
1. Introduction
Responses to public health threats presented by the global COVID-19 pandemic dramatically altered daily 
activities in cities around the world, including in the Los Angeles and Washington DC/Baltimore metropol-
itan areas. Researchers have attempted to determine the extent to which CO2 emissions were impacted by 
the pandemic, linking changes in emissions to processes and sectors using different types of activity data 
and baselines for comparisons (Le Quéré et al., 2020; Liu et al., 2020; Zheng et al., 2020). One study shows 
that CO2 emissions declined by 3.9% globally in the first 4 months in 2020, attributing half of this decline to 
changes in traffic and mobility (Le Quéré et al., 2020). Unlike these studies, which use only activity data to 
estimate declines, here we also use atmospheric CO2 observations to detect when and how emissions were 
impacted, and focus on CO2 emissions reductions at the city scale.

Our analysis relies on high-accuracy atmospheric CO2 observations from urban networks, building on a re-
cently published study that used lower-accuracy CO2 sensors to estimate COVID-19 related impacts for the 
San Francisco Bay area (Turner et al., 2020). Here, we evaluate impacts in two separate metropolitan areas: 
Los Angeles and Washington DC/Baltimore, allowing for an inter-comparison between two large urban 
regions. In Los Angeles and Washington DC/Baltimore, traffic congestion and commuting play dominant 
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roles, yet each region has important differentiating characteristics related to its economy, infrastructure, 
climate, and demographics. As such, the impact of COVID-19 on CO2 emissions is layered on top of other 
forces, for example, energy shifts or specific weather conditions, that drive emissions within these cities.

We take a comprehensive approach by exploring the full value of CO2 observations for understanding events 
like COVID-19 that drive urban-scale emissions. The CO2 observations are used in three distinct analyses 
with increasing model dependency. The first detects the timing of emissions declines using atmospheric 
CO2 observations, the second evaluates CO2 enhancements to assess the persistence of reduced emissions, 
and the third employs an inverse model to estimate the relative change in emissions in 2020 compared to 
2018 and 2019. In addition to detecting the timing and estimating the magnitude of emissions declines 
using atmospheric CO2 observations, we also examine proxy activity data to tease apart the influence of 
COVID-19 from other factors that impact emissions.

2. Site Descriptions
For this study, we consider Washington DC and Baltimore as a single metropolitan area (DC-Balt), given 
these cities' proximity and intersecting suburbs (US Census, 2010). We also focus on the wider metropolitan 
extent of the Los Angeles area (LA). While topographically very different, both regions are similar in size 
(∼18,000 km2) and are densely populated (Figure S3). The two regions experience very different climates: 
LA's is characterized by seasonal changes in rainfall with a dry summer and a rainy winter, while DC-Balt 
experiences hot, humid summers and cold, wet winters. These climatological differences impact emissions 
from heating and cooling as well as urban and surrounding vegetation, which controls CO2 uptake and 
release from the biosphere.

The emissions magnitude and relative contribution of different sectors to emissions in each city reflect 
the economies in these metropolitan centers. Two existing 1 km2 emissions data products give insight into 
sectoral distributions. Here we refer to the Hestia emissions product, tailored for LA (Gurney et al., 2019), 
and Vulcan 3.0 (Gurney et al., 2020), a national emissions product, in DC-Balt. The two emission products 
are constructed using similar methods and are consistent, such that the domain total for LA in the Vul-
can national product is the same as in Hestia. According to these products, the total annual magnitude of 
in-boundary CO2 emissions in LA is 43.7 megatons of carbon (MtC)/year, which is over twice that of DC-
Balt, 20.5 MtC/year (Figure S1). Although each city has its own sectoral emission mix, the on-road sector 
dominates in both LA and DC-Balt, with on-road sector emissions accounting for ∼45% of annual totals in 
both cities. The industrial sector is the second largest component in LA, accounting for an additional 23% 
of the yearly total. The electricity production sector in DC-Balt is the second most important contributor, 
accounting for 19% of annual emissions.

