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Summary
The human genetic dissection of clinical phenotypes is complicated by genetic heterogeneity. Gene burden approaches that detect ge-

netic signals in case-control studies are underpowered in genetically heterogeneous cohorts. We therefore developed a genome-wide

computational method, network-based heterogeneity clustering (NHC), to detect physiological homogeneity in the midst of genetic

heterogeneity. Simulation studies showed our method to be capable of systematically converging genes in biological proximity on

the background biological interaction network, and capturing gene clusters harboring presumably deleterious variants, in an efficient

and unbiased manner. We applied NHC to whole-exome sequencing data from a cohort of 122 individuals with herpes simplex enceph-

alitis (HSE), including 13 individuals with previously publishedmonogenic inborn errors of TLR3-dependent IFN-a/b immunity. The top

gene cluster identified by our approach successfully detected and prioritized all causal variants of five TLR3 pathway genes in the 13 pre-

viously reported individuals. This approach also suggested candidate variants of three reported genes and four candidate genes from the

same pathway in another ten previously unstudied individuals. TLR3 responsiveness was impaired in dermal fibroblasts from four of the

five individuals tested, suggesting that the variants detected were causal for HSE. NHC is, therefore, an effective and unbiased approach

for unraveling genetic heterogeneity by detecting physiological homogeneity.
Introduction

The germline genetic component of many human diseases

displays substantial heterogeneity, including both locus

and allelic heterogeneity.1–3 Variants of genes from the

same or related pathways can underlie the same or similar

disorders.1,2 Along with genetic heterogeneity, incomplete

penetrance is another obstacle hindering the identification

of disease-causing variants, which may be clinically silent,

even in relatives of an index case. For example, a study of

589,306 genomes identified 13 healthy adults with geno-

types of eight severe Mendelian diseases.4 Severe infectious

diseases may display both genetic heterogeneity and

incomplete penetrance. Most of the infectious diseases

studied to date have been shown to be genetically hetero-

geneous and can follow a ‘‘monogenic non-Mendelian’’

pattern,2 as shown by the finding that 15 human infec-

tions caused by viruses, bacteria, fungi, or parasites were

monogenic, often with incomplete penetrance, in at least

one affected individual.2 When two or more susceptibility

genes were found, their products were often biologically

connected.2 This may reflect the nature of the search lead-
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ing to their discovery, based on an anchor gene, but, alter-

natively, genetic heterogeneity may underlie physiological

homogeneity in many or even most individuals with a

given condition. A landscape of genetic heterogeneity un-

derlying physiological homogeneity is emerging, and may

apply to a sizeable proportion of individuals with various

severe infectious diseases.1,2

Next-generation sequencing (NGS) technologies have

greatly accelerated the discovery of genetic lesions under-

lying human diseases.2 Most of the methods currently

widely used in searches for pathogenic variants in NGS

data are usually one-dimensional. They sequentially filter

the variants by quality control (QC) metrics and popula-

tion minor allele frequency (MAF), prioritize the variants

according to their annotated molecular consequences

and predicted deleteriousness, apply burden tests to detect

enrichment in particular genes and variants relative to a

control group, and finally propose risk alleles on the basis

of statistical significance.3 These methods assume genetic

homogeneity, in at least a proportion of individuals with

the condition studied. They cannot capture genetic lesions

in multiple genes of close biological relevance, which may
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be collectively, but not individually, significant. The

notion of ‘‘network medicine’’ may provide a framework

for tackling this challenge, as human inherited conditions,

rare or common, are rarely consequences of abnormalities

in a single gene, and more commonly result from the

perturbation of a functionally related molecular

network.5 In this light, the detection of physiological ho-

mogeneity could facilitate the development of a multidi-

mensional approach for intersecting and leveraging NGS

data with biological networks and pathways, to detect

the nexus of heterogeneous genetic defects in biological

proximity within a cohort of individuals with the same

disease.

The application of network/pathway-based methodolo-

gies has progressed in multiple studies for rare diseases6,7

and cancer genomics,8,9 and for genome-wide association

studies (GWASs) of complex diseases and traits.10,11 These

studies have proposed different network concept for the

detection of disease-associated genes from pathways, pro-

tein-protein interaction (PPI) networks, or gene co-expres-

sion networks, providing many examples of the power of

network medicine. However, these methodologies have

not been presented as practical tools suitable for imple-

mentation in clustering analyses on NGS data for case-con-

trol studies, and none was designed to identify clusters of

gene candidates at the individual level. Meanwhile, there

are several methods that could search for variants in phys-

iologically related genes from NGS data, but they need to

predefine gene sets before the analysis.12 We therefore

aimed to develop a practical genome-wide computational

approach connecting deleterious genetic heterogeneity

with physiological homogeneity, by integrating NGS

data, population genetics, predictions ofmutation deleteri-

ousness, biological interaction networks, pathway infor-

mation, gene ontology annotations and statistics, in order

to identify significant disease-specific genetic signals at the

gene cluster level in an unbiased, efficient, and systematic

manner.6,13,14 We developed the network-based heteroge-

neity clustering (NHC) approach for this purpose.
Material and methods

Samples
In this study, we used three sets of samples to develop and validate

our NHC method. A group of 893 European individuals with se-

vere infectious diseases, including viral, bacterial, and fungal in-

fections, from our in-house HumanGenetics of Infectious Diseases

(HGID) database, was used for simulation studies. A group of 122

European individuals with herpes simplex virus-1 (HSV-1) enceph-

alitis (HSE) from our HGID database was used for the application

of our method to the detection of HSE-causing signals. These indi-

viduals of European origin were identified by principal compo-

nent analysis (PCA) on whole-exome sequencing (WES) data. We

also used 490 healthy European individuals from the 1000 Ge-

nomes Project (1KGP) as control subjects.15 We focused on the Eu-

ropean population in this study, as there is evidence to suggest

that ethnic homogeneity between affected individuals and control
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subjects is important in variant filtration and case-control enrich-

ment tests.3 Figure S1 shows the PCA plot of the first two principal

components (PCs) for all the European individuals used in this

study, together with all the individuals identified globally for

whom data were deposited in our HGID database. The inclusion

of all the human subjects studied here was approved by the appro-

priate institutional review board.
Variant detection and filtration
We performed exome capture with SureSelect Human All Exon

V4þUTRs on our in-house WES data, aligned reads to the human

reference genome (hg19) with the maximum exact matches algo-

rithm in the Burrows-Wheeler Aligner (BWA),16 and used the

Genome Analysis Software Kit (GATK) v3.3 best practice pipeline

to process the data.17 We filtered the variants on the basis of mul-

tiple QC metrics:18 depth of coverage (DP) R 7, mapping quality

(MQ) R 60, variant quality (VARQUAL) R 45, and minor read ra-

tio (MRR) < 0.2. We annotated the variants with SnpEff19 and

focused on the missense or loss-of-function (MisLoF) variants an-

notated as ‘‘missense,’’ ‘‘frameshift,’’ ‘‘stop-gained,’’ ‘‘stop-lost,’’

‘‘start-lost,’’ ‘‘splice-acceptor,’’ or ‘‘splice-donor.’’

