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Skin strata delineation 
in reflectance confocal 
microscopy images using 
recurrent convolutional networks 
with attention
Alican Bozkurt1,4,6*, Kivanc Kose2,6, Jaume Coll‑Font1,5, Christi Alessi‑Fox3, Dana H. Brooks1, 
Jennifer G. Dy1 & Milind Rajadhyaksha2

Reflectance confocal microscopy (RCM) is an effective non-invasive tool for cancer diagnosis. However, 
acquiring and reading RCM images requires extensive training and experience, and novice clinicians 
exhibit high discordance in diagnostic accuracy. Quantitative tools to standardize image acquisition 
could reduce both required training and diagnostic variability. To perform diagnostic analysis, 
clinicians collect a set of RCM mosaics (RCM images concatenated in a raster fashion to extend 
the field view) at 4–5 specific layers in skin, all localized in the junction between the epidermal and 
dermal layers (dermal-epidermal junction, DEJ), necessitating locating that junction before mosaic 
acquisition. In this study, we automate DEJ localization using deep recurrent convolutional neural 
networks to delineate skin strata in stacks of RCM images collected at consecutive depths. Success 
will guide to automated and quantitative mosaic acquisition thus reducing inter operator variability 
and bring standardization in imaging. Testing our model against an expert labeled dataset of 504 
RCM stacks, we achieved 88.07% classification accuracy and nine-fold reduction in the number of 
anatomically impossible errors compared to the previous state-of-the-art.

In the last decade, non-invasive skin imaging techniques have been shown to both increase diagnostic sensitivity 
and specificity and, critically, reduce the number of invasive procedures (e.g. biopsies, excisions)1–5. However, 
the success of these techniques typically depends on the experience of the clinician with use of the technology. 
This dependence remains a barrier to acceptance and integration of these techniques into dermatology prac-
tices, impeding the widespread adoption of these effective and non-invasive tools. Recent advances in artificial 
intelligence (AI) and machine learning (ML) methods have enabled automated and quantitative analysis of skin 
imaging data6–11. So far, the applications of ML have mainly concentrated on diagnostic analyses of the collected 
images. In dermoscopy, standardized skin sub-surface imaging at the macroscopic scale using a dermatoscope 
(magnifying glass with polarized light illumination and detection), several researchers have reported that AI 
methods can achieve clinician-level diagnostic accuracy12–14. Macroscopic imaging techniques in dermatology 
(e.g. dermoscopy, clinical photography) are typically surface imaging techniques that are capable of collecting 
color images of skin lesions. They can image entire volume of skin lesions without the ability to visualize indi-
vidual layers of cells (i.e, without depth-resolution). On the other hand, higher resolution in vivo microscopic 
imaging techniques are capable of collecting thin en-face optical sections with depth-resolution, allowing for 
imaging of individual cell layers within a 3D volume (from skin surface to the dermis), with cellular resolution 
that is not provided by macroscopic imaging techniques.

Among those higher resolution in vivo microscopy technologies, reflectance confocal microscopy (RCM) 
has begun to play a unique role in diagnostic dermatology. RCM is an optical imaging technology that ena-
bles users to non-invasively examine 3µm–5µm-thin layers (optical sections) of skin at 0.5µm/px–1.0µm/px 
lateral resolution at depths up to 200µm , typically enough to capture the epidermis, papillary dermis, and the 
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dermal-epidermal junction (DEJ) in between, which is often sufficient for initial diagnosis (i.e., to triage benign 
versus malignant and rule out malignancy and biopsy). In this setting, selection of the imaging level has a key 
diagnostic importance in reading and analysis of images. For example, imaging at DEJ is especially critical as 
the basal cell layer, consisting of basal cells and melanocytes, at the DEJ is the germinative layer. Basal cells and 
melanocytes are in a near-constant state of mitosis, due to which ∼ 80% of melanocytic and non-melanocytic 
lesions and cancers usually originate at the DEJ1,15–18. Therefore, in order to detect cancers at early stages (when 
they are still in situ), examination of this layer has a critical importance. However, the selection of the optical 
section/location within this 3D volume is dependent on the skills and experience of the user for visualizing and 
distinguishing between the different layers of cells. Therefore, standardized image acquisition in this setting 
remains a challenge as the process highly relies on the image interpretation abilities of the operator.

Recent studies have demonstrated that RCM imaging is highly sensitive (90  %–100  %) and specific 
(70 %–90 %) for detecting skin cancers5. Moreover, the combination of dermoscopy and RCM has been shown 
to increase specificity by two-fold and thus reduce the rate of biopsy of benign lesions per detected malignancy 
by two-fold, relative to results reported with dermoscopy alone, leading to better patient care3,4. This has been 
proven particularly valuable for lesions which lack distinct visual features and patterns and thus cannot be easily 
diagnosed with dermoscopy.