The sectoral breakdown of fossil-fuel CO2 (FFCO2) emissions in DC-Balt exhibit much larger seasonal and 
annual variability compared to LA due to regional climate and energy demand (Figure S1). The changes 
in emissions are evident during the transition from winter to spring, corresponding to our study period of 
January through May; DC-Balt emissions show wide ranges for the commercial (∼23%–4%) and residential 
(∼20%–4%) sector fractions due to reduced demand for heating in the warmer months compared with Jan-
uary and February (Figure S2).

3. Measurements
Both the LA and DC-Balt metropolitan areas are being monitored for ambient CO2 levels using networks of 
high-accuracy measurement stations. Each network has ∼9–13 sites with sensitivity to urban anthropogen-
ic emissions (Figure S3; Tables S1 and S2), although the number of sites and measurements available in any 
given month varies, depending on how each network was developed and maintained (Karion et al., 2020; 
Kort et al., 2013; Lopez-Coto et al., 2017; Mueller et al., 2018; Verhulst et al., 2017). We use 2018 and 2019 as 
baseline years with which to compare 2020 observations and inferred emissions because we have a consist-
ent number of observational sites for each domain during these times. The network sensitivity, or footprint, 
of the urban CO2 measurements is also generally consistent in these 3 years (Figure S4). Although we do 
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not have a long-term record as a basis for comparison, using the average of two baseline years allows us to 
account for some year-to-year variability in emissions.

Atmospheric CO2 observations from the two urban networks contain signatures from biospheric and an-
thropogenic CO2 sources and sinks within the footprint, which can include fluxes from both inside and 
outside the urban domain. We define FFCO2 as all fluxes that result from combustion. As such, isolating the 
FFCO2 contribution to CO2 observations from each urban domain requires an understanding of biospheric 
fluxes and incoming CO2 (i.e., background).

Discerning FFCO2-driven enhancements in LA is more straightforward than in DC-Balt because, in part, the 
biosphere has less of an impact (Miller et al., 2020). We use a non-year specific biospheric model, the Veg-
etation Photosynthesis Respiration Model (VPRM for July 2017 to June 2018 as described in Section S5.1.1; 
Figure S5a), to model the biological fluxes. Modeled biospheric enhancements are consistent at the city 
scale with those presented in Miller et al. (2020) from January to May. We use measurements from the site 
on San Clemente Island (SCI) to represent incoming airflow (Verhulst et al., 2017). Median monthly FFCO2 
enhancements estimated from atmospheric CO2 observations within LA range between 8 µmol mol−1 and 
30 µmol mol−1 (Section S6; Figure S6a).

Representing CO2 concentration of incoming airflow for DC-Balt is more difficult because the domain 
is downwind of large agricultural areas, deciduous forests, and emission sources, including other metro-
politan areas and power plants. We represent the incoming CO2 based on observations from one of three 
near-boundary towers (BUC, SFD, or TMD, Figure S3) selected using modeled back-trajectories (described 
in Section S3.1) similar to a recent study in Boston (Karion et al., 2021; Sargent et al., 2018), and described 
further in Section S4.

In DC-Balt, we represent biospheric fluxes using year-specific (2018–2020) VPRM to ensure properly char-
acterized variability in the modeled fluxes (Section S5.1.2). Average daily observed drawdown due to biolog-
ical activity can be as high as 4.7 µmol mol−1 (as predicted by VPRM; Figure S5b) during our study period. 
After accounting for inflow and the contribution of biological fluxes to observed CO2, the estimated median 
monthly FFCO2 enhancements for DC-Balt are ∼1.5 µmol mol−1–7 µmol mol−1 in January through May 
between 2018 and 2020, 3–4 times lower than those in LA (Figure S6).

4. Methods
We use three different types of analysis to detect the onset of the COVID-19 effect on CO2 emissions and 
estimate the relative change of emissions. To simplify the interpretation of results, we keep most of the 
modeling and analysis components consistent between LA and DC-Balt. However, there are a few differ-
ences that cannot be avoided due to city-specific meteorology and availability of data. Our period of assess-
ment includes the months of January–May for 2018, 2019, and 2020, with 2018 and 2019 observations and 
inferred emissions providing baselines for comparison with 2020.

