R1 ´ 3 ´ 1 ´ 2 ´ 5

þ , or R2 ´ 3 ´ 1 ´ 5 ´ 1
þ , which would eventually change

the order of values in the array, but not its content. These extra (empty)
dimensions of X are called singletons or degenerates, and are required to make
entities of different dimensionality compatible for arithmetic operations via
broadcasting. To understand this, consider the following example

1 2
� �

R1 ´ 2 � 3

4

� �
R2 ´ 1

¼ 1 2

1 2

� �
� 3 3

4 4

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Broadcasting and element� wise multiplication:

¼ 3 6

4 8

� �
R2 ´ 2

:

ð6Þ
The⊙ operator first copies the elements along their singleton axes such that the

shape of both resulting arrays match, and then performs element-wise
multiplication as indicated by the ⋅ symbol. This concept is similar to the tensor
product⊗ for vectors, but also applies to higher dimensional arrays, although this
requires to define the shapes of all tensors carefully. For example if F 2 R2 ´ 2 and
H 2 R1´ 1´ 3 then F⊙H is an invalid operation, however, if G 2 R2 ´ 2 ´ 1, then
ðG�HÞ 2 R2 ´ 2 ´ 3 is valid. Also, note that such operations are not necessarily
commutative.

Transcriptional and replicational strand biases. To quantify spectral asymme-
tries in context of transcription and replication, we introduce two vectors
bt; br 2 R1´s

þ , stack and reshape them such that the resulting bias tensor

B 2 R3 ´ 3 ´ 1 ´ s
þ ,

B ¼
br � bt b�1

r � bt 1 � bt
br � b�1

t b�1
r � b�1

t 1 � b�1
t

br � 1 b�1
r � 1 1 � 1

2
64

3
75; ð7Þ

matches the shape of T1. Also, note that signs of bt and br are chosen such that
positive values correspond to a bias towards coding and leading strand, while
negative values indicate shifts towards template and lagging strand.

Signature activities in transcribed/untranscribed and early/late replicating
regions. To assess the activity of mutational processes in transcribed versus
untranscribed, and early versus late replicating regions, we introduce two addi-
tional scalars per signature represented in two vectors at and ar 2 R1 ´ s

þ . Both
vectors are stacked and reshaped to match the shape of T1,

A ¼
at � ar at � ar at
at � ar at � ar at
ar ar 1

2
64

3
75: ð8Þ

Mutational composition. To quantify the percentage of SNVs and other mutation
types requires another 1 × s sized vector m, satisfying the constraint 0 ≤mi ≤ 1 for
i= 1,…, s. In order to includem in the tensor factorisation we reshape the vector to
M 2 R1 ´ 1 ´ 1 ´ s

þ , while (1−m) is multiplied with the secondary signature matrix S.

The strand-specific signature tensor. We define the strand-specific signature
tensor as

Tstrand :¼ T1 � B� A�M; whereT2 ¼ R3 ´ 3 ´ p ´ s
þ ; ð9Þ

which therefore subsumes all parameters to describe a mutational process with
regard to transcription and replication, and quantifies to what extent the
signature is composed of SNVs. To understand this, consider the entry of the
count tensor representative for coding strand mutations, e.g. ðTstrandÞ13�� ¼
bt � at �m� 1

2 ðT
C=G
0 þ TC=T

0 Þ, which explicitly states how the low dimensional
tensor factors for transcription are broadcasted into the signature tensor.

Signature activities for nucleosomal, epigenetic and clustering states. The
strand-specific signature tensor Tstrand can be considered as the basic building
block of the signature tensor, as we instantiate “copies” of Tstrand by broadcasting
scalar variables for each genomic state and signature along their respective
dimensions. To understand this, recall that we, for example, split SNVs in t= 3
nucleosome states (minor in, minor out and linker regions). However, since SNVs
may also fall into regions with no nucleosomal occupancy, we distributed muta-
tions across t+ 1= 4 states in the corresponding dimension of the mutation count
tensor. To fit parameters assessing the activity of each signature along these states,
we initialise a matrix k 2 Rðtþ1Þ ´ s , which can be considered as a composite of a
1 × s constant vector (k1i= 1 for i= 1,…, s) and a t × s matrix of state variables,
allowing the model to adjust these parameters with respect to the first row, which
corresponds to the non-nucleosomal mutations (baseline). To include these
parameters in the factorisation we first introduce a singleton dimensions in the
strand specific signature tensor such that Tstrand 2 R3 ´ 3 ´ 1 ´ p ´ s