When applying RCM imaging, a single field of view (red bordered images in Fig. 1) is usually limited to 
0.25mm2–1.0mm2 with high pixel resolution in the images. However, clinicians typically must examine images 
over a much larger area (up to several mm2 ), including the lesion and its periphery, to perform reliable diagnostic 
analysis. To cover the necessary area, multiple RCM images are collected at the same depth in a non-overlapping 
grid. These images are then tiled together to form a larger, high-resolution mosaic image. While individual RCM 
images can be collected in under a second, acquiring mosaics over large areas can take minutes. Diagnosis is 
based on the collection and reading of, typically, up to five mosaics collected at the presumed depths of the 
stratum spinosum including the basal cell layer, upper dermal-epidermal junction (DEJ), middle DEJ, lower 
DEJ, and papillary dermis. However the depth and thicknesses of each of these strata can vary not only from 
patient to patient, but also from site to site on the same patient, and thus the appropriate imaging depths must 
be accurately, consistently and rapidly identified prior to the collection of each such set of mosaics.

To do so, clinicians currently carry out a pilot imaging step first, acquiring a 3D set, or stack, of single frame 
(small field-of-view) RCM images at the same lateral location and separated in depth by 1.5µm–5µm . The first 
of these images is acquired high in the epidermis, near the skin surface, and the last one in the deeper dermis. 
This set of images is referred to as an RCM stack and each RCM image in the stack is called an RCM slice. After 
obtaining the stack, the clinician manually classifies each slice as either epidermis, DEJ, or dermis, and then 
uses the stack as a reference to determine depths at which to collect mosaics. This process is illustrated in Fig. 1.

Following this general approach, the process of applying RCM imaging to perform diagnosis can be broken 
down into two steps: 

1.	 Collecting and examining stacks of RCM images and identifying the depth of different skin strata at the 
location of interest on patients.

2.	 Collecting mosaics of RCM images at a number of diagnostically relevant depths and analyzing morphologi-
cal and cellular features and patterns.

In this paper, we address the problem of automating the first step, in order to standardize and accelerate the 
collection of clinically relevant images for the second step.

The need for automation is particularly acute because one of the barriers to wider clinical adoption of RCM 
imaging is the required training for reading and interpreting the images, combined with operator dependence in 
terms of accurate and consistent selection of appropriate depths when collecting mosaics. These barriers occur 
because RCM images are visually different from histology, the gold standard diagnostic technique that the clini-
cians are traditionally trained for. Even if the RCM images have resolution comparable to histological images, they 
lack the specificity of nuclear- and cellular-level contrast provided by the exogenous dyes (hematoxlyin and eosin) 
used in histology. RCM images are produced by backscattered light (i.e. featuring contrast in reflectance only) 
and are visualized in gray-scale. The reflectance contrast is due to systematic differences in the refractive index 

Figure 1.   RCM Imaging modalities. (left) A 3D stack of RCM images (0.5-by-0.5 mm) used to determine the 
depth of different skin strata. (right) A mosaic of RCM images (6mm-by-6mm). Red borders in the mosaic 
represent single RCM images of the same dimensions as in the stack.
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of nuclear, cellular cytoplasmic and extra-cellular connective tissue morphological components, which results 
in texture differences in the images. Ideally in a capture, store, and forward implementation, where an operator 
acquires the images and forwards them to a clinician for diagnostic analysis, the operator must be able to analyze 
the texture of cellular and morphological structures in real-time at the bedside to determine the right depths for 
imaging19. However, currently, operators often exhibit highly variable accuracy in interpreting RCM images and 
training to read and interpret images and gain the necessary experience to accurately and consistently sample 
and collect images require time and effort. Automating the image acquisition process would address this barrier.

Indeed automated delineation of skin strata in RCM stacks has been a topic of interest for many 
researchers20–27. While a variety of algorithms have been applied to tackle this task, the different approaches fall 
into two main methods. The first, more complex, method aims to find a continuous 3D boundary between the 
layers of skin. The depth of different skin strata varies significantly across the skin, with the boundary between 
the epidermis and dermis (i.e. , dermal-epidermal junction) forming an undulating 3D surface similar to the 
appearance of hills and valleys. Modeling this 3D boundary can provide clinicians with a detailed understanding 
of how the skin varies beneath the surface, but at the cost of significant modeling difficulty.