For a given disease, knowledge of its prevalence and mode of in-

heritance facilitate the estimation of the compatible MAF cutoff

for the disease, and the removal of variants above the MAF cut-

off,20 based on the observed MAF in the gnomAD database.21

The common false-positive variants in our in-house HGID data-

base of individuals with infectious diseases were also used to filter

the variants further.22 We focused on potentially deleterious vari-

ants, using the gene damage index (GDI),23 combined annotation

dependent depletion score (CADD),24 and mutation significance

cutoff (MSC).25 GDI is an indicator of the biological indispens-

ability (low GDI) or redundancy (high GDI) of a given gene.23

CADD is a composite score representing the deleteriousness of a

given variant.24 MSC95 is the lower boundary of the 95% confi-

dence interval of CADD scores for all reported disease-causing mu-

tations of a given gene.25 In this study, we used GDI % 10, and

CADD R 10 or CADD R MSC95 as the mutation deleteriousness

cutoff for shortlisting the presumably deleterious variants in each

individual. The combination of these filtration parameters, popu-

lation genetics, and predictions of mutation deleteriousness has

already been successfully applied to the discovery of a number

of disease-causing mutations.3,20,26
Biological network construction
We obtained 1,760,357 PPIs from the BioGRID database,27

1,063,382 PPIs from the IntAct database,28 and 89,955 PPIs from

the REACTOME database.29 Following restriction to human genes

and the requirement for evidence of physical interactions, we re-

tained 363,547 PPIs, 65,573 PPIs, and 18,119 PPIs, respectively,

from these databases. These three PPI datasets were then merged

into a set of 420,785 unique PPIs for 18,892 human genes. We

also obtained the STRING v.11 database,30 which provides a com-

posite score to approximate the probability of an interaction based

on multiple evidence (e.g., experimental, co-expression, text-min-

ing, etc.). We cross-referenced the STRING database with the PPI

dataset and assigned the STRING score as the edge weight of

each interaction, to represent the biological proximity between

two genes. Finally, we constructed an edge-weighted background

biological network of 202,057 PPIs for 15,585 human genes

(Figure 1A). All the PPIs mentioned above were processed by

removing self-interacting genes and duplicated gene pairs.
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Figure 1. The general framework of the
NHC approach
(A) Data collection and processing to
construct the edge-weighted background
biological network based on protein-pro-
tein interactions, the graphic visualization
of the network, and its edge-weight distri-
bution.
(B) Flowchart of NHC detection of gene
clusters harboring genetic heterogeneity
with close biological relevance.
NHC gene clustering algorithm
We collapsed the potentially deleterious variants into the genes

harboring them, and the gene clustering algorithm was designed

to traverse all genes in all individuals in the background network

to converge genes that are biologically close. As illustrated in

Figure 2, the algorithm is initialized with a list of genes per individ-

ual and an edge-weighted background network. The algorithm

starts from one gene in one individual and searches for the next

closest gene above the edge weight cutoff in the rest of the individ-

uals. We used a stringent STRING scoreR 0.99 to cluster the genes

of the greatest biological relevance. At each step in the clustering

iteration, the newly identified gene and individual are grouped

into the existing gene cluster and case cluster. The clustering algo-

rithm continues to cluster the genes with the highest degree of

biological proximity, by traversing all genes in all individuals iter-

atively in the background network, until all individuals have been

visited or no more genes in the unvisited individuals are beyond

the edge-weight threshold for gene clustering. A full round of clus-

tering yields one gene cluster and its corresponding case cluster as

output.

As previously reported, disease-associated genes are usually

identified by avoiding hub genes, which are highly connected

with other molecules.5 During gene clustering, the algorithm

skips the hub genes, to prevent the formation of giant gene clus-

ters due to the high connectivity of the hub genes in the back-

ground network. The connectivity of each gene is defined by

the number of its interacting genes with a STRING score above

0.9 (a high-confidence PPI cutoff defined by the STRING data-

base) in the background network. Here, we considered hub genes

to be those with a connectivity R 50 (constituting �2% of the

total genes in the background network). In other words, we

skip the genes with more than 50 high-confidence PPIs in the

gene clustering process. In the code provided, this parameter

can be modified to include all genes or to exclude more hub

genes, as appropriate for the analysis of the cohort concerned

and specified by the user.

Once a round of clustering is completed, the algorithm starts

again from another gene in the same individual, to converge

another gene cluster and its corresponding case cluster. Once all
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the genes of this individual have been

used as the starting point for clustering,

the algorithm moves on to the next indi-

vidual. This process is repeated for each

gene of each individual, to generate a num-

ber of gene clusters, each displaying inter-

nal biological closeness. The algorithm

then iteratively merges two gene clusters

if one cluster is a superset/subset of the

other, or if the two clusters with the great-
est overlap have more than 50% (common genes/union genes) of

their genes in common, thereby reducing the number of gene

clusters, such that these clusters are externally more different

from each other. Given a number of n cases with a mean ofm qual-

ifying genes per case, the computational complexity of this algo-

rithm is O(n∙m∙log(n∙m)).

NHC-boost gene clustering algorithm
For dealing with large cohorts of cases, we implemented a

boosted version of the algorithm (NHC-boost), following the

same concept as the original algorithm, but traversing each

gene of a specific case only once. If a given gene from a specific

case has been assigned to one cluster, it is not traversed or clus-

tered again in the remaining clustering iterations. This modifica-

tion may slightly decrease the size of the gene clusters, but signif-

icantly increases the computation efficiency, by reducing

computational complexity form the original O(n∙m∙log(n∙m))

to the boosted O(n∙m).

