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Summary
Virtually all genome sequencing efforts in national biobanks, complex and Mendelian disease programs, and medical genetic initiatives

are reliant upon short-read whole-genome sequencing (srWGS), which presents challenges for the detection of structural variants (SVs)

relative to emerging long-readWGS (lrWGS) technologies. Given this ubiquity of srWGS in large-scale genomics initiatives, we sought to

establish expectations for routine SV detection from this data type by comparison with lrWGS assembly, as well as to quantify the

genomic properties and added value of SVs uniquely accessible to each technology. Analyses from the Human Genome Structural Vari-

ation Consortium (HGSVC) of three families captured ~11,000 SVs per genome from srWGS and ~25,000 SVs per genome from lrWGS

assembly. Detection power and precision for SV discovery varied dramatically by genomic context and variant class: 9.7% of the current

GRCh38 reference is defined by segmental duplication (SD) and simple repeat (SR), yet 91.4% of deletions that were specifically discov-

ered by lrWGS localized to these regions. Across the remaining 90.3% of reference sequence, we observed extremely high (93.8%)

concordance between technologies for deletions in these datasets. In contrast, lrWGS was superior for detection of insertions across

all genomic contexts. Given that non-SD/SR sequences encompass 95.9% of currently annotated disease-associated exons, improved

sensitivity from lrWGS to discover novel pathogenic deletions in these currently interpretable genomic regions is likely to be incremen-

tal. However, these analyses highlight the considerable added value of assembly-based lrWGS to create new catalogs of insertions and

transposable elements, as well as disease-associated repeat expansions in genomic sequences that were previously recalcitrant to routine

assessment.
The field of genomics has seen remarkable advances in the

accuracy and efficiency of massively parallel sequencing-

by-synthesis technologies that generate pairs of short reads

from the ends of small 400–800 base pair (bp) fragments

(referred to herein as short-read whole-genome sequencing

[srWGS]). This technical leap and derivative approaches

such as targeted whole-exome capture sequencing (WES)

have catalyzed a deluge of gene discoveries for rare diseases

and insights into population genetics and genome biology.

Correspondingly, srWGS has been adopted by all major

human disease and biobank sequencing initiatives,

including the NHGRI Centers for Common Disease Geno-

mics (CCDG)1 and Centers for Mendelian Genetics
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(CMG),2 the Deciphering Developmental Disorders

(DDD) project,3 the Trans-Omics for Precision Medicine

(TOPMed),4 the All of Us Research Program,5 the NICHD

Gabriella Miller Kids First (GMKF) initiative, the UK

BioBank,6 and Genomics England,7 to name just a few.

As such, a critical step for the field is to establish uniform

methods for srWGS data processing and rational bench-

marking standards to set expectations for variant

detection.

The technical processes of genome alignment and

single-nucleotide variant (SNV) detection have been an

intensive focus of genomics since the inception of the

1000 Genomes Project8 and more recently updated for
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cross-institute functional equivalence as part of the NHGRI

Genome Sequencing Program and variant detection with

the Genome Analysis Toolkit (GATK) best practices.9–11

However, no comparable standardized methods have

been adopted for detection of structural variants (SVs),

defined here as genomic alterations greater than 50 bp,

from srWGS, and there are limited gold-standard

benchmarking approaches for SV discovery. This lack of

uniformity has introduced a barrier to establishing reliable

estimates of the SV counts and characteristics per genome.