The second set of methods approach the problem from an image classification perspective. These methods 
start from the premise that locating the entire 3D boundary surface is unnecessary when estimating depths for 
image acquisition. Instead they attempt to classify entire images from an RCM stack as epidermis, dermis, or 
DEJ, and then take the start and end points of each layer of skin as the points where the classifications transition 
between layers. The method reported on in this work falls into this second category; we perform image-wise 
classification of RCM slices to learn the locations of the different layers of skin. For the sake of completeness, we 
briefly discuss work from both categories in what follows.

In23, Somoza et al. use Leung-Malik (LM) filter bank based texton features28 to model the textural appearance 
of individual RCM slices. For each image in their training set, they extracted texton features, found a bag of 
words representation, and finally described each image as a histogram of its texton features. New samples were 
classified using a k-nearest neighbor classifier. Testing on image-wise labeled RCM stacks, they reported cor-
relation coefficients of 0.84 to 0.95 between their predictions and the ground truth. Hames et al. 24 took a similar 
approach, but learned a texton representation from random 7-by-7 patches extracted from a set of training images 
instead of using predefined texton filters. The authors described RCM images by finding a bag of words repre-
sentation of their texton filters followed by a histogram binning method. They then trained a logistic regression 
classifier on 235 RCM stacks of healthy skin. Their model achieved 85.6 % classification accuracy on a test set 
of 100 RCM stacks. Kaur et al. 25 leveraged the same texton extraction as23, taking texton filters with a support 
of 5-by-5 pixels. They then constructed a texton dictionary by clustering the filter outputs of randomly selected 
patches into 50 clusters using k-means, and used the cluster centers to form a bag of features representation. 
They assigned each pixel to 8 of its closest textons with a weight inversely proportional to the distance between 
the texton. The individual assignments for each pixel in an RCM image were binned into a histogram that they 
used to describe the image. The authors then trained a 3-layer neural network using these histograms. On their 
dataset of 15 stacks, they reported 81.73 % accuracy classifying images from the exterior epidermis, stratum 
corneum, stratum granulosum, stratum spinosum, stratum basale, and the papillary dermis.

Our solution, which we report in this paper, is to first train a deep convolutional neural network (CNN) to 
classify individual RCM images as epidermis, DEJ, or dermis and then to exploit the sequential structure of skin 
layers by augmenting the CNN with recurrent neural network (RNN) layers. Through the use of the recursive 
neural networks and the proposed attention mechanism, we take the 3D volumetric information of the skin into 
the account. The contributions of our work are as follows. 

1.	 We designed a novel deep learning based classifier that can distinguish between RCM slices coming from 
epidermis, DEJ and dermis levels of the skin. Starting with a baseline model that is widely used for generic 
image classification tasks (e.g. classification of everyday images of objects and animals), we tailored it step 
by step according to the typical correlations within RCM stacks and the needs of RCM slice classification.

2.	 We compared our method to the other machine learning models that have been published for RCM strata 
delineation and report that we achieve significant improvement over the previous state-of-the-art results.

3.	 In addition to increased classification accuracy, our method also eliminated anatomically impossible transi-
tions between skin layers that were reported by previous state-of-the-art methods by imposing the intrinsic 
depth-ordering of skin layers.

4.	 We evaluated our method on the largest dataset available for this task, 21,412 expert-labeled RCM images 
from 504 different stacks collected at 5 different institutes. This dataset is also notable for containing both 
benign and suspicious (e.g. benign nevus and melanoma) samples. To the best of our knowledge, all other 
datasets used for this task consisted of only healthy skin, but, of course, the primary focus and effort is on 
diagnostic utility for suspicious lesional skin.