Cluster-level enrichment
We performed a PC-adjusted cluster-level enrichment test to

determine the gene clusters statistically enriched in the case

cohort relative to the control cohort, and also to account for

the ethnicity-related genetic heterogeneity in the HGID and

1KGP databases (Figure S1). We performed PCA on all individuals,

using the high-quality common variants. We extracted the first

five PCs for each individual, on which we performed logistic

regression analysis with the glm function in R to determine the

proportion of carriers between affected individuals and control

subjects for each gene cluster. We used the p value indicating

the statistical significance of each gene cluster in affected individ-

uals versus control subjects, and took a p value % 0.01 as the

threshold for cluster-level significance. This p value cutoff could

be customized for different applications, as the number of gene

clusters and the size of each gene cluster may vary considerably

with the use of different parameters for variant filtration,

different edge-weight cutoffs for gene clustering, and different

cohort sizes.



Figure 2. Illustration of the gene-clustering algorithm
The list of genes harboring qualifying variants in five affected in-
dividuals is shown on the left, the center shows the background
network in which edge thickness represents the edge weight and
the bold edge is chosen as the clustering cutoff, and the gene clus-
ter and corresponding case cluster generated are shown on the
right (yellow indicates a new gene and a new case identified in
each step of clustering; red indicates the genes and cases already
in the cluster; white indicates the genes available for clustering;
and gray indicates the genes closed for clustering).
Pathway and gene ontology enrichment
We collected a total of 1,720 pathways (187 KEGG pathways and

1,533 REACTOME pathways) from the MSigDB database,31 and

performed Fisher’s exact tests to assess the statistical significance

of each gene cluster versus each pathway. We used a p value %

1e�5 as the cutoff for pathway enrichment, which is more strin-

gent than the adjusted p value (0.05/1720 ¼ 2.9e�5). We used

the most enriched pathway (the pathway with the lowest p value)

as a surrogate for the primary physiological nature of each gene

cluster. We also collected 8,992 biological process and 2,812 mo-

lecular function annotations from the Gene Ontology (GO) data-

base32 that contain more than one gene. We performed Fisher’s

exact tests to evaluate the statistical significance of each gene clus-

ter versus each biological process and molecular function with a p

value cutoff at 1e�5. Enrichment in gene ontology terms can sug-

gest the biological nature of small gene clusters not displaying sig-
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nificant enrichment at pathway level, but functionally important

and potentially disease related.
Control-embedded pathways
As a means of understanding the gene clusters harboring the back-

ground variations and their enriched pathways within the control

cohort of 490 healthy individuals, we ran our method within con-

trol subjects. We randomly picked 100 individuals, in which gene

clusters were identified and subjected to enrichment analysis versus

the remaining 390 control subjects, for 100 simulations. We identi-

fied the gene clusters with cluster-level p values% 0.01 and with at

least one pathway enriched with a p value % 1e�5. We extracted

the most enriched pathway for each of these gene clusters, deter-

mined the number of occurrences of these pathways, and defined

the pathways occurring in more than 5 of the 100 simulations as

relatively common pathways in control subjects. We thus obtained

a list of 58 control-embedded pathways (Table S1), emerging from

the background variations. We used these pathways to classify the

gene clusters generated from the case cohort.
Gene cluster output
The final output of NHC is the significant gene clusters converged

from the genes carrying qualifying variants in the case cohort,

with cluster-level p values % 0.01 versus the control cohort, and

at least one pathway or one gene ontology term enriched with a

p values % 1e�5. Gene clusters for which the most enriched

pathway is not a control-embedded pathway are prioritized as class

I clusters, with all other gene clusters classified as class II clusters.

Gene clusters are first categorized by these two classes, and then

ranked by their cluster-level significance. The previously identified

qualifying variants are then retrieved for each cluster. Finally, mul-

tiple levels of information are summarized for each gene cluster: the

list of genes, the individuals carrying variants of these genes, pre-

sumably deleterious homozygous, and heterozygous variants of

these genes, cluster-level significance, the list of enriched pathways,

the most enriched pathway indicating the physiological nature of

the cluster, and the list of enriched gene ontology terms. VCF-

format files containing the presumably deleterious variants are

generated for each cluster for further variant investigations,20,33,34

and network-format files are also generated for each cluster for

network-based computations35,36 and visualizations.37
Simulation studies
We performed two simulation studies to gain more insight into

the workings of our method. The first was designed to test the

null hypothesis that a cohort of individuals with multiple disease

phenotypes should not yield biologically and statistically signifi-

cant gene clusters associated with multiple diseases. We sampled

case cohorts from a group of 893 European individuals with

different severe infectious diseases in the HGID database, and we

used 490 healthy individuals from 1KGP as the control. We took

the same variant filtration criteria as in the HSE study. We per-

formed 100 independent tests of our method on a cohort of 100

cases selected at random, and we identified the class I gene clusters

(p values% 0.01) in all simulations to analyze the significant gene

clusters generated from this null hypothesis test.

The second simulation study was designed to detect the simu-

lated disease signals from varying numbers of simulated individ-

uals with varying numbers of mutated genes in a predefined

pathway. We used the same data as in the first simulation study.

We chose a development-related Hippo pathway, due to the
n Journal of Human Genetics 108, 1012–1025, June 3, 2021 1015



high intrinsic likelihood of these individuals carrying deleterious

signals from immune/infection-related pathways. According to

the REACTOME database, the Hippo signaling pathway has a total

of 20 genes, from which we selected eight (LATS1, MOB1A,

MOB1B, SAV1, STK3, STK4, WWTR1, and YAP1), for which we

created artificial stop-gained mutations at the 10th codon in their

canonical transcripts (Figure S2, Table S2). If the nucleotides en-

coding the 10th amino acid span the splice site, the mutation

was instead created at the 9th codon, to prevent potentially aber-

rant splicing.We confirmed these stop-gainedmutations with Seq-

Tailor.33 We randomly selected 100 individuals for 100 iterations

and randomly assigned the artificial mutations of the eight genes

independently to subgroups of 5, 10, 20, or 30 individuals, with 25

simulations for each subgroup size. As mutation assignment was a

random process, it was possible for any given mutation to be as-

signed to more than one individual. In each simulation, we iden-

tified the gene cluster displaying the highest enrichment in the

Hippo pathway as the Hippo cluster, and we checked whether

these Hippo clusters included all the simulated genes and were

highly ranked, as a demonstration that the simulated disease

signal was effectively captured and prioritized.
SKAT-O test
For comparison with the NHC approach, we implemented a