Not surprisingly, as shown in Figure 1A, these estimates

have varied considerably across studies. The initial discov-

ery effort from the 1000 Genomes Project12,13 revealed the

landscape of SVs that could be captured from srWGS with

just 4–73 coverage (3,431 SVs per genome). More recent

population genetic and human disease studies using

deeper (303 or higher) srWGS and diverse analytic

methods have varied in estimates of SVs that can be

captured via srWGS; these estimates vary from 401 to

10,884 per genome. At present, the most sensitive studies

have utilized the integration of multiple SV detection

methods from the Genome Aggregation Database (gno-

mAD) and the Human Genome Structural Variation Con-

sortium (HGSVC) projects (Figure 1A).1,14,15,13,16–20

Emerging long-read WGS (lrWGS) technologies, which

involve sequencing thousands to millions of contiguous

nucleotides from a single strand of DNA, have significantly

increased sensitivity for SV discovery in the human

genome. The most widely tested lrWGS technologies

include single-molecule real-time (SMRT) sequencing

from Pacific Biosciences (PacBio)24 and sequencing by

ionic current through a nanopore channel (Oxford Nano-

pore Technologies [ONT]).25 A key advantage of lrWGS is

the abundance of reads that span entire SVs, allowing for

direct observation of SVs rather than SV detection by infer-

ence as required for srWGS. These unique properties of

lrWGS are beginning to revolutionize de novo assembly

approaches,26,27 and methods are already maturing for

telomere-to-telomere assembly of individual human chro-

mosomes.15,28,29 Themost recent analyses used the combi-

nation of multiple sequencing platforms (e.g., lrWGS,

strand-specific sequencing,30 and optical mapping31) in

relatively small numbers of genomes to generate assem-

bly-based SV callsets,14,32 which have approximately

doubled the number of SVs able to be captured in each

genome to ~25,000 as compared with srWGS14,15

(Figure 1A).

These lrWGS studies have thus opened access to SVs in

the genome that were traditionally refractory to discovery

by srWGS or interpretation in disease association studies,

such as repeat expansions and other alterations within re-

petitive genomic regions and centromeres.33 Unfortu-

nately, the current cost of lrWGS is a significant premium

over srWGS. For example, as of this writing the cost for

generation of PacBio lrWGS over srWGS for equivalent

coverage at leading academic platforms from the HGSVC

ranges from 5.9-fold increase for continuous long-read
920 The American Journal of Human Genetics 108, 919–928, May 6,
technology to 12-fold increase for circular consensus

sequencing HiFi technology. Moreover, the comparatively

lower throughput of modern lrWGS platforms renders

them impractical for adoption in large-scale population

studies on the order of tens to hundreds of thousands of in-

dividuals. The largest published assembly-based PacBio

study to date has analyzed just 15 genomes,15 and a recent

preprint from the HGSVC describes 35 genomes,34 while a

published study from Iceland analyzed 3,622 ONT ge-

nomes.35 By comparison, millions of genomes have

already been sequenced or commissioned via srWGS across

international initiatives. Given this predominance of

srWGS in the current landscape of genomics research, we

present here a series of analyses from the HGSVC to (1)

benchmark expectations for the number and class of vari-

ants that can be reliably detected from srWGS, (2) predict

the genomic features that drive false positive and false

negative discoveries for each technology, and (3) establish

the scientific and clinical advances offered by state-of-the-

art lrWGS assembly as a complementary approach to

srWGS.