For the first analysis, we focus on the temporal variability of measured atmospheric CO2 rather than the 
concentrations themselves to detect the timing of emissions changes. CO2 enhancements contain large 
variability associated with weather conditions, making it difficult to isolate changes, while high-frequency 
(sub-hourly scale) variability is expected to directly correlate with emissions near the observation locations 
and are less affected by synoptic conditions (Umezawa et al., 2020). To identify changes in variability in 
2020 compared to previous years, we use the ratio of the standard deviations of the 1 min averages in 2020 
to the averaged standard deviations from 2018 and 2019 in a change point analysis (Aminikhanghahi & 
Cook, 2017) (Section S6.1) and estimate dates associated with sudden emissions decline and recovery.

In the second analysis, we examine the atmospheric CO2 observations by assessing the mean daily cumula-
tive afternoon (i.e., the time period when the atmosphere is well-mixed) FFCO2 enhancement, comparing 
2020 to other years. We calculate FFCO2 enhancements ( FFCO2y ) as follows:

   ,FFCO obs back bio2y y y y (1)

 (2) ,bio VPRMy Hs
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where obsy  are the CO2 mole fractions in µmol CO2 per mol of dry air, or ppm, as observed at the urban 
measurement sites; backy  is the background CO2 (Section S4); H, expressed in (µmol mol−1)/(µmol m−2 s−1), 
represents sensitivities of the observations to surface fluxes as obtained from the atmospheric transport and 
dispersion model (Section S3.1); and bioy  are the biological contributions to obsy  as modeled through the 
convolution of H and the modeled VPRM fluxes ( VPRMs ; Section S5) with units µmol m−2 s−1. Additional 
detail on the cumulative summation method is given in Section S6.2.

In the final analysis, we used a geostatistical-Bayesian atmospheric inverse modeling approach with FFCO2y  
as observations to estimate posterior FFCO2 emissions. We use Hestia (LA) and a temporally smoothed Vul-
can 3.0 (DC-Balt) emission product for 2015, the most recent year available for both products, as covariates 
(priors) in the two inversions. Both priors are re-gridded to 0.02° × 0.02° for the domains in Figure S3. To 
estimate the gridded posterior emissions, we adopt a moving window approach to estimate FFCO2 emis-
sions at daily temporal intervals by maintaining a one-day overlap between two 2-day inversions (for details 
see Section S7).

The posterior FFCO2 emissions are used to detect a relative change in emissions in March and April of 
2020 in comparison to the mean of the baseline years, 2018 and 2019. The posteriors are further compared 
against adjusted domain total FFCO2 emissions from Hestia and Vulcan 3.0 computed using information on 
statewide fuel sales, continuous emissions monitoring systems (CEMS) data from powerplants, natural gas 
consumption, and vehicle miles traveled (VMT) data (Section S8).

5. Detection and Persistence of Emission Declines
The influence of the pandemic response on FFCO2 emissions is evident in both the variability of concen-
trations (as indicated by their standard deviation) and the cumulative FFCO2 enhancements in LA and DC-
Balt (Figure 1). In the observation analysis, we observe a reduction in the standard deviation of CO2 within 
each hour, averaged daily over all sites, in mid-March 2020 relative to 2018 and 2019 in both metropolitan 
areas suggesting that emissions declined substantially at that time (Figures 1a and 1b). The reduction in 
CO2 variability is also apparent in the statistically significant smaller interquartile range of hourly averaged 

FFCO2y  (Figure S6). The change points in the ratio of 2020 standard deviations to the averaged standard 
deviations from 2018 to 2019 were detected on March 14 (LA) and March 13 (DC-Balt), with lower 2020 
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Figure 1. Moving 15-day average of daily afternoon network-wide means of the within-hour standard deviation for 
(a) LA and (b) DC-Balt, for three study years. Change point credible intervals are shaded pink. (c and d) Cumulative 
fossil-fuel CO2 (FFCO2) enhancements (daily afternoon network-wide means) for each of the three years, starting on 
January 1 and re-starting on March 13 (black dashed line), the date associated with the behavioral shifts reflected in 
Apple mobility (Apple, 2020).
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standard deviations after these dates, matching the timing of behavioral shifts indicated in Apple mobil-
ity data (Apple,  2020). The corresponding uncertainties as indicated by the 95% credible intervals (Sec-
tion S6.1) are 6 days (LA) and 21 days (DC-Balt). We also detect a second change point for LA on April 29 
with a 95% credible interval of 9 days, associated with an increase in traffic (Figures 1a and S11) (California 
Dept. of Transportation, 2020). Uncertainty bounds in LA are narrower due to the sharper relative drop in 
the standard deviation. We did not detect a second change point in the DC-Balt data, perhaps due to the 
ramp-up of the biosphere during this time period.