pathway-informed SKAT-O38 analysis of the HSE cohort. We

used the same qualifying variants and genes as were obtained in

the application of the NHC method in the HSE study. We first

ran the SKAT-O test38 at the variant and gene levels in the HSE

cohort, using a p value cutoff % 0.01 for significant variant and

gene hits. We also scripted a pathway-informed SKAT-O test, by

providing 1,720 predefined pathways (187 KEGG and 1,533 RE-

ACTOME pathways) before running the SKAT-O test on the HSE

cohort, using a p value cutoff % 0.001 to identify significant

pathway hits. SKAT-O tests were performed with the default set-

tings. The p value cutoffs used here could be customized for

different applications.
Study of TLR3 responsiveness in human fibroblasts
SV40-transformed fibroblasts were plated at a density of 105 cells

per well in a 24-well plate and incubated overnight. The cells

were left unstimulated or were stimulated with polyinosinic-poly-

cytidylic acid (poly(I:C); Amersham) at a concentration of 25 mg/

mL, and the culture medium was harvested after 24 h of stimula-

tion. Cytokine concentrations in the culture medium were

determined by ELISA. For the determination of IFN-l, culture su-

pernatants were incubated for 2 h in plates coated with 1 mg/mL

monoclonal anti-human IL29 antibody (R&D). A biotinylated

monoclonal secondary antibody directed against human IL29

(R&D) and streptavidin peroxidase were added, together with

TMB (3,30,5,50-tetramethylbenzidine). The signal at 450 nm was

then read with a plate fluorescence reader. The concentration of

IL-6 in the cell culture supernatant was determined with an ELISA

kit from R&D Systems.
Results

NHC, a network-based approach for detecting

physiological homogeneity

NHC is designed to study NGS data from a cohort of indi-

viduals with the same disease as the input and to output
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significantly enriched gene clusters harboring presumably

deleterious variants in these individuals as the causal can-

didates underlying the disease studied. Figure 1 illustrates

the general framework of our approach for distilling

large-scale biological data with interpretable parameters

and converging genes into gene clusters of close biological

relevance. Themain framework of NHC is composed of the

following steps.

(1) A large-scale network of biological relevance is first

established, by integrating the human PPIs from

the BioGRID,27 IntAct,28 and REACTOME29 data-

bases, and weighting the PPIs by scores from the

STRING database30 to represent the level of biolog-

ical relevance between genes. We thus obtained an

edge-weighted background biological network of

202,057 PPIs for 15,585 human genes (Figure 1A).

(2) Users then define a cohort of affected individuals

and a cohort of control subjects with their genomic

variant data and filter the variants by multiple

parameters: QC metrics, MisLoF molecular conse-

quences, population MAF compatible with the

prevalence of the disease based on the gnomAD

database,21 and predictions ofmutation deleterious-

ness (e.g., CADD,24 MSC25). This variant filtration

shortlists the variants most likely to confer a risk

of the disease. These qualifying variants, which are

presumed to be deleterious, are then collapsed

into genes for each individual. Different analyses

could be performed based on the different defini-

tions of variant selection.

(3) All the genes carrying qualifying variants are then

traversed in all individuals in the edge-weighted

background PPI network, and genes in biological

proximity are iteratively converged into gene clus-

ters (Figure 2). The algorithm starts from one gene

in one individual, and iteratively searches for the

closest gene above the edge-weight cutoff in the re-

maining individuals. Each round of clustering stops

when all the individuals have been visited or no

other gene in the unvisited individuals is above

the edge-weight cutoff. The algorithm continues

until every gene of every individual has been used

once as the starting point for clustering. A number

of gene clusters are obtained, each of which con-

tains genes that are biologically close. The algo-

rithm then iteratively merges two clusters, if one is

a superset/subset of the other or if the two clusters

with the greatest overlap have more than 50% of

their genes in common, to obtain a smaller number

of gene clusters that are externally more different

from each other.

(4) The statistical significance of each gene cluster in

cases versus controls is then determined by PC-

adjusted cluster-level enrichment. We used a strin-

gent p value % 0.01 as the cutoff to retain signifi-

cant gene clusters in the case cohort. This cutoff is
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based on the average of �100 clusters formed in the

simulation study under the null hypothesis.

(5) KEGG þ REACTOME pathway enrichment analysis

is then performed on each gene cluster, retaining all

pathways displaying enrichment with a p value %

1e�5, a stringent cutoff adjusted by the number of

pathways. The pathway with the greatest enrich-

ment (the lowest p value) is considered to corre-

spond to the biological nature of each gene cluster.

Gene ontology enrichment analysis is also per-

formed for biological processes and molecular

functions on each gene cluster with a p value cutoff

at 1e�5. Gene clusters for which no pathway or

gene ontology is enriched are removed.

(6) Steps 3–5 are then performed within the control

cohort, to identify control-embedded pathways. A

subgroup of controls is selected at random, in which

gene clusters are identified and subjected to enrich-

ment analysis versus the rest of the controls, for 100

simulations. The most enriched pathways of these

gene clusters will be populated from all simulations.

The frequently enriched pathways are considered to

be control-embedded pathways.

(7) The gene clusters from the case cohort are classified

into classes I and II. If a gene cluster does not display

the highest level of enrichment in a control-

embedded pathway, it is considered as class I and

likely to be more relevant to the disease studied.

Otherwise, the gene cluster is considered as class

II. Within each class, the gene clusters are ranked

by cluster-level significance versus controls, as

determined in step 4.

(8) The presumably deleterious variants harbored in

each gene cluster are retrieved, and the detected ge-

netic heterogeneous signals are presented at the

network, gene, variant, and individual levels.
Simulation study (I): Null hypothesis test

We conducted the first simulation study for a null hypoth-

esis test to assess the assumption that a randomly assem-

bled case cohort with multiple disease phenotypes does

not display biologically relevant gene clusters significantly

associated with a mixture of diseases. As our method is

capable of detecting gene clusters for a portion of individ-

uals displaying physiological homogeneity within a cohort

displaying physiological heterogeneity, some disease sig-

nals might emerge, with a low discovery rate. We used

893 European individuals with viral, bacterial, and fungal

infections from our HGID database. We randomly selected

100 of these individuals, to assemble a case cohort of

different clinical phenotypes for 100 independent repli-

cates and used 490 healthy European individuals from

1KGP as the control cohort in all simulations. The variant

filtration criteria were as defined in material and methods.