In this study, we performed a detailed comparison of SVs

detected from alignment-based srWGS and assembly-based

lrWGS methods on three matched trio families (HG00514,

HG00733, and NA19240) from the 1000 Genomes Project,

and all results per genome reported here are averages across

the three children in these families.14 For srWGS, this

initial study applied a highly sensitive ensemble approach

to integrate 13 SV detection algorithms (supplemental ma-

terial and methods) and discovered an average of 10,884

SVs per genome. The emphasis on sensitivity suggests

that approximately 11,000 SVs per genome most likely re-

flects an upper bound on the total number of SVs that can

be routinely captured from srWGS with the alignment-

based algorithms applied by the HGSVC, as demonstrated

in Figure 1A by comparison with other contemporary

studies. However, this sensitivity came at the significant

cost of specificity: 685 de novo SVs were observed per

genome, over 1,000-fold more than our expectation from

srWGS based on family studies, population genetic estima-

tors, and molecular validation, therefore representing

many SV predictions that are most likely false positives.16

The lrWGS-derived SV callset combined whole-genome

phasing with two state-of-the-art genome assembly

approaches (Phase-SV and MS-PAC14,26,36) and was

supplemented by additional technologies (HiC37 and

StrandSeq,38 see Chaisson et al.14). These methods discov-

ered an average of 24,825 haplotype-resolved SVs per

genome, or over 2-fold more than the most sensitive

srWGS approaches. Surprisingly, although the srWGS and

lrWGS callsets were generated on identical samples, only

a limited subset of SVs (66.8% of srWGS and 33.5% of

lrWGS) overlapped between technologies. Moreover, the

mutational class of SVs dramatically impacted concor-

dance: 60.6% of srWGS and 48.7% of lrWGS deletions

demonstrated overlap as compared with 81.7% of srWGS

and 24.1% of lrWGS insertions (Figure 1B).
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Figure 1. Comparison of SV callsets from srWGS and lrWGS
(A) The substantial increased yield of lrWGS in SV detection is displayed from the HGSVC14 and the largest Pacific Biosciences (PacBio)
lrWGS study published to date15 by comparison with contemporary srWGS studies. As shown, there is wide variability of SV detection
across srWGS studies to date that report SVs detected per individual in more than 100 genomes. Parenthetical numbers next to each
study label indicate the number of genomes analyzed, and bold numbers next to each bar represent the number of SVs per genome re-
ported by each study.
(B) Overlap of SVs from the HGSVC srWGS and lrWGS callsets across children of the three trio families, partitioned by SV class.
(C) Distribution of repetitive sequences across the genome, genes, and exons. ‘‘Constrained’’ refers to genes and exons with pLI > 0.9,21

and ‘‘OMIM genes’’ includes a curated list of autosomal dominant genes that were defined in both Berg et al.22 and Blekhman et al.23 Gb,
gigabase; Mb, megabase. Percentage listed within each bar is the fraction of each group composed of "unique þ RM" sequences.
(D) Distribution of SVs from srWGS and lrWGS split by repetitive sequence context. Formatting conventions are the same as in (C).
(E and F) Concordance of deletions (E) and insertions and duplications (F) between srWGS and lrWGS split by repetitive sequence
context.
We sought to define and quantify the factors contrib-

uting to the poor concordance between SVs derived from

each technology to improve SV discovery, filtering, and

prioritization from srWGS in future large-scale medical

and population genetic initiatives. We first explored the

role of genomic features such as repetitive sequences that
The Ame
are enriched for SVs via repeat-mediated mechanisms39,40

because short-read alignment has well-documented limita-

tions within these genomic regions.41,42 We annotated all

SVs with sequence context based on RepeatMasker43 and

segmental duplication44 tracks from the UCSC genome

browser.45,46 For simplicity, we consolidated all repetitive
rican Journal of Human Genetics 108, 919–928, May 6, 2021 921



sequence annotations into three categories: segmental

duplication (SD; 5.1% of the genome), simple repeat (SR;

4.6%), and ‘‘repeat masked’’ (RM; 42.9%), where this RM

category referred to all other repetitive sequence not over-

lapping SD or SR elements. The remaining 47.4% of the

genome not overlapping any of these repeat categories

was labeled as ‘‘unique’’ sequence, which is a term used

for simplicity here, although these regions are not

completely devoid of repetitive sequences. The "unique"

and RM categories collectively encompass 90.3% of the

annotated human reference sequence, 90.9% of all

currently annotated protein-coding sequence, 95.8% of

all currently annotated coding sequence from evolution-

arily constrained genes, and 95.9% of genes currently

associated with human disease from the OnlineMendelian

Inheritance in Man (OMIM; Figure 1C).21,47–49

As expected, the distribution of SVs was non-uniform

and varied by sequence context for each technology

(Figure 1D). Most prominently, the enrichment of SV

breakpoints in highly repetitive genomic sequences (SD

þ SR regions) was dramatic and their distribution differed

significantly between technologies: despite representing

just 9.7% of the reference genome, SD þ SR annotated

sequences contained at least one breakpoint from 49.8%

of all SVs from srWGS and 70.4% of all SVs from lrWGS

(p < 2.2e�16 for both technologies, chi-square test, Table

S1, see supplemental material and methods for details).

This enrichment of SVs in repetitive sequence was also

strongly correlated with concordance between srWGS

and lrWGS: SVs located in repetitive SD þ SR sequences

displayed 57.0% concordance among srWGS variants and

22.5% in lrWGS variants, whereas those ratios improved

considerably in less repetitive sequences ("unique þ RM")

to 76.5% in srWGS and 59.9% in lrWGS (Figures 1E

and 1F).