þ , and reshape k to
match the dimensionality of Tstrand,

k 2 Rðtþ1Þ ´ s
þ ) K 2 R1 ´ 1 ´ ðtþ1Þ ´ 1´ s

þ : ð10Þ
Both tensors have now the right shape such that element wise multiplication

with broadcasting is valid

T ¼ Tstrand � K where T 2 R3 ´ 3 ´ ðtþ1Þ ´ p ´ s
þ : ð11Þ

We proceed similarly for all remaining genomic properties such as activities
along epigenetic domains, and clustering propensities. Generally, to assess l
genomic properties, we first introduce l singleton dimensions to the strand-specific

signature tensor Tstrand, instantiate l matrices kj 2 R
ðtjþ1Þ
þ ´ s for j= 1,…, l each

with tj states, reshape them appropriately to tensor factors Kj, and broadcast them
into the strand specific signature tensor T2. Here, we introduced new dimensions
for epigenetic domains (epi), nucleosomal location (nuc) and clustering
propensities (clu), and thus we reshaped the strand specific signature tensor to
Tstrand 2 R3 ´ 3 ´ 1 ´ 1 ´ 1 ´ p ´ s

þ , instantiated kepi 2 R16 ´ s
þ , knuc 2 R4 ´ s

þ and kclu 2
R2´ s

þ and computed

T ¼ Tstrand � Kepi � Knuc � Kclu where T 2 R3 ´ 3 ´ 16 ´ 4´ 2´ p´ s
þ ð12Þ

to obtain the final signature tensor T.

Model assumptions. The model assumes that the expected values of CSNV and
Cother are determined by the inner product of the signature tensor T (using the
convention that × is taken over the last dimension of the array on its left - denoting
each different signature - and the first dimension of the array on its right) and the

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23551-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3628 | https://doi.org/10.1038/s41467-021-23551-9 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


exposure matrix E and similarly for the non-SNV signature matrix S and the same
exposure matrix E

E½CSNV� ¼ T ´ E and E½Cother� ¼ ðS0 � ð1�mÞÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
S

´E: ð13Þ

To prevent over segmentation and ensure a robust fit of signatures, we assume
that the data follows a negative binomial distribution with mean T × E and S × E,
and dispersion τ

CSNV
i¼ n � NBððT ´ EÞi¼ n; τÞ and Cother

mn � NBððS ´ EÞmn; τÞ: ð14Þ
We use the Tensorflow framework to find the maximum likelihood estimates

(MLE) T̂, Ŝ, Ê for T, S and E respectively using the parametrisation defined in the
previous section. We initialise the parameters of the model with values drawn from
a truncated normal distribution and compute T̂ ´ Ê and Ŝ ´ Ê which are fed into the
negative binomial likelihood function

LSNVðCSNV
i¼ n; ðT ´EÞi¼ n; τÞ ¼

Y
i¼ n

Γðτ þ CSNV
i¼ nÞ

ΓðτÞCSNV
i¼ n!

ð τ

τ þ CSNV
i¼ n

Þτð ðT ´EÞi¼ n

τ þ ðT ´EÞi¼ n
ÞCSNV

i¼ n

ð15Þ
and

LotherðCother
mn ; ðS ´ EÞmn; τÞ ¼

Y
mn

Γðτ þ Cother
mn Þ

ΓðτÞCother
mn !

ð τ

τ þ Cother
mn

Þτð ðS ´EÞmn

τ þ ðS ´EÞmn
ÞCother

mn :

ð16Þ
The total log likelihood logL is then given by the sum of individual log

likelihoods

logLðCSNV;Cother;T; S; E; τÞ ¼ logLSNVðCSNV
i¼ n; ðT ´EÞi¼ n; τÞ þ logLotherðCother

mn ; ðS´ EÞmn; τÞ
ð17Þ

and thus the optimisation problem boils down to maximise the total log likelihood
(or equivalently to minimise the negative total log likelihood)

T̂; Ŝ; Ê ¼ argminT;S;E �logLðCSNV;Cother;T; S;E; τÞ� 	
: ð18Þ

Moreover, inferring T̂, Ŝ, and Ê enables us to calculate log likelihood of the MLE

log L̂ ¼ logLðCSNV;Cother; T̂; Ŝ; Ê; τÞ: ð19Þ
To calculate the value of each parameter in the model, we minimise the negative

total log likelihood using an ADAM Grad optimiser with an exponentially
decreasing learning rate of 0.1 and approximately 50,000 epochs. We implemented
TensorSignature in Python 3.6 (Packages: h5py (2.7.1), ipython (6.3.1), matplotlib
(3.0.2), numpy (1.16.1), pandas (0.22.0), scikit-learn (0.19.1), scipy (1.0.1), seaborn
(0.9.0), scipy (1.0.1), tensorflow (1.4.1), tensorsignatures (0.4.0), tqdm (4.28.1)).