On average, each simulation yielded a total of 106 gene
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clusters (minimum: 90, maximum: 127), after merging

the gene clusters from the initial output. By taking a

cluster-level p value % 0.01 and focusing on class I gene

clusters, we found that 62/100 simulations detected no sig-

nificant class I gene clusters. One significant class I gene

cluster was identified in 30 of the remaining 38 simula-

tions. The top gene clusters in these 38 simulations had

p values of 0.00003 to 0.00744 (median: 0.002) and cluster

sizes of 3 to 46 genes (median: 9) (Figure S3, Table S3). This

null hypothesis simulation gave us a baseline for NHC

detection in cohorts of individuals for whom no particular

role of any specific pathway was expected to be detected.

Simulation study (II): Alternative hypothesis test

We conducted a second simulation study under the alter-

native hypothesis, to test NHC for the detection of simu-

lated disease signals, in cohorts with different numbers

of simulated individuals carrying mutations of genes

from a predefined pathway. We used the same data as in

simulation study I, with the random selection of 100 indi-

viduals, fromwhomwe randomly selected a subgroup of 5,

10, 20, or 30 individuals to be assigned any of the artificial

stop-gained mutations of eight genes of the Hippo

signaling pathway (Figure S2, Table S2). We ran a total of

100 simulations, with 25 simulations per subgroup size.

Mutations were assigned at random, permitting a given

mutation to be assigned to more than one case. We consid-

ered the identification of a gene cluster most enriched in

the Hippo pathway (Hippo cluster) to constitute the cap-

ture of the simulated disease signal.

We found that the Hippo cluster was detected with a p

values % 0.01 in all simulations with at least ten selected

individuals (Figure S4, Table S4). When only five individ-

uals were selected, the Hippo cluster was detected in 22/

25 (88%) of the simulations, with the other three Hippo

clusters close to the threshold for cluster-level significance

(p values < 0.03). Prioritization of the Hippo cluster may

have been affected by the smaller number of simulated

genes and the smaller number of carriers, resulting in a

sparsely populated cluster with a relatively lower level of

significance versus controls. When 20 or 30 individuals

were selected, the Hippo cluster was always identified as

the top-ranked gene cluster. Thus, NHC was found to be

capable of detecting and prioritizing the simulated disease

signal with varying mutated genes and varying number of

carriers.

Application to an HSE cohort (I): Detecting HSE-specific

gene clusters

A good example of genetic heterogeneity underlying se-

vere infectious diseases is provided by HSE, the most

common and devastating viral encephalitis in Western

countries, with an incidence of about 2–4 affected individ-

uals per 1,000,000 people per year.39,40 Our previous

studies have shown that HSE was caused by various mono-

genic inborn errors of TLR3-dependent IFN-a/b immunity

in 13 HSE-affected individuals with causal rare variants of
n Journal of Human Genetics 108, 1012–1025, June 3, 2021 1017



Table 1. Published HSE-causing single-gene inborn errors of TLR3-dependent IFN-a/b immunity

Gene # Cases Variant Accession Consequence Zygosity MAF (gnomAD v2.1.1)

TLR3 1 g.187003919T>C rs768091235 missense (p.Leu360Pro) het 2.39e�05

TLR3 3 g.187004500C>T rs121434431 missense (p.Pro554Ser) het 4.06e�04

TLR3 1 g.187005068G>A rs1280549921 missense (p.Gly743Asp) het 3.98e�06

TLR3 1 g.187005076G>T rs1554064929 stop-gained (p.Glu746*) het N/A

TLR3 1 g.187005272G>T rs1244010954 missense (p.Arg811Ile) het N/A

TLR3 1 g.187005912G>A rs199768900 missense (p.Arg867Gln) hom 6.48e�04

TBK1 1 g.64854030A>C rs1010930015 missense (p.Asp50Ala) het 4.20e�06

TBK1 1 g.64860798G>C rs1555202947 missense (p.Gly159Ala) het N/A

TICAM1 1 g.4817833C>T rs146550489 missense (p.Ser186Leu) het 3.07e�04

TICAM1 1 g.4817969C>T rs387907307 stop-gained (p.Arg141*) hom 4.01e�06

TRAF3 1 g.103342015C>T rs143813189 missense (p.Arg118Trp) het 1.44e�03

UNC93B1 1 g.67764121_67764124del rs759883057 indel-frameshift (p.Phe345fs) hom 2.55e�05

UNC93B1 1 g.67765829G>A rs780094017 missense (p.Gly261Ser) hom 4.01e�06
five genes of the TLR3 signaling pathway:39–47 TLR3

(MIM:48 603029), UNC93B1 (MIM: 608204), TICAM1

(TRIF) (MIM: 607601), TRAF3 (MIM: 601896), and TBK1

(MIM: 604834) (Table 1). Another group identified a case

of HSE in a context of IRF3 (MIM: 603734) deficiency,49

which also affects the TLR3 signaling pathway. It is there-

fore becoming increasingly clear that HSE is caused by a

collection of monogenic inborn errors of immunity dis-

playing genetic heterogeneity and incomplete clinical

penetrance at individual level but physiological homoge-

neity at cohort level.50,51 We evaluated the efficacy of our

method on data from real individuals, by applying it to

the analysis of WES data from a cohort of 122 European in-

dividuals with HSE (including the 13 previously published

cases) from the HGID database, along with a control

cohort of 490 healthy European individuals from 1KGP.15

We used multiple criteria to filter the variants: sequencing

QC (DP R 7, MQ R 60, VARQUAL R 45, MRR < 0.2),

population MAF compatible with HSE prevalence (MAF

% 0.001 for heterozygous variants and MAF % 0.03 for

homozygous variants according to gnomAD21), predic-

tions of mutation deleteriousness (CADD R 10 or CADD

R MSC95),24,25 and MisLoF variants. We obtained a total

of 14,729 rare and potentially deleterious variants from

the 122 cases, which were collapsed into 7,512 genes,

with a mean of 126 genes per case.

NHC generated an initial output of 225 gene clusters,

which were then merged by combining the clusters with

more than 50% overlap, to yield 143 gene clusters. Eight

gene clusters were significantly enriched in affected indi-

viduals, with a cluster-level p values % 0.01. Pathway

enrichment analysis led to the identification of five gene

clusters with significant pathways (Table 2), which were

then classified into three class I and two class II gene clus-

ters, based on the control-embedded pathways. These gene

clusters were internally biologically close, externally
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different (no common genes between the five clusters), sta-

tistically significant from control subjects, functionally an-

notated with biological pathways and gene ontology

terms, and carried presumably deleterious mutations.

Each gene cluster was associated with physiological homo-

geneity in a proportion of HSE-affected individuals.