Although the divergent distributions and diminished

concordance of SV detection by technology aligned with

expectations for SDþ SR regions, the paucity of overlap be-

tween technologies in "unique þ RM" regions was unex-

pected because breakpoints localized to these regions

should not suffer from the same technical confounders

of SV discovery in highly repetitive sequences. Therefore,

we next sought to decouple and quantify the discordance

driven by underlying biological features of the genome

from technical noise driven by false positive SVs present

in the underlying HGSVC callsets that were optimized

for sensitivity as described above. We also reasoned that

identifying the covariates that have the greatest influence

on false positive SV calls would be valuable in guiding

the human genetics community toward principled im-

provements in SV detection and filtering algorithms. To

accomplish this, we developed an in silico SV assessment

to improve the precision of srWGS and lrWGS callsets in

non-repetitive regions. This procedure re-evaluated the

following three pieces of orthogonal information from

both lrWGS and srWGS for each SV: (1) supporting evi-

dence from raw lrWGS reads in the parent and offspring
922 The American Journal of Human Genetics 108, 919–928, May 6,
genomes for the presence of an SV (VaPoR;50 Figure 2A);

(2) copy states based on srWGS normalized read depth

within SVs (Figures 2B and S1); (3) discordant paired-end

and split reads information at the breakpoint of each pre-

dicted SV (Figures 2C, 2D, and S2, Table S2). We considered

the SVs with one or more modes of supporting evidence as

‘‘high confidence’’ and explored their overlap on the basis

of repeat context for SV calls from different technologies

(see supplemental material and methods for further

details).

We initially applied this in silico SV refinement procedure

to deletions, which represent the most interpretable class

of SVs for genomics applications. As expected, the in silico

confirmation rate—i.e., the proportion of SVs supported by

one or more of the evidence classes described above—was

high (93.5%) for deletions concordant between technolo-

gies in "unique þ RM" regions compared to just 13.5%

and 33.1% for those that were only discovered by a single

technology for srWGS or lrWGS, respectively (Figure S3).

After restricting to high-confidence SVs, we observed a sub-

stantial improvement in concordance: 93.5% to 93.8% of

deletions were shared between srWGS and lrWGS

(Figure 2E). Although mutational processes such as so-

matic SVs or sub-clonal mutations arising in cell culture

can contribute to false positive findings, these results

implied that most of the discordance between srWGS

and lrWGS for SV discovery in the 90.3% of the genome

not encompassed by SD þ SR sequence was most likely

technical in origin. Importantly, it appeared that most of

the discordance wasdriven by false positive SV calls that

can be pruned by post hoc heuristic filtering.

We next explored the impact of post hoc filtering on SVs

other than deletions. While duplications and insertions

were reported as separate SV classes by srWGS, the lrWGS

methods applied by the HGSVC treated both classes as in-

sertions. Given this, we considered all srWGS duplications

as insertions for subsequent comparisons. In contrast to

the strong concordance between srWGS and lrWGS

observed for deletions, 45.5% of high-confidence lrWGS

insertions in "unique þ RM" regions had no matching SV

call from srWGS, while the majority (96.0%) of srWGS in-

sertions and duplications were captured by lrWGS (Figures

2F and S4). To investigate the properties of insertions spe-

cifically captured by lrWGS in "unique þ RM" sequences,

we aligned the assembled sequences of high-confidence

insertions against a catalog of known repeat elements.43

Most of these insertions aligned to specific types of repeat

elements (61.8%, n ¼ 2,485/genome), such as short inter-

spersed nuclear elements (SINEs, n ¼ 1,494/genome), long

interspersed nuclear elements (LINEs, n ¼ 312/genome),

and long terminal repeat (LTR, n ¼ 139/genome) retro-

transposons (Figures 3A and 3B). Notably, a ‘‘chimeric’’

alignment pattern was observed for 31.7% of the inser-

tions specifically discovered by lrWGS where inserted se-

quences were aligned to multiple different repeat types

(Figures 3B and 3C). These results indicate that the

complexity of insertion repeat structure is a major
2021
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Figure 2. Methods to recalibrate SVs in "unique þ RM" sequences based on read-level alignment signatures
(A) In silico evaluation results from VaPoR on deletions (pink background), insertions (purple background), and duplications (blue
background). Duplications and insertions reported by srWGS were both compared against insertions from lrWGS. ‘‘Concordant’’ repre-
sents SVs discovered by both lrWGS and srWGS, and ‘‘technology-specific’’ represents SVs specifically discovered from one technology.
(B) Distribution of normalized read depth of srWGS across deletions (pink background), insertions (purple background), and duplica-
tions (blue background) that were supported by VaPoR (red) and the 1 kb genomic regions that flank these SVs (gray).
(C and D) Distribution of aberrant srWGS read pairs (C) and split reads (D) around deletions (pink background), insertions (purple
background), and duplications (blue background) that were either homozygous (red), heterozygous (green), or false positives (blue).
The homozygous, heterozygous, and likely false positive SV sets were selected with the criteria described in the supplemental material
and methods.
(E and F) Concordance of deletions (E) and insertions and duplications (F) in "unique þ RM" sequences that were supported by the in
silico SV refinement procedure. Percentages represent the fraction of total variants shared between srWGS and lrWGS.
determinant of srWGS sensitivity for insertion SVs, as has