Finally, we emphasize that all classifications were performed slice-wise, that is, an entire slice is classified as 
belonging to a single layer. This is in contrast to some of our group’s earlier work20,22 which belongs to the first set 
of methods that find a continuous 3D boundary of the skin layers. We adopted the current approach because it is 
more relevant to the driving clinical need to select a depth at which to subsequently acquire mosaics. However in 
reality a slice that is near the boundary between strata is likely to contain a mixture of regions from two distinct 
strata. Our “ground truth” labelers (see next section) made judgements about the dominant stratum in any give 
slice, and we held our classifiers to that same standard.
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Results
We compared a total of 13 different methods, described in detail in the Methods section. Two were methods from 
the literature based on hand-engineered texture features. The others all involved different deep neural networks 
(DNNs). These networks differed in the basic DNN structure (e.g. convolutional, residual, recurrent), in whether 
they included an attention mechanism31,32 or not, in whether they included recurrent neural network (RNN) 
components (e.g. gated recurrent units33 (GRUs)) or not, and in whether they used only the single slice of interest, 
a local neighbourhood of the slice, or the entire stack. We report test set performance for all of those models in 
Table 1. The table is broken into three blocks of rows, where all models in the same block share the same type of 
input. The first block consists of our attention based models. The models reported on in this block take in entire 
RCM stacks and output predictions for each image in the stack. Within this block, Toeplitz Attention models are 
further distinguished by a parameter we denote D, which is the support of the attention weights in one direction 
(i.e. length of the attention vector is 2D + 1 ). The second block contains models that take in partial-sequences 
to make predictions for individual RCM images. This includes our partial-sequence RCN models, as well as an 
Inception-V3 model that we trained using the partial-sequence data (IV3-Context in Table 1) as a baseline. The 
last block contains models that classify single RCM slices, including Inception-V330 that we trained as baseline, 
and other models proposed in the literature24,25. Within each block the methods are sorted in descending order 
of test accuracy. In addition to test accuracy, we also report sensitivity and specificity for each of the three classes. 
The highest accuracy, specificity, and sensitivity for each row block of models are marked in bold.

Error analysis: boundary errors vs anatomically inconsistent transitions.  The main goal of incor-
porating the sequential nature of RCM stack data into our model was to build a classifier that can leverage the 
monotonic structure of skin structure to increase classification accuracy. In this subsection, we analyze the types 
of errors made by each model to understand how well they learned these constraints. To do so, we categorize 
classification errors into two different types. One type of error is inaccuracy; it occurs when a boundary starts 
shallower or deeper than its actual location in a stack. As noted earlier, slices acquired near boundaries are 
expected to contain features from both layers (classes). Therefore, small boundary location errors of this type are 
inevitable. The second type of error, which we refer to as inconsistency errors, are detected strata transitions that 
violate the sequential constraints of the skin. These physiologically inconsistent transitions. when moving down 
from surface to dermis, are epidermis→dermis, DEJ→epidermis, dermis→epidermis, dermis→ DEJ. To quan-
tify the consistency of a model, we counted the number of these physiologically inconsistent errors and report 
these numbers for the best full-sequence and partial-sequence RCNs, the Inception-V3 model, and the models 
presented in24, and25 in Table 2. We want to emphasize that these results do not directly correspond to accuracy; 
it is possible for a set of labels to be consistent but not accurate.

Delineating the epidermis‑DEJ and DEJ‑dermis boundaries.  As our ultimate goal is to delineate 
the epidermis-DEJ and DEJ-dermis borders, we also quantify the performance of our RCNs by looking at the 
distribution of the distance between the predicted boundaries and the ground truth boundaries to the classifica-
tions from the methods in Table 2. To obtain consistent transition boundaries, we use a two-step post-processing 
heuristic. In the first step we applied a 3-layer median filter to remove outlier classifications. In the second step, 
we then applied a causal max filter, which replaces each prediction with the maximum value in the sequence of 
predictions before it.

Table 1.   Accuracy, sensitivity, and specificity for each method, organized by size of input each methods takes.

Input Method Accuracy

Sensitivity Specificity

Epidermis DEJ Dermis Epidermis DEJ Dermis

Whole stack

Toeplitz Att. ( D = 1) 88.07 93.41 85.04 82.66 96.35 89.71 96.07

Toeplitz Att. ( D = 7) 87.59 92.84 84.18 82.89 95.87 89.38 96.08

Toeplitz Att. ( D = 0) 87.57 91.63 83.97 84.94 96.89 89.40 95.29

Toeplitz Att. ( D = 3) 87.13 91.65 83.48 83.89 96.08 89.23 95.44

Toeplitz Att. ( D = 2) 86.65 91.44 82.27 83.95 96.08 88.91 95.07

Toeplitz Att. ( D = 5) 86.63 91.94 83.06 81.87 95.79 88.84 95.35

Global Att. 86.27 92.95 81.98 80.43 95.30 88.55 95.48

Full-Seq. (Bidir. GRU)29 87.97 93.95 83.22 84.16 95.82 90.54 95.51

Partial stack
Partial-Seq. (Bidir. GRU)29 87.52 94.14 82.54 83.33 94.78 90.83 95.44