Application to an HSE cohort (II): Genes harboring the

known HSE-causing mutations in the top-ranked cluster

We found that the NHC method successfully detected,

converged, and prioritized all five genes harboring HSE-

causing mutations reported by us, with 13 deleterious vari-

ants in 13 affected individuals in the top-ranked class I gene

cluster (15 variants in total, as 2 individuals carry 2 variants

each). This gene cluster contained a total of 32 genes,

harboring 4 homozygous and 59 heterozygous variants

that are presumably deleterious, from 49 HSE-affected indi-

viduals, with a cluster-level p value of 0.00125 versus the

control cohort (Table 2). This gene cluster was most en-

riched in the KEGG Toll-like receptor signaling pathway (p

value ¼ 3.2e�15) and in another 16 significantly enriched

pathways with p values % 1e�5 (Table S5), all of which

were closely related to TLR or interferon signaling. This

gene cluster was also enriched in 12 biological processes

with p values % 1e�5 and was most enriched in the

GO:0035666 TRIF-dependent toll-like receptor signaling

pathway (p value ¼ 5.0e�16). No molecular function was

significantly enriched in this gene cluster. Figure 3 visualizes

this top-ranked gene cluster as a network, in which the

known HSE genes are gathered at the center of the cluster.

Application to an HSE cohort (III): Detection of

candidate genes in the top-ranked cluster and

experimental validation

In addition to the previously published HSE-causing muta-

tions of 5 TLR3 pathway genes in 13 affected individuals,
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Table 2. The five significant gene clusters, p value % 0.01, detected by the NHC method in the HSE cohort of 122 individuals

Cluster #Genes

#Var
Hom |
Het #Cases

Cluster
p value #Pathways

Top
Pathway #BP Top BP #MF Top MF

Class I

#1 32 4 | 59 49 0.00125 17 KEGG_TOLL_LIKE_
RECEPTOR_SIGNALING_
PATHWAY (3.209e�15)

12 GO:0035666:TRIF-
dependent toll-like
receptor signaling
pathway (5.015e�16)

0 –

#2 5 0 | 14 13 0.00274 11 REACTOME_HDR_
THROUGH_SINGLE_
STRAND_ANNEALING_
SSA (9.676e�10)

4 GO:1901796:regulation
of signal transduction
by p53 class mediator
(2.108e�07)

0 –

#3 6 0 | 15 15 0.00564 3 REACTOME_
PEROXISOMAL_
PROTEIN_IMPORT
(7.262e�11)

2 GO:0006625:protein
targeting to
peroxisome (2.81e�11)

0 –

Class II

#4 30 1 | 48 44 0.00092 2 REACTOME_
MITOCHONDRIAL_
TRANSLATION
(1.121e�57)

4 GO:0070125:
mitochondrial
translational elongation
(7.605e�64)

2 GO:0003735:structural
constituent of
ribosome (5.791e�42)

#5 10 0 | 24 22 0.00188 7 REACTOME_PROCESSING_
OF_INTRONLESS_PRE
MRNAS (2.658e�17)

6 GO:0006378:mRNA
polyadenylation
(2.224e�16)

0 –

Hom, homozygous; Het, heterozygous; BP, biological process; MF, molecular function.
this top-ranked cluster captured another three heterozy-

gous variants of three of these genes (TLR3, IRF3, and

TBK1) in three individuals that had not previously been

studied (Table 3). It also identified another 33 affected in-

dviduals carrying 45 potentially deleterious variants of 26

genes closely related to TLR3 signaling (Figure 3). This

top-ranked gene cluster presented candidate genes for

testing in these previously unstudied HSE-affected individ-

uals. Based on literature review for the genes concerned

and their population genetics data,20,21 we selected IKBKE

(MIM: 605048), TAB1 (MIM: 602615), TAB2 (MIM:

605101), and TANK (MIM: 603893) as four candidate genes

potentially able to cause HSE due to their involvement in

TLR3-IFN signaling. TAB2 is thought to be recruited by

TLRs for signal transduction, but this remains a matter of

debate, because TAB2-deficient mice do not display TLR

signaling abnormalities.52 TANK binds TBK1 and IKBKE

to regulate type I interferon induction in antiviral innate

immunity, and TBK1 activation is dependent on the integ-

rity of TBK1/TANK interaction.53

We identified eight presumably deleterious rare variants

of these four candidate genes in seven unstudied HSE-

affected individuals. Together with the three variants of

three reported genes, we thus obtained a total of 11 vari-

ants of 7 genes from 10 affected individuals (Table 3). All

these variants have a MAF < 0.001 and affect highly

conserved residues in the correspondingmolecules. The fa-

milial segregation of these variants suggested that they

may underlie HSE through single-gene autosomal-domi-

nant or digenic modes of inheritance. Dermal fibroblasts

are a surrogate cell type for investigating TLR3 responsive-

ness.41,42 SV40-transformed fibroblast cells (SV40-fibro-
The America
blasts) are available for five of the ten affected individuals

and were used to analyze their responses to TLR3 stimula-

tion. Four of the five affected individuals for whom SV40

fibroblasts were available (with variants of TAB2/IKBKE,

TANK, and TLR3) displayed impaired IFN-l and IL-6 pro-

duction following simulation with various doses of

poly(I:C), suggesting impaired TLR3 signaling due to these

genetic variants (Figure 4). The current data suggest that

there is a causal relationship between genotype and

phenotype, but further experimental validation is

required.

Application to an HSE cohort (IV): Testing on individuals

of unknown etiology

We further tested our method on the HSE cohort excluding

the 13 published cases with known disease etiologies. We

tested the remaining 109 HSE cases with 490 healthy con-

trols and yielded six gene clusters (p value % 0.01): four

class I and two class II clusters (Table S6). The top-ranked

gene cluster, with a p value of 0.00176, remained the

most strongly enrichment in the TLR signaling pathway,

confirming the importance of this pathway in the etiology

of HSE. This top-ranked gene cluster contained 27 genes in

37 cases, and the 27 genes identified were exactly the same

as those in the previous top-ranked gene cluster generated

from the full HSE cohort with exclusion of the five genes of

published HSE-causing mutations. The other gene clusters

may suggest other possible HSE-causing mechanisms. One

class I cluster with a p value of 0.01023 just above the cut-

off was identified as potentially interesting. It contained

six genes from 24 cases and was most enriched in the

KEGG regulation of autophagy pathway (p value ¼
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Figure 3. Network visualization of the top-ranked gene cluster
most enriched in the TLR3 signaling pathway
Each node is a gene, and its size is proportional to the number of
affected individuals carrying the presumably deleterious variants
of the gene. The red nodes are the six reported genes, and the or-
ange nodes are four candidate genes. Each edge represents an
interaction between two genes that is above the edge-weight
cutoff in the backgroundnetwork. The number of affected individ-
uals carrying each gene and the number of homozygous and het-
erozygous variants harboring in each gene are provided.
3.1e�6). Some autophagy genes have been shown to

inhibit viral replication by inducing type-I interferon pro-

duction.54
Application to an HSE cohort (V): Comparison with a

burden test on the HSE cohort

We compared the performance of our method with that of

SKAT-O38 for detecting disease signals in the HSE cohort.