The transition in LA is also evident when comparing the FFCO2 cumulative enhancements before and after 
the decrease in mobility (Figure 1c). Large interannual variability of the cumulative enhancements in LA 
is likely due to climatological or other extreme atmospheric events like a fire in early 2018. However, the 
reduced FFCO2 cumulative enhancements after March 13, 2020 relative to 2018 and 2019 are apparent. 
Evaluating LA cumulative enhancements over additional years (2015–2020; Figure S7), we find that 2020 
enhancements prior to March 13 are well within interannual variability, further indicating that the low 
post-March 13 enhancements in 2020 are likely caused by an emission change rather than year-specific 
meteorological variability.

In DC-Balt, the 2020 cumulative enhancement is slightly higher in the beginning of the year than in 2018 
and 2019 (Figure 1d). After March 13, 2020 cumulative enhancements are lower than the previous 2 years, 
again indicating a change in emissions although less apparent than for LA. There may be several reasons 
why the FFCO2y  decrease in 2020 is not larger, including lower overall enhancements in DC-Balt compared 
to LA (leading to smaller signals) or interannual differences in transport, which affect the relationship 
between enhancements and emissions. However, despite the difference in magnitude between the cities, 
at the onset of behavioral shifts (∼March 13, dashed vertical line in Figures 1c and 1d), the enhancement 
growth for 2020 is lower suggesting a decrease in emissions—a conclusion consistent with the results of the 
LA FFCO2 enhancement analysis.

6. Monthly Posterior Fluxes
Posterior FFCO2 emissions estimates from the inversion analysis also reflect the emissions decrease as-
sociated with the COVID-19 pandemic in both LA and DC-Balt (blue bars, Figure 2). In both March and 
April 2020, the posterior reflects significantly lower emissions than the inversion prior, and the April 2020 
posterior is significantly lower than the posteriors for the pre-pandemic months in 2020 at 95% and 68% 
confidence intervals (CI) in LA (Figure 2c) and DC-Balt (Figure 2f), respectively. April 2020 posteriors are 
also lower than any other January through March period in the previous 2 years in both cities, suggesting 
that the decrease in this month is outside of seasonal and interannual variability. The posterior in March 
2020 does not reflect as large a decrease as April, given that the reduction in activity due to the pandemic 
response occurred in mid-March in both cities.

In May 2020, the inversion FFCO2 estimates are larger than those of April after accounting for uncertainties 
(Figures 2c and 2f). In LA, the May increase in the posterior emissions is likely due to the rebound in traffic 
given the second change point identified in Figure 1a. Alternatively, in DC-Balt, the standard deviation 
analysis did not indicate any clear change point associated with a recovery period possibly due to the large 
influence of the biosphere on atmospheric CO2 in May (Figure 1d). In May, the biological contribution is 
nearly equal the FFCO2y  in DC-Balt (Figure S5c3), so any biases in the biological modeled fluxes would result 
in a bias in May posterior emissions. Unlike LA, we do not have a good measure on the uncertainty of these 
fluxes especially during the start of the growing season when representing the onset of photosynthetic up-
take is difficult to model. Thus, in DC-Balt, we are not confident in attributing the increase in the posterior 
emissions in May 2020 to recovery response.

Beyond 2020, we further investigate the inversion posteriors to ensure that they are consistent with expected 
fluxes and trends for 2018, 2019, and 2020. The Hestia and Vulcan priors for LA and DC-Balt represent 2015 
FFCO2 emissions, and we expect emissions in each urban domain to be different in later years, especially in 
DC-Balt where emissions are more dependent on climate variability and where there have been substantial 
changes in the electricity sector over the last 5 years. To estimate a more representative year-specific domain 
total, we generate activity-based bottom-up (BU) estimates scaled from the Hestia and the Vulcan priors. 
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For scaling, we use publicly available proxy data, such as reported emissions from electricity generation, 
natural gas usage, and fuel sales or VMT or vehicle hours traveled (VHT) (Section S8; Table S3). In DC-Balt 
and LA, all sectors contributing more than 10% of emissions in January through May were adjusted if public 
data was available. These year-specific estimates are not meant to provide accurate new emission products 
for these later years; rather, they provide a basis with which to compare our result for the whole-city domain 
(Figures 2a–2f, dark gray bars).