Model selection. To select the appropriate number of signatures for a model with
dispersion τ and dataset, we compute for each rank s the Bayesian Information
Criterion (BIC)

BICτ ðsÞ ¼ log ðnÞ � kðsÞ � 2 � log L̂; ð20Þ
where n is the number of observations (total number of counts in CSNV and
Cother), k(s) represents number of parameters in the model (which depends on the
rank s), and log L̂ is the log-likelihood of the MLE. The BIC tries to find a trade-off
between the log-likelihood and the number of parameters in the model; chosen is
the rank which minimises the BIC.

Bootstrap confidence intervals. To compute bootstrap confidence intervals (CIs)
for inferred parameters, we randomly select 23 of the samples in the dataset, initialise

the model with the MLE for T̂ and Ŝ while randomly perturbing the 10% of their
estimates, and subsequently refit T̂; Ŝ and Ê to the subset of samples. Initialising the
parameters with the MLE results from computational constraints, as this step needs
to be repeated for 300–500 times to obtain representative distributions of the
parameter space. Next, we match refitted signatures to the MLE reference by
computing pairwise cosine distances, and accept bootstrap samples if the total
variation distance between the bootstrap candidate and the reference is smaller
than 0.2. Finally, we compute 5% and 95% percentiles on accepted bootstrap
samples to indicate the CIs of our inference.

XPC genomes. Somatic single nucleotide variants were called from .bam files were
called as described in48. Subsequently these were aggregated into a mutation count
tensor as described above.

Comparing TensorSignatures to conventional NMF
Extracting signature properties using conventional NMF. We tried to quantify the
genomic properties of mutational signatures using a less principled approach by
simulating mutational signatures plus their genomic properties, sample exposures,
and resulting mutation counts. To recover mutational signatures and corre-
sponding sample exposures, we factorised (summed) mutation counts of simulated

data using 96-trinucleotide channels only. To determine the strand biases and
signatures activities across genomic states, we fixed the spectra of previously
identified signatures, and refitted their exposures to the count matrix containing
the mutations of a specific state only (eg. template strand mutations, TssA). To
obtain a scalar parameter descriptive signature properties, we regressed state spe-
cific exposures to their respective baseline exposures (eg. exposures of template
strand mutations against exposures of unassigned mutations) and compared
obtained regression coefficients with the equivalent parameter of the tensor fac-
torisation and ground truth. To assess the error, we computed the vector 2-norm
and cosine similarity for strand biases, genomic activities and exposures, and sig-
nature spectra respectively. We performed this experiment for datasets with sizes
(100, 1000, 10000) and different numbers of mutations per sample (100, 1000,
10000). Note, in this approach it is not possible to recover signature activities in
untranscribed/transcribed and early/late replicating regions (indicated as “Ampli-
tudes” in the following plot).

Our simulations revealed increasing relative errors for all assessed parameters as
sample size and mutation loads increase (Supplementary Fig. 2, middle panel). To
understand this, consider that only TensorSignatures may leverage the additional
information encoded in the tensor representation of larger datasets to improve the
estimates of signature defining properties such as strand biases and genomic
activities. Although it is possible to find reasonable parameter estimates by fitting
signature spectra first and subsequently regressing out the effect of genomic
determinants, absolute errors are always larger at similar samples sizes and
mutation loads (Supplementary Fig. 2, lower panel).

Assigning single base substitutions to their source signature with maximum a pos-
teriori approaches. To assess TensorSignatures’ ability of assigning mutations to
their appropriate source signature, we designed a simulation experiment in which
we used two very similar signatures (TS05 and TS06) to simulate a mutation count
tensor. We then applied conventional NMF on the marginalised (summed) count
tensor and determined the maximum a posteriori (MAP) signature for each tri-
nucleotide context in each simulated sample as described in19.

Absolute errors (vector 2-norm) of post-hoc assigned mutations increase as the
number of mutations per sample get larger, while the predictions of the equivalent
tensor factorisation become more accurate. This is to be expected as the post-hoc
signature posterior probability is only conditioned on the mutation type and the
sample exposure. Furthermore, shown results are likely to underestimate errors as
our simulations/inferences were performed using only two signatures, and thus
correct signature assignment is likely to happen by chance (Supplementary Fig. 3).