SKAT-O is a genome-wide test of association between rare

variants and phenotypes, for identifying the significant

genes and variants in a given cohort. It combines the

strengths of the burden test and variance-component tests

and has been shown to outperform other tests for detect-

ing disease signals when prior knowledge of disease etiol-

ogy is limited.3 We ran SKAT-O on the same HSE cohort,

with the same variant filtration parameters, at the gene

and variant levels. It shortlisted 67 genes and 22 variants

as significant hits, with p values % 0.01. These hits

captured one gene (TLR3) and one TLR3 mutation

(Figure S5). These findings demonstrate that NHC exceeds

SKAT-O for detecting known etiology of HSE, mainly due

to the ability of NHC to link the genes with biological rele-
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vance and tomeasure the significance of the enrichment at

cluster level, and also due to the genetic heterogeneity of

HSE, implying that the causal genes/mutations would

not be of genome-wide significance individually.

We further scripted a pathway-informed SKAT-O test, by

providing 1,720 predefined pathways before running the

SKAT-O on the HSE cohort. Taking a p value % 0.001 as

the pathway level significance cutoff, we obtained an

output of five pathways (Table S7). The first three pathways

were TLR-related or interferon-related: REACTOME traf-

ficking and processing of endosomal TLR (p value ¼
0.0002), REACTOME TICAM1-dependent activation of

IRF3 and IRF7 (p value ¼ 0.0006), and REACTOME ZBP1-

mediated induction of type I IFNs (p value ¼ 0.0007),

due to the relatively strong intrinsic TLR signals in the

HSE cohort. However, none of these three pathways

covered all five genes that harbor known HSE-causing

mutations, and they did not include the candidate genes.

The three previously most enriched pathways in our

NHC top-ranked gene cluster (Table S5): KEGG toll-like re-

ceptor signaling pathway, REACTOME toll-like receptor

cascades, and REACTOME innate immune system were

ranked 127th, 9th, and 331st, respectively. The pathway-

informed SKAT-O test is gene set biased and assesses all

the qualifying genes in a pathway for enrichment in a

supervised manner. Our results show that it can detect

some of the reported genes that harbor known HSE-

causing mutations but lacks power to identify candidate

genes that are not part of a predefined pathway. By

contrast, NHC is not gene set-biased and focuses on the

cluster of closely interacting qualifying genes for pathway

enrichment in an unsupervised manner.

Robustness of gene clustering algorithm and

computation time

We assessed the robustness and stability of the gene clus-

tering algorithm by randomly shuffling the choice of

gene and individual as the starting point for gene clus-

tering in the HSE cohort 100 times. We obtained exactly

the same gene clusters, with exactly the same rankings in

all tests. This finding demonstrates the robustness of

NHC for delivering a stable result. NHC took �40 min to

analyze data for 122 HSE-affected individuals versus 490

control subjects, on a desktop computer with 20 CPUs

and 128 GB RAM. With the fixed variant filtration criteria,

it took �15 min to analyze a cohort of 50 individuals, and

�8 h for a cohort of 500 individuals, based on the testing of

randomly assembled cohorts. If the variant filtration

criteria were relaxed (i.e., more qualifying variants and

genes) or the cohort size was increased (i.e., more individ-

uals to transverse to converge gene clusters), the computa-

tion time would increase significantly. We therefore

provide an alternative version, ‘‘NHC-boost,’’ which

required �5 min to analyze the HSE cohort, outputting

the same number of gene clusters with slightly fewer genes

than the original NHC output, in cluster #1 (28 versus 32

genes), cluster #4 (26 versus 30 genes), and cluster #5 (9
e 3, 2021



Table 3. Candidate HSE-causing variants in seven genes, three reported genes and four candidate genes, from 10 unstudied HSE-affected
individuals, identified from the top-ranked gene cluster

Case Gene

Reported
gene?
(Y/N) Variant Accession Consequence Zygosity

Family
segregation
(F, father;
M, mother) MAF CADD

Impaired
TLR3
response
(Y/N)

P1 IKBKE N g.206666660C>T rs782760912 missense
(p.Pro665Leu)

het N/A 3.18e�05 12.04 Y

TAB2 N g.149699800C>T N/A missense
(p.Pro250Leu)

het N/A N/A 7.39

TAB2 N g.149700172C>A rs774198686 missense
(p.Pro374Gln)

het N/A 3.98e�06 26.2

P2 TAB2 N g.149700624A>G rs142662439 missense
(p.Met525Val)

het N/A 2.40e�05 7.3 N

P3 TANK N g.162061198G>T rs187514019 missense
(p.Gly74Val,
p.Arg394Gly)

comp.
het

F: G74V
het M:
R394G het

1.61e�03 10.31 Y

P4 TANK N g.162061198G>T rs187514019 missense
(p.Gly74Val)

het F: WT
M: het

1.61e�03 10.31 Y

P5 TLR3 Y g.186997949C>A rs143307508 missense
(p.Thr59Asn)

het F: WT
M: het

1.83e�04 23.9 Y

X1 IRF3 Y g.50164059G>A rs561346823 missense
(p.Arg342Gln)

het N/A 1.15e�04 11.02 N/A

X2 IKBKE N g.206650100T>C N/A missense
(p.Ile207Thr)

het F: WT
M: het

N/A 26.3 N/A

X3 TAB1 N g.39811120C>T rs143512143 missense
(p.Pro48Leu)

het N/A 2.80e�04 28.7 N/A

X4 TAB1 N g.39811629G>A rs767710748 missense
(p.Glu99Lys)

het N/A 4.01e�05 24.7 N/A

X5 TBK1 Y g.64883900G>C N/A essential
splicing

het N/A N/A 24.1 N/A

P1–P5 are HSE-affected individuals for whom SV40 fibroblasts were available, whereas no SV40 fibroblasts were available for testing for X1–X5.
versus 10 genes) (Table S8). The top-ranked cluster from

NHC-boost converged 28 genes, including all reported

genes and candidate genes, but missing four peripheral

genes (IFIT2, RNF135, TNFRSF1B, UBA7) (see Figure 3 for

visualization) from the 32 genes output by the original

NHC. In a test of 500 affected individuals, NHC-boost

greatly decreased the computation time, from �8 h to

�50 min.
Discussion

We show here that NHC is a biological network-based

genome-wide computational approach that can unravel

the genetic heterogeneity underlying the physiological ho-

mogeneity of a subset of individuals in a given condition.