IV3-Context29 86.95 92.00 83.52 82.64 95.61 89.24 95.56

Single image

Inception-V330 84.87 88.83 84.66 78.18 95.84 85.73 96.23

Hames et al.24 84.48 88.87 80.93 81.85 93.81 87.81 94.78

Kaur et al.25 72.12 82.44 62.75 66.09 89.48 79.35 89.18
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Discussion
There are a number of interesting observations that we can make based on the results in Table 1. The best model 
overall was the Toeplitz Attention ( D = 1 ), which achieved 88.07 % overall accuracy on the test set. This model 
outperformed the best previously published method24 by 3.59 %, representing a 23.13 % reduction in classification 
error rate. Comparing both the full-sequence and partial-sequence models, we observe that unidirectional GRU 
and both standard RNN models trained using the full-sequence scheme were outperformed by nearly all bidirec-
tional methods, the one exception being the partial-sequence unidirectional GRU model. In the full-sequence 
training scheme, we processed the entire RCM stack at once and relied on the network’s ability to identify the 
important information for classifying each image, whereas in the partial-sequence scheme, we effectively pre-
determine that the neighboring images contain the relevant information necessary to classify an RCM slice. We 
hypothesize that the simpler unidirectional and standard RNN architectures had a more difficult time learning in 
the full-sequence scheme. Following this logic, it is reasonable to conclude that RCM images beyond the immedi-
ate area of the target slice contain some important information for classification of that slice, and that the more 
complex bidirectional GRU network was able to leverage this information to increase classification accuracy.

On the other hand, in the case of attention models, where the model can also learn how to weight neighbor-
hood information into the final decision, we observed benefits of using larger neighborhood in certain cases. 
Table 2 shows that using global attention helped in eliminating all the anatomically impossible predictions. 
Moreover, as shown in Table 3 and Fig. 2, using an attention model with a larger neighborhood resulted in 
increased precision in localization of DEJ-Dermis boundary. We suspect that the main reason for this result is 
that, due to loss of resolution and contrast, the DEJ-Dermis boundary is more ambiguous and harder to find 
compared to the Epidermis-DEJ boundary. Therefore, the model more effectively utilizes the information from 
a slightly larger neighborhood to delineate the DEJ-Dermis boundary.

Sensitivity and specificity were very similar across our experiments and appeared to vary proportionally with 
test accuracy. However, it is interesting to note that all of our models were less sensitive to the DEJ and dermis. 
This is consistent with other results in the literature21. A typical stack of RCM images will contain more epidermis 
than DEJ and dermis samples because reflectance confocal microscopes can only image down to the papillary 

Table 2.   Number of anatomically inconsistent predictions made by each model. Models are sorted in 
ascending order with respect to the total number of errors.

Method

Error types

TotalEpidermis → Dermis DEJ→ Epidermis Dermis→ Epidermis Dermis → DEJ

Global Att. 0 0 0 0 0

Toeplitz Att. ( D = 1) 1 1 0 1 3

Toeplitz Att. ( D = 5) 0 1 3 0 4

Toeplitz Att. ( D = 7) 0 5 1 1 7

Full-Seq. RCN29 0 4 0 3 7

Toeplitz Att. ( D = 3) 0 7 2 0 9

Toeplitz Att. ( D = 0) 0 18 0 0 18

Toeplitz Att. ( D = 2) 0 22 0 0 22

Inception-v329 3 25 8 32 68

Hames et al. 24 14 59 11 56 140

Kaur et al. 25 12 133 12 44 201

Table 3.   Mean absolute error (MAE) of models for estimating epidermis-DEJ and DEJ-dermis boundaries. 
Models are sorted according to epidermis-DEJ boundary estimation MAE.

Model

Mean absolute error ( µm)

Epidermis-DEJ Boundary DEJ-Dermis Boundary

Toeplitz Att. ( D = 1) 5.76 9.24

Toeplitz Att. ( D = 7) 6.79 8.87

Full-Seq. RCN 6.86 9.29

Toeplitz Att. ( D = 0) 6.94 9.34

Toeplitz Att. ( D = 5) 7.16 9.71

Global Att. 7.23 10.65

Toeplitz Att. ( D = 2) 7.47 9.70

Toeplitz Att. ( D = 3) 7.83 9.10

Inception-v330 9.82 10.59

Hames et al. 24 11.40 11.72

Kaur et al. 25 18.20 19.45
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Figure 2.   Histograms of error for the predictions of the epidermis-DEJ and DEJ-dermis boundaries for each 
model. Each black tick indicates a value of error that occurred in a test stack, colored lines show the distribution 
of errors, and red vertical line shows the origin. Models are sorted according to mean absolute error.
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dermis, (44 % of samples in our dataset are epidermis, compared to 34 % DEJ and 22 % dermis). Moreover, due 
to optical aberrations that start below the DEJ and worsen around the deeper rete ridges (valleys of the undulat-
ing DEJ boundary), the DEJ-to-dermis boundary usually appears fuzzy, making it harder to detect. Thus, the 
level of DEJ-to-dermis boundary in a given stack is partially subjective, even for expert readers. This uncertainty 
helps to explain the lower sensitivity to DEJ and dermis compared to epidermis.