been previously demonstrated for certain classes of nested

insertions.51 We further observed high variability in the

current capabilities of srWGS detection algorithms de-

pending on the type of transposable element insertions

when comparing with lrWGS: 74.9% of SINEs, 42.6% of

LINEs, and 50.7% of LTRs detected by lrWGS were also

discovered by srWGS (Figure 3D). Intriguingly, almost all

(95.8%) of the high-confidence lrWGS insertions in

"unique þ RM" regions that were only discovered by

lrWGS nevertheless had some detectable support in the

raw srWGS data, indicating that continued development

of insertion detection algorithms could substantially

improve sensitivity for identification of this variant class

from srWGS (Figure 3E). Taken together, these analyses

indicate that lrWGS and assembly-based approaches pro-

vide substantial improvements over srWGS for insertion
The Ame
discovery, particularly for those events with complex

repeat structures.

We also examined SVs in highly repetitive SD þ SR re-

gions by using the same in silico evaluation framework (Fig-

ures S5A–S5D) as described above with the caveat that the

orthogonal evaluation of variants in these regions is more

challenging and prone to false positives due to alignment

artifacts that do not arise in the less repetitive regions of

the genome. Similar to the "unique þ RM" regions, inser-

tions were poorly captured by srWGS, and only 17.0%

overlapped lrWGS insertions, while 74.0% of srWGS inser-

tions were captured by lrWGS (Figure S5F). The high

concordance for deletions in "unique þ RM" sequences

also dissipated in these more repetitive SD þ SR regions,

as the concordance was 69.6% and 40.4% of high-confi-

dence deletions from srWGS and lrWGS that were shared

by the other technology, respectively (Figure S5E).
rican Journal of Human Genetics 108, 919–928, May 6, 2021 923
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Figure 3. Alignment of assembled lrWGS insertion sequences against known repeat elements
(A) Count of lrWGS insertions in "unique þ RM" sequences per genome by alignment of inserted sequences to known repeat elements.
The number on top of the bar represents the averaged count of high-confidence insertions in "unique þ RM" sequences per genome.
(B) Count of lrWGS insertions that are specifically discovered by lrWGS and shared by srWGS, by alignment of inserted sequences to
known repeat elements. Formatting conventions are the same as in (A).
(C) An example of an insertion SV assembled by lrWGS, annotated with sequences that align to known repeat element classes. White
shading represents sequences not annotated as a known repeat element.
(D) Counts of lrWGS insertions in "unique þ RM" sequences per genome by the class of inserted sequence and the proportion that was
overlapped by srWGS. ‘‘OTH*’’ represents insertions aligned to multiple known repeat elements, such as the example shown in (B).
‘‘OTH#’’ stands for insertions that were not aligned to any repeat elements. Numbers in parentheses represent the proportion of inser-
tions that were overlapped by srWGS.
(E) Count of split reads around the lrWGS high-confidence insertions in histogram.
Finally, we explored the concordance of SV detection for a

class of SVs that is strongly enriched for pathogenic varia-

tion and appears to be a significant blind spot for long-

read assembly technologies: large CNVs captured by

depth-based analyses from srWGS. Our initial analyses sug-

gested that lrWGS assembly methods failed to capture all

but one of the small number of large (>5 kb) CNVs that

could be detected by srWGS read-depth methods in three

probands (average size ¼ 14.7 kb). Recognizing the limita-

tion of read-depth analyses to capture large CNVs in a small

number of families, we explored CNV calls from 3,202 indi-

viduals from our ongoing analyses of 303 srWGS in the
924 The American Journal of Human Genetics 108, 919–928, May 6,
1000 Genomes Project that included all three families

used in this study (see HGSVC preprints for complete de-

tails).34,52 We found an average of 167 large CNVs per

genome that were exclusively detected by depth-based

methods, 88.2% of which were not detected by lrWGS as-

sembly. These findings highlight an important blind spot

in variant detection from lrWGS assembly in the absence

of depth-based analyses and have significant implications

for human disease studies because large CNVs have a pro-

found deleterious impact on a spectrum of human diseases.