As proof-of-concept, application of our method to the HSE

cohort successfully captured and prioritized all previously

published HSE-causing genetic variants in the TLR3

pathway in its top-ranked gene cluster,41–47 also suggesting

candidate genes with products involved in this pathway, in

a systematic, efficient, and unbiased manner. These genes

and variants would have been identified by NHC, despite

never having been reported to underlie HSE. NHC also

identified other gene clusters functionally enriched in
The America
other pathways, the relationships to HSE and TLR3 of

which require further investigation. Moreover, an individ-

ual could have multiple deleterious variants from the same

or different gene clusters, suggesting possible digenic or

oligogenic genetic lesions with similar or different molecu-

lar mechanisms leading to the disease phenotype of the in-

dividual concerned.55

NHC is of particular interest among the computational

methods for analyzing NGS data, as it can detect disease

signals from a cohort of affected individuals by accepting

genetic heterogeneity and assessing physiological homo-

geneity. NHC method is suitable for diseases that have a

homogeneous clinical phenotype and are likely caused in

a substantial number of individuals (e.g., R5, as suggested

in simulation study II) by rare/uncommon variants (e.g.,

MAF < 0.01) with strong individual effects and located in

physiologically related genes. NHC could be widely

applied to rare diseases with a smaller sample size, and to

more common complex diseases with a larger sample

size, as most human diseases can result from the distur-

bance of a functionally related molecular network, at least

in a core group of individuals. Although the concept of

network medicine has long been proposed and applied,5

NHC provides a widely practical and unbiased solution,

introducing the network concept into discoveries of the
n Journal of Human Genetics 108, 1012–1025, June 3, 2021 1021



Figure 4. TLR3 responsiveness in the fibroblasts of affected in-
dividuals and control subjects in terms of IFN-l and IL-6 produc-
tion
IFN-l and IL-6 production in SV40 fibroblasts left non-stimulated
(NS) or treated with poly(I:C) for 24 h, as measured by ELISA.
C1-C5 are healthy control subjects. P1-P5 are HSE-affected indi-
viduals with TLR3 pathway gene mutations. SV40 fibroblasts
from two previously published TLR3þ/� and TLR3�/� cases are
used as negative controls.
genetic basis of diseases, to deal with the problems that

have frustrated traditional approaches, because these

methods search for disease signals based on genetic homo-

geneity or based on predefined gene sets. Given that no

disease-causing mutation has yet been detected in vast

numbers of individuals, this method has the potential to

make a substantial contribution to the discovery of the ge-

netic determinants underlying many other diseases,

including life-threatening COVID-19.56,57

We focused here on European populations, but studies of

individuals from different ancestries may affect the perfor-

mance of NHC in terms of gene discovery and statistical

significance, without affecting the retention of genetically

heterogeneous disease-associated clusters. For such studies,

we recommend first testing NHC on the entire cohort with

the same cutoffs applied for variant filtration, and then

trying to set different MAF cutoffs for different populations

if the disease prevalence is different. The use of a set of con-

trol subjects representative of the ethnic make-up of the

cohort of affected individuals may be helpful. If one popu-

lation accounts for a large proportion of the total cohort,
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NHC should be tested on this subset of the cohort display-

ing ethnicity homogeneity, as defined by PCA. In our NHC

code, we provide an option allowing users to provide PC ta-

bles for running PC-adjusted enrichment, to adjust for

ethnic diversity.

This approach is also subject to several limitations. The

gene clustering algorithm is dependent on the scale and

quality of the background PPI network. We collected data

from multiple reliable databases and used multiple param-

eters to enhance its representation of the physiological

interaction space. However, the PPIs available to date are

far from complete and may include false positives. Our

method is also limited by a maximum of 15,585 searchable

genes for linking genetic heterogeneity, as our background

network contains 202,057 PPIs for 15,585 human protein-

coding genes. This method cannot detect non-coding RNA

genes, such as the reported HSE-causing mutations in

snoRNA31.58 Another limitation is the definition of the

hub genes to be removed during clustering. If these genes

are not removed, giant clusters are formed, with enrich-

ment in very general pathways (e.g., cancer pathways,

metabolic pathways). The removal of too many hub genes

leads to a risk of missing potentially promising candidate

genes and to the formation of small and scattered gene

clusters with lower levels of enrichment. The definition

of this parameter also depends on the disease studied. We

think that a dedicated study is required to gain greater

insight into the hub genes for different diseases. In the

NHC method, this parameter can be customized by the

user.

We intend to update our tool with the latest data avail-

able. Future improvement of NHC method will include:

(1) the employment of tissue-specific biological networks,

with transcriptomic databases such as GTEx;12,59 (2) the

consideration of genes with products that are functionally

complementary but do not interact physically; (3) the

implementation of alternative graph theory algorithms

to test computational performance further with experi-

mental evidence;6,14 and (4) parallel programming of our

approach to reduce computing time for large cohorts.

These are some of the approaches that could be followed

to further improve the detection of physiological homoge-

neity in the midst of genetic heterogeneity, for various

human diseases, whether rare or common, and infectious

or otherwise.
Data and code availability

NHC program is written in python and publicly accessible under a

CC BY-NC-ND 4.0 license. Its gene clustering code works at the

gene level and converges genes carrying qualifying variants into

gene clusters with pathway and gene ontology enrichment. We

provide the code for (1) case-control studies and (2) case-only

studies, for both the original NHC version and the NHC-boost

version. All the examples described here are case-control studies,

but we are aware that a control cohortmay not always be available.

We therefore also provide a case-only code for such situations. This

method is designed to detect gene clusters harboring deleterious
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mutations from a cohort of affected individuals, but it is difficult

to provide the code starting from variant-level processing, as

variant data formats and variant filtration criteria vary consider-

ably between laboratories and between studies. We therefore leave

variant-level processing to users, whowill need to prepare the gene

list carrying the qualifying variants for all individuals in the cohort

to use the code.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.04.023.
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