While our recurrent models perform better compared to state of the art models, it is worth noting that the 
logistic regression model presented by Hames et al. achieved performance comparable with the Inception-V3 
network. While the recurrent models provide significant improvements in testing accuracy, they lack the inter-
pretability of the regression approach which is a potential drawback in medical applications.

Analyzing the types of the errors that each model lead to, as presented in Table 2, methods that do not take full 
stack information into account produce more inconsistencies. The partial-sequence RCN produces ∼3× fewer 
inconsistencies than the best single-image model even though it only takes into account neighborhoods of three 
images. The full-sequence RCN performs significantly better than the other methods, with ∼3× fewer incon-
sistencies than the partial-sequence RCN and thus ∼9× fewer inconsistencies than the best non-RCN model.

Analyzing the Epidermis-DEJ boundary error distributions in Fig. 2 and Table 3, we see the full-sequence 
RCN, and partial-sequence RCN achieved the lowest median error ( 5µm ). The method proposed in24 and the 
Inception-V3 model follow with a median error ( 6µm ). Even if this difference is not statistically significant, our 
methods lead to fewer physically inconsistent errors (Table 2) compared to the other methods in the absence of 
any post-processing heuristics described in section. Therefore, for a fairer comparison, Fig. 2 should be analyzed 
together with Table 2, which shows the number of errors the heuristic algorithm needs to correct. A similar result 
follows for the DEJ-dermis boundary.

Methods
Dataset.  The dataset used in this work is composed of 504 RCM stacks that were gathered from two differ-
ent studies across six different clinical sites. 196 out of the 504 stacks were collected at Memorial Sloan Kettering 
Cancer Center (New York, NY, and Hauppauge, NY), the University of Rochester (Rochester, NY), Loma Linda 
University Health (Loma Linda, CA), and Skin Cancer Associates (Plantation, FL) under a study approved by 
Institutional Review Boards (IRB) of each institution. Informed consent was obtained from all the subjects 
participating the study. The other 308 stacks were from a study conducted by the Dermatology Research Centre 
at the University of Queensland (Brisbane, Australia)24, and publicly available at the Dryad repository (https://​
datad​ryad.​org/​stash/​datas​et/​doi:​10.​5061/​dryad.​rg58m). All the data is de-identified (patient metadata was 
removed). All experiments were performed in accordance with relevant guidelines and regulations.

The overall dataset consists of 21412 RCM images. All images in all stacks were acquired with 0.5µm lateral 
resolution and 3µm optical sectioning. The dataset contains normal, benign melanocytic, and diseased skin 
samples of the arms, the legs, and the torso. This is critical, as noted, since clinicians typically image suspicious 
lesional skin whose appearance is very different from healthy and/or non-lesional skin. Each individual image in 
all the stacks was labeled by at least two experts as belonging to one of four classes: stratum corneum, epidermis, 
DEJ, or dermis. For this study, we merged the stratum corneum (the topmost layer of the epidermis) and the 
epidermis classes together and then we carried out a 3-way classification. For our experiments, we partitioned 
the dataset into training, validation, and testing sets of 245, 61, and 198 stacks respectively. To handle the case 
where one patient may have multiple stacks in the dataset, we stratified the partition patient-wise (i.e. all stacks 
from a particular patient are exclusively in the training, validation, or testing set).

Recurrent convolutional networks.  Human skin maintains a strict ordering of different strata; the tran-
sition between the layers are contiguous, non-repeating, e.g. epidermis→ dermis→ epidermis transitions are not 
possible) and monotonic (dermis→ DEJ or DEJ→ epidermis transitions are also not possible). These constraints 
provide powerful cues that are exploited by human experts for more accurate classification. Given this sequential 
structure, recurrent neural networks naturally lend themselves to the problem of skin strata identification, as 
they are able to take the sequential dependencies between different images in a stack into account.

Within each RCM image, there is also a significant amount of spatial information present in the varying 
texture of the tissue. In previously reported work, convolutional neural networks have demonstrated the ability 
to learn high-level features from images, and have been applied with great success to numerous image classifica-
tion tasks34–36.

Given these characteristics of our data, we adopted a hybrid neural network architecture with both convolu-
tional and recurrent layers similar to that proposed in37. We first trained a deep convolutional network to learn 
important spatial features for the classification of individual RCM images, and then augmented the network with 
recurrent layers so that the classifier could account for the features of other RCM slices. Following the conven-
tion used in37, we refer to models with this structure as recurrent convolutional networks (RCNs). For our deep 
CNN architecture, we used a modified Inception-V3 model30, where we added an additional fully connected 
layer with 256 neurons before the last layer.