Overall, we find that the estimated FFCO2 posteriors are often (but not always) more consistent with 
year-specific activity-based BU totals than with the 2015 prior. The general good comparison gives confi-
dence in our posterior estimates and helps explain variability in the emission estimates between years. This 
improved consistency indicates that the CO2 observations within the inversion are driving the estimated 
emissions to better represent the true emissions for a particular year or month.

For example, we expect more variability in posterior FFCO2 emissions in DC-Balt than LA, largely due to 
climate. Indeed, in LA, the 2020 activity-based estimates are largely consistent with the 2015 prior for all 
months and years except for March, April, and May of 2020 (Figure 2, dark gray bars). The monthly varia-
tion in DC-Balt activity-based BU estimates is large from year to year because natural gas consumption to 
heat residential and commercial buildings largely depends on weather conditions in any given winter or 
spring. In addition, emissions from electricity production vary significantly between months and years in 
this region (Section S8). For example, the February 2019 activity-based BU emissions in DC-Balt are 27% 
lower than the 2015 prior and agree well with the posterior for that month (Figure 2e).

We note that the posterior LA emissions in January and February 2018 do not agree well with the activi-
ty-based BU emissions for these months (Figure 2a). The large posterior emissions in January 2018 may be 
caused by an active fire season in the region that stretched into the early days of 2018 (fire emissions are 
not included in the prior or activity-based BU estimates but would contribute to the posterior emissions 
as their signatures would be in obsy ). In February 2018, we suspect that poorly modeled meteorological 
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Figure 2. Inversion posterior monthly mean fossil-fuel CO2 (FFCO2) emissions estimates for January–May 2018, 2019, and 2020, along with the 2015 prior 
emissions estimate (Hestia-LA: a–c; Vulcan: d–f) and an activity-based bottom-up (BU) estimate. Error bars on the posterior represent 95% confidence intervals. 
Uncertainties of the daily estimates are combined, accounting for correlations, to obtain overall uncertainties of the monthly means (Lawton, 2001). March and 
April are highlighted in each year with a colored rectangle. The error bars on the 2015 Hestia prior are 11% (Gurney et al., 2019) and for the 2015 Vulcan prior 
are 18% (Gurney et al., 2020).
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conditions resulted in elevated emissions estimates, given the prevalence of low wind speeds in that month 
(Section S3.2).

7. Estimated Emissions Reductions
We compare March and April 2020 emissions to their respective means for 2018 and 2019 (Figure 3) to 
estimate the relative decrease in emissions in these months. We also compare the March and April activi-
ty-based BU totals for 2020 to those of previous years to discern whether the observed reductions are con-
sistent with changes in activity data. In LA, in addition to VMT, we also calculate BU reductions using VHT 
data as a second point of comparison for the estimated relative reduction (Section S8.4). VHT decreased 
more than VMT during the pandemic because of reduced traffic congestion resulting in higher average ve-
hicular speeds (Figure S11). We note that gasoline fuel sales, which is the best proxy data for on-road emis-
sions, is only available at the state level, which may not reflect on-road activity in LA. We use both VMT and 
VHT in the analysis because they reflect different but related contributions to on-road emissions (distance 
traveled as well as time spent on the road).