Stability of solutions. Another challenge in mutational signature analysis is the
problem of unambiguously associating other variant types to their respective
mutational processes. Common practice is to perform independent NMFs on each
variant type, and to subsequently match subtype specific signatures to their SNV
correlate by assessing exposures. In contrast, TensorSignatures decomposes SNV
and other mutation type counts simultaneously, thus circumventing the problem of
post-hoc associating different mutation types, and delivering a more robust sig-
nature inference by pooling evidence from the entire mutational imprint.

To illustrate this, we ran independent NMFs on SNV and other mutation count
matrices of the PCAWG dataset. To match resulting mutational spectra, we
computed the correlation coefficients of their exposures and paired highest
correlating signatures. We repeated these steps 50 times to obtain a set of 50
initialisations of paired mutational signatures (SNV and other mutation types), and
compared the stability of these solutions with TensorSignatures decompositions by
computing the silhouette scores across several ranks (Supplementary Fig. 4).

Our results indicate a higher stability of TensorSignatures solutions across all
tested ranks implying that the tensor framework more consistently reproduced
SNV and their accompanying other mutation type spectra.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
PCAWG WGS primary tumour data is available under restricted access, access can be
obtained at [http://dcc.icgc.org/pcawg]. Most data of ICGC and TCGA projects are in an
open tier which does not require access approval. For full access, researchers will need to
apply to the TCGA Data Access Committee (DAC) via dbGaP [https://dbgap.ncbi.nlm.nih.
gov/aa/wga.cgi?page=login] for access to the TCGA portion of the dataset, and to the ICGC
Data Access Compliance Office (DACO; [http://icgc.org/daco]) for the ICGC portion. In
addition, to access somatic single nucleotide variants derived from TCGA donors,
researchers will also need to obtain dbGaP authorisation. The HMF WGS metastatic
tumour data data is available under restricted access, access can be obtained at [https://www.
hartwigmedicalfoundation.nl/applying-for-data/]. A data request can be initiated by
explaining the intended use of the requested data. Upon data access board approval, a
standard license agreement without restrictions regarding intellectual property resulting
from the data analysis needs to be signed by an official organisation representative before
access to the data are granted. The XPC WGS genome data is available under restricted
access, access can be obtained under the accession number phs000830.v1.p1 [https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000830.v1.p1]. Data access
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may only be granted to researchers at a level equivalent to a tenure-track professor or senior
scientist. For further guidance on data access, please see [https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/GetPdf.cgi?document_name=GeneralAAInstructions.pdf]. The
Gencode v19 transcription annotation data used in this study are available at [https://www.
gencodegenes.org/human/release_19.html]. The Repli-seq data for GM12818, K564, Hela,
Huvec and Hepg2 cell lines used in this study are available at [https://www.encodeproject.
org/search/?type=Experiment&assay_title=Repli-seq]. The 15-state ChromHMM
annotation data used in this study are available at [https://egg2.wustl.edu/roadmap/
web_portal/chr_state_learning.html]. The nucleosome MNase dataset used in this study are
available at [https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html]. The
remaining data are available within the Article, Supplementary Information or available
from the authors upon request. Source data are provided with this paper.

Code availability
TensorSignatures’ source code is available at [http://github.com/gerstung-lab/
tensorsignatures] and as a pypi package “tensorsignatures”51. This repository
contains code for data preprocessing, genomic annotation and signature discovery
and fitting. TensorSignatures can also be run as TensorSignaturesOnline, a web
application accessible under [http://gerstung-lab.github.io/tensorsignatures], that
enables users to analyse their VCF data by attributing variants to a set of predefined
TensorSignatures. The usage of the web application requires an online registration,
which enables the access to an upload form to which VCF data may be uploaded and
subsequently analysed. All analyses were performed using Python 3.6 (Packages: h5py
(2.7.1), ipython (6.3.1), matplotlib (3.0.2), numpy (1.16.1), pandas (0.22.0), scikit-
learn (0.19.1), scipy (1.0.1), seaborn (0.9.0), scipy (1.0.1), tensorflow (1.4.1),
tensorsignatures (0.4.0), tqdm (4.28.1)), or R 3.4 (Packages: BiocInstaller/
Bioconductor (1.24.0), Biostrings (2.42.1), BSgenome (1.42.0), GenomicRanges
(1.26.4), VariantAnnotation (1.20.3), rhdf5 (2.18.0)).
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