After training the model to classify individual RCM images as epidermis, DEJ, or dermis, we removed the 
3-class classifier layer and the non-linearity on the penultimate fully connected layer. We then fixed the weights 
of the trained network and appended recurrent layers. The two different techniques that we experimented with 
for training the recurrent layers are explained in the following sections.

RCNs without attention.  The first approach was training the RCN model on sub-sequences containing a local 
neighborhood (in depth) of N images around the subject RCM image. For every sample in our dataset, we 
constructed a sequence of N RCM slices centered around the target sample. We then trained our network on 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.rg58m
https://datadryad.org/stash/dataset/doi:10.5061/dryad.rg58m
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batches of these sub-sequences. This training procedure imitates the technique of examining neighboring RCM 
slices that dermatologists apply while classifying RCM images. We experimented with two different scenarios. In 
one, a model was trained using a neighborhood of three slices ( N = 3 ), trying to estimate the label of the mid-
dle slice. The second scenario involved training the RCN model using the full stack. As illustrated in Fig. 3, the 
model processes the entire RCM stacks (full-sequence) and outputs predictions for each image in the stack. This 
approach is potentially more flexible, as we provide the model with the complete RCM stack and allow it to learn 
the information that is useful for slice-wise classification.

RCNs with global attention.  The main disadvantage of the partial sequence approach is the need for the user to 
set D, the size of the neighborhood, during training time; once set, it cannot be changed. Our initial experiments 
show that our CNN-based model was typically more confident in its decisions for the RCM slices from super-
ficial epidermis and deeper dermis, where the structures are more distinct. On the other hand, around the DEJ, 
the decisions became less confident. Therefore, a model that adaptively changes the neighborhood size according 
to depth might be ideal. In response to this observation, we implemented an attention mechanism on top of the 
full sequence scenario, so that the model could determine the neighborhood size on-the-go during processing.

Global attention31 has been proposed as a way to align source and target segments in neural machine trans-
lation in a differentiable manner. It has been used in many computer vision and natural language processing 
tasks38,39. Specifically, for each depth n, an attention vector an with the same length as the sequence {h0, . . . , hN } 
is calculated with by a multi-layer perceptron from hn , the encoding of the n th slide. Then a context vector h̃n is 
calculated as weighted sum of encodings with weights set according to the attention vector (Fig. 4, left).

Figure 3.   (left) Attention module allows fusion of GRU embeddings of different slices. (right) When no 
attention is applied ( ˜hn = hn ) model is equivalent to full-sequence RCN29.

Figure 4.   Attention mechanisms: (left) In the global attention model output decision for a particular slice is 
affected by all the slice in the stack, whereas (right) in the Toeplitz attention model the output is only affected by 
a local neighborhood of slices (e.g D = 1 in the exemplar). Note that this figure is intended to explain only the 
attention layers, the encoder and decoder structures can be seen in Fig. 3.
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RCNs with Toeplitz attention.  Ideally, the network should imitate the dermatologist in looking at only a few 
slides per classification. This translates to an being sparse, i.e. elements of an should be non-zero for only a few 
slides. This is known as “hard attention”40, and is hard to train, due to the mechanism not being end-to-end dif-
ferentiable.

Here, we propose a simplified attention model, named Toeplitz attention, to overcome this issue. The name 
Toeplitz attention comes from the idea that the attention map created by this method has a Toeplitz structure, 
that is to say that weights are constant with respect to offset from the slice being estimated – the value of the 
weight depends only on that offset and not on the global location of the slice in the stack. Support of the attention 
weights is more compact than it is in global attention, but the network is still end-to-end differentiable, therefore 
easier to train than hard attention.

This mechanism can be seen as a special case of local attention with monotonic alignment32, where the 
context vector h̃n was calculated as a weighted average over sets of hn within a window n′ ∈ [n− D, n+ D] (D 
is chosen, in both32 and our work, empirically). Now an has a shorter support of 2D + 1 , compared to the input 
sequence length in the global attention case. It is calculated in a similar fashion to global attention32. In our case, 
the elements of an with the window n′ ∈ [n− D, n+ D] are depth-independent, i.e. an = [0n−D−1, a, 0N−n−D] 
where a is a learnable kernel of length 2D + 1 with all non-negative entries that sum to one (convex combiner), 
and 0n−D−1 is a zero vector of length n− D − 1 . The attention map A, which is a concatenation of an for each 
slice, AT = [aT1 , . . . , a