In LA, the posterior reductions are 17% ± 9% (0.57 MtC ± 0.30 MtC, 95% CI) in March and 34% ± 6% (1.09 
MtC ± 0.21 MtC, 95% CI) in April (blue bars, Figure 3). We also estimate a 28% ± 4% CO2 emissions reduc-
tion for May in LA (not shown). The LA activity-based BU total for March and April suggests CO2 emission 
reductions of 8% and 17%, respectively, all attributed to changes in VMT (light gray, Figure 3a). Using VHT, 
the reductions are slightly larger at 11% and 21%, which are smaller than the posterior estimates; these are 
within our estimated 95% CI in March but not in April (medium gray, Figure 3a). Overall, VMT/VHT in 
the LA area decreased by 17%/23% in March and 33%/42% in April 2020 compared to the mean of 2018 and 
2019. Although VHT indicates a larger decrease than VMT (Figure S11), VMT has been previously used to 
estimate emissions from on-road vehicles (Gately et al., 2015; Gurney et al., 2020). The industrial sector is 
the only other significant portion of LA's total emissions, at 23%. There are some indications that this sector 
was impacted by COVID-19 or other external forces (e.g., significant labor drops in employment for the 
manufacturing sector) (Bureau of Labor Statistics, 2020; California Energy Commission, 2020; Hydrocar-
bon Processing, 2020). However, without a reliable proxy for the industrial sector, we are unable to account 
for any quantitative changes.

In DC-Balt, we estimate a slightly larger relative drop in the posterior emissions than in LA in March, 
that is, 25% ± 14% (0.45 MtC ± 0.25 MtC, 95% CI), while the April decrease is similar to LA, at 33% ± 11% 
(0.43 MtC ± 0.15 MtC, 95% CI) (blue bars, Figure 3b). The estimated decrease for both months is broadly 
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Figure 3. Changes in monthly mean emissions for April and March 2020 relative to 2018/2019 means for (a) LA and 
(b) DC-Balt. Blue bars represent the decrease estimated from the atmospheric inversion posteriors, with error bars 
representing the 95% CI. Various shades of gray bars represent the decrease for each month using different activity-
based adjusted bottom-up totals, as indicated in the legend and described in the text.
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consistent with (although slightly larger than) the reductions predicted using the activity-based BU totals, 
which are 21% and 27% in March and April, respectively. However, only a 6% decrease in March is attributa-
ble to a reduction in the on-road sector relative to previous years, since only half of this month was affected 
by the slowdown in activity (medium gray bars, Figure 3b). The remainder of the 21% March BU decrease 
is largely attributed to reduced natural gas use in the residential and commercial sectors due to decreased 
demand for heating, as March 2020 was warmer than March 2018 and 2019. Natural gas use in DC-Balt 
was not anomalous in 2020 after accounting for regional temperatures and follows the trend with heating 
degree days from previous years (Figure S10), suggesting that behavioral changes due to COVID-19 were 
not responsible for the decline. In April 2020, the activity data suggest that most of the observed emissions 
reduction is indeed from on-road emissions, which are responsible for an estimated 23% decrease.

8. Conclusions
The response to COVID-19 influenced CO2 emissions in both Los Angeles and Washington DC/Baltimore, 
resulting in declines of over 30% in April relative to previous years. These reductions are consistent with a 
30% emissions decline found in the San Francisco Bay area between the 6 weeks prior and the 6 weeks after 
that city's lockdown (Turner et al., 2020). Our study demonstrates the detection of changes in urban-scale 
CO2 emissions as small as 15%–30% during this time period. Overall, the atmospheric inversion-derived CO2 
emissions displayed significant drops in both cities due to factors (e.g., decreased traffic) impacted by COV-
ID-19. Our three observation-based analyses allowed us to detect the timing of emissions declines, assess 
the continuation of reduced emissions, and estimate the relative change in emissions in March and April 
2020 in comparison to 2018 and 2019. Beyond the reductions of CO2 emissions due to COVID-19 impacts, 
we also found other factors that significantly influence monthly emissions using trends in publicly available 
activity data. In DC-Balt, both COVID-related traffic reduction and warmer weather caused the observed 
emissions decline; in LA, only a portion of the decline is attributable to a reduction in traffic, while some of 
the emissions declines remains unexplained.

The methods used here show that emission changes (whether due to pandemic effects, as shown here, or 
any other cause) that may be missed with solely an activity-based approach can be detected using atmos-
pheric measurements. Such timely emissions information allows cities to assess the effectiveness of poli-
cies designed to reduce emissions. Furthermore, accurate CO2 emissions information provided at shorter 
timescales could be crucial to policy makers to course-correct their mitigation actions if necessary and 
propose new measures (e.g., redesigning transportation infrastructure) that will ultimately drive down CO2 
emissions.

Data Availability Statement
All data used in this analysis are available at data.nist.gov (https://doi.org/10.18434/mds2-2343).
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