In conclusion, we demonstrate the strong influence of

genomic context on expectations for SV detection from
2021



srWGS in genomic studies, as well as estimating the antic-

ipated yields of emerging lrWGS technologies. Initial sur-

veys have implied highly variable outcomes and limited

overall concordance in SV detection between the two tech-

nologies;14 however, in-depth analyses of these variants

emphasize that genome organization, variant type, variant

size, and high type I error rates in SV detection from each

technology were the predominant features driving discor-

dance. After applying post hoc filters to correct for the rela-

tively high type I error rates for SV detection from this

ensemble srWGS approach optimized for sensitivity, and

the assembly-based lrWGS approach that was optimized

with orthogonal data types, we were able to extrapolate

the informative genomic features that influence differ-

ences in SV distributions between technologies. The

concordance between srWGS and lrWGS was remarkably

high for deletions localized to the least-repetitive regions

of the genome (93.8%), while almost all lrWGS-specific de-

letions were localized to repetitive SD þ SR regions. We

observed poor sensitivity in the detection of large CNVs

(>5 kb) via lrWGS assemblies by comparison with srWGS,

and this limitation is most likely due to the lack of depth-

based lrWGSmethods. In contrast, lrWGS showed superior

sensitivity for detection of insertions regardless of the

genomic context, although most (95.8%) insertions in

the least-repetitive genomic regions had detectable align-

ment signatures in the srWGS data, indicating further

improvement in insertion discovery methods for srWGS

should continue to bridge this disparity in insertion detec-

tion between technologies. Variant types other than dele-

tions and insertions (e.g., inversions, translocations,

balanced and complex SVs) were excluded from these

analyses because they were not uniformly called by lrWGS

assemblies, although we expect future improvement in

lrWGS methods to provide novel insights into repeat-

mediated mechanisms for these variant classes.

The value added for long-read assembly to discover new

disease-associated SVs, or to provide resolution to

‘‘unsolved’’ cases in Mendelian genetics research and clin-

ical diagnostics, is thus a complex calculus. As we note

above, srWGS captures virtually all high-quality deletions

derived from lrWGS assembly in the regions of the

genome that encompass over 95% of currently annotated

coding sequence in genes with existing evidence for

dominant-acting pathogenic mutations from OMIM. We

therefore anticipate that a minority of ‘‘unsolved’’ cases

will be explained by novel and readily interpretable dele-

tions that can be captured by lrWGS but remain cryptic to

srWGS in known disease-associated genes. However,

given that the most highly repetitive regions of the

genome have been traditionally inaccessible in human

disease studies, it is anticipated that new disease-associ-

ated genes and sequences will emerge as functional anno-

tation of these repetitive sequences and duplicated genes

continues to improve. Indeed, germline and somatic

repeat expansions and contractions are already well

established mechanisms of human disease, particularly
The Ame
neurodegenerative disorders.53 As telomere-to-telomere

assembly methods continue to mature and eventually

reach into centromeres, telomeres, and other highly

repetitive regions, the catalog of disease-associated vari-

ants will certainly expand beyond what is applied to

current clinical interpretation. Moving forward, long-

read technologies also offer the opportunity to detect

novel transcripts from RNA-seq54 and methylation status

from technologies such as ONT, which will further

expand the list of disease-associated variants.54–56

Collectively, we estimate from these analyses that future

genomic studies and clinical initiatives using srWGS can

expect to capture upward of ten to eleven thousand SVs

in each human genome, and current large-scale interna-

tional initiatives are poised to provide exciting new in-

sights into the 90% of the annotated reference genome

that encompasses most known genic sequence. Our ana-

lyses also confirmed that assembly-based lrWGS methods

will access regions of the genome that were previously

intractable to conventional technologies and srWGS. We

anticipate that advances in lrWGS technologies, and

associated analytic approaches, will provide significant

long-term value in expanding the catalog of functional

variation associated with insertions, mobile elements,

and the most challenging sequence features in the human

genome.
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