T
N
] therefore will have a Toeplitz structure. This structure lends itself to an efficient imple-

mentation using convolution.
In the neural machine translation literature, the attention layer is typically applied between an encoder and 

decoder33,41. We replicate this structure in our work as well. We use bidirectional gated recurrent units (GRU)33 
appended to Inception v3 networks30 to create a recurrent encoder network. This network will produce an encod-
ing for every image in a stack. The full-sequence RCN model used in29 can be formed by attaching a fully con-
nected layer at the end of this encoder. From this lens, it can be seen as a special case of an attention-augmented 
network. Indeed, we can recover the full-sequence RCN as a special case of Toeplitz attention where D = 0 , so 
the attention map becomes an identity matrix.

We use different decoder networks for each attention mechanism. For global attention, we use a GRU followed 
by a fully connected layer. For Toeplitz attention, we use simply a fully connected layer. In both cases, we augment 
the attended encodings (context) with the decoder’s output (class probabilities) at the previous time step (again, 
time corresponds to slice depth here), to efficiently exploit the structure nature of the data.

Experiments.  All RCN models were implemented using the Keras42 library and trained on a single NVIDIA 
Tesla K40, Titan X GPU, or Titan V GPU.

The original Inception-V3 network is designed for RGB images. We modified the first layer Inception-V3 
architecture to accept single-channel inputs, since RCM images are grayscale. While training the CNN, we also 
augmented our dataset with randomly sheared, zoomed (magnified), rotated, stretched, horizontally and verti-
cally flipped versions of training images.

We were not able to train full RCN models end-to-end, as the batch normalization layers in inception-V3 
model are not designed to be trained in a time-distributed setting. Removing these layers allowed us to train the 
complete RCN, but the model performed significantly worse. To overcome this problem, we first trained a CNN 
for image-wise classification task using the RCM images in the training set. We then removed the last layer of 
the trained CNN and used the remaining network as a feature extractor to obtain feature representations for 
each slice in the dataset. The recurrent layers are then trained on sequences of these extracted features. While 
this approach makes experimentation with different CNNs more difficult, it allows us to use CNNs with batch 
normalization, and avoids significant redundant computation while training different RNNs. It also enabled us to 
train full-sequence models on a single GPU, as the full CNN + RNN model was too large to fit into GPU memory.

All RCNs in Table 1 have two recurrent layers with 64-dimensional embedding (each layer corresponding to 
one direction), followed by a fully connected layer and a softmax for classification.

Following the same steps in29 for training the RCN models, we created the input data by concatenating the 
extracted CNN features of all slices for every stack. Because our dataset contains stacks of various lengths, we 
fixed the maximum sequence length to 71 slices (The single RCM stack in our dataset of length greater than 71 
was clipped from 101 to 71 slices for the full-sequence models) and zero-padded shorter sequences. The padding 
was then masked out during training and testing. The RNN layers were trained for 200 epochs with a batch size 
of 4 sequences, and a learning rate of 0.001. To avoid overfitting, we used a 10% dropout rate on the recurrent 
connections and an L1 regularization penalty on the recurrent weights with a weighting coefficient of 0.05.

For each RCN model, the model snapshot with the best validation accuracy was selected, and its performance 
on the test set is reported in Table 1.

For comparison, we used the publicly available code from24. We also implemented the method presented in25 
by following the instructions in their paper. We report the results of training and testing on our dataset using 
these methods in Table 1. We will make the code available upon publication.

Conclusion
In this study, we presented a method based on deep convolutional and recurrent neural networks for classifying 
skin strata in RCM stacks. We evaluated our method on the largest and most comprehensive dataset for this 
task, and demonstrated a significant increase in the accuracy of skin strata delineation in RCM stacks. The test 
scenario used in this study is more realistic compared to those used by most previous methods, in the sense it 
contains significant samples of lesioned skin, not just normal skin, and clinicians are necessarily most concerned 
about imaging suspicious lesions rather than normal skin. In addition to increased classification accuracy, our 
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best RCN achieved a ∼9× reduction in the number of anatomically inconsistent transitions between layers of 
skin when compared to the previous state-of-the-art methods. Our experiments show that our method outper-
forms techniques designed for smaller datasets that comprise only healthy skin, and other deep learning based 
methods which do not incorporate full stack information. Overall, our results are an example of the idea that 
combining knowledge of the intrinsic properties of a dataset with the strengths of deep neural networks can yield 
a powerful tool for solving medical imaging problems, and can help to guide clinicians in their clinical practice.
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