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Exploring Risks of Human Challenge Trials For COVID-19

David Manheim, Ph.D. ,1,2,∗ Witold Wiȩcek, Ph.D. ,1,3,† Virginia Schmit, Ph.D. ,1

Josh Morrison,1 and 1Day Sooner Research Team1

Human challenge trials (HCTs) are a potential method to accelerate development of vac-
cines and therapeutics. However, HCTs for COVID-19 pose ethical and practical challenges,
in part due to the unclear and developing risks. In this article , we introduce an interactive
model for exploring some risks of a severe acute respiratory syndrome coronavirus-2 (SARS-
COV-2) dosing study, a prerequisite for any COVID-19 challenge trials. The risk estimates
we use are based on a Bayesian evidence synthesis model which can incorporate new data on
infection fatality risks (IFRs) to patients, and infer rates of hospitalization. The model esti-
mates individual risk, which we then extrapolate to overall mortality and hospitalization risk
in a dosing study. We provide a web tool to explore risk under different study designs. Based
on the Bayesian model, IFR for someone between 20 and 30 years of age is 15.1 in 100,000,
with a 95% uncertainty interval from 11.8 to 19.2, while risk of hospitalization is 130 per
100,000 (100–160). However, risk will be reduced in an HCT via screening for comorbidities,
selecting lower-risk population, and providing treatment. Accounting for this with stronger
assumptions, we project the fatality risk to be as low as 2.5 per 100,000 (1.6–3.9) and the hos-
pitalization risk to be 22.0 per 100,000 (14.0–33.7). We therefore find a 50-person dosing trial
has a 99.74% (99.8–99.9%) chance of no fatalities, and a 98.9% (98.3–99.3%) probability of
no cases requiring hospitalization.

KEY WORDS: Bayesian meta-analysis; COVID-19; human challenge trial; informed consent; interac-
tive models; risk communication

1. INTRODUCTION

As of February 1, 2021, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has led to
over 100 million confirmed infections worldwide, and
over 2 million deaths. Despite the recent approval
of vaccines, McKinsey estimates that global vaccine
production will reach 8 billion doses in 2021—and
because the vaccines require two doses, this is only
enough to vaccinate a bit over half of the global pop-
ulation (Agrawal, Conway, Heller, Sabow, & Tolub,
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2020). However, now that vaccines are approved,
testing of additional vaccines with large-scale field
trials is difficult and morally fraught. Not only that,
but a variety of critical questions are emerging about
the extant vaccines, including the effectiveness of sin-
gle doses, and the effectiveness against novel strains
of COVID.

Rapid answers have been, and will continue
to be, critical in the management of disease bur-
den and mitigating impacts of COVID-19. Different
paths to producing relevant clinical data exist, but
field trials are slow and require large subject pop-
ulations to discern therapeutic effects (Jamrozik &
Selgelid, 2020b), while observational studies of ef-
fectiveness are similarly slow, and not randomized.
In order to accelerate testing of vaccines, several au-
thors and institutions have proposed intentionally
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exposing human subjects to SARS-CoV-2 to test
novel interventions; to this date, nearly 40,000
people have expressed interest in volunteering for
this task (1Day Sooner, 2020). Such human challenge
trials (HCTs) have been useful in the past (Jam-
rozik & Selgelid, 2021) to develop vaccines and treat-
ments for other infectious diseases such as malaria,
cholera, respiratory syncytial virus (RSV) (Gómez-
Pérez et al., 2015; Roestenberg, Hoogerwerf, Fer-
reira, Mordmüller, & Yazdanbakhsh, 2018), influenza
(Treanor et al., 1999), and dengue fever (Larsen,
Whitehead, & Durbin, 2015). While the changing sit-
uation has led some to question the need for HCTs,
others have defended their usefulness (Turk, 2021).
The usefulness is because HCTs can be used to an-
swer a variety of questions (Nguyen et al., 2021),
including many not addressed by the availability of
current vaccines (Ducarmon, Kuijper, & Olle, 2021;
Steuwer, Jamrozik, & Eyal, 2021). However, two eth-
ical problems have been raised which stand in the
way of conducting HCTs for SARS-CoV-2 infection.
First, given lack of rescue therapies and our limited
understanding of COVID-19’s risks, it is difficult to
weigh the likely impacts of these studies on volun-
teers against the benefit to society, or to obtain in-
formed consent from volunteers (Palmer & Schuck,
2020). Second, we do not know what viral dose of
SARS-CoV-2 should be given to volunteers.

To help address both concerns, we developed a
model to help assess the risks participants will face
in a hypothetical dosing study for COVID-19, one
similar to hVIVO’s soon-to-be-launched trial (Turk,
2021). This model uses data from a nonsystematic re-
view of data on COVID-19 risks (mortality and infec-
tion rates) and describes risks for individuals as well
as the overall study risk. As both clarification on viral
dose and infection risks are essential before starting
HCTs, this work can help inform policymakers and
potential volunteers about some risks concerning the
process of using HCTs to accelerate vaccine and ther-
apeutic development.

2. METHODOLOGY

We developed a three-component tool to under-
stand and explain the relevant risks. The first com-
ponent quantifies risk of COVID-19 mortality by us-
ing a Bayesian evidence synthesis model; the second
uses that estimate, along with other data on gender-
specific mortality and hospitalization risks to simu-
late the risk of a study with given characteristics; the

third is a front-end tool for allowing interactive ex-
ploration of risks from a study or to an individual.

2.1. Bayesian Evidence Synthesis Model

We use a Bayesian meta-analysis approach to ob-
tain an estimate of mortality risk. This form of mod-
eling combines different sources of evidence to char-
acterize both mean and dispersion in a given statistic
of interest. In our case, we use age-specific, location-
specific death and prevalence data to generate an es-
timate of the infection fatality risk (IFR), i.e., the
probability that a person infected with COVID-19
will die, accounting for age; we also provide an es-
timate of hospitalization risk. These two estimates
allow us to understand risk reduction in individuals
who would participate in an HCT.

We use Bayesian methods because they allow us
to best account for heterogeneity in IFRs across age
groups, different countries, and regions. Characteriz-
ing this heterogeneity is crucial when our goal is not
only characterizing historical data, but also assessing
the possible reductions in IFRs. For example, it can
be argued that an HCT can use screening and pro-
vide medical care to achieve a rate of IFRs which is
at least as low as the region or country with the low-
est IFRs in our data.1

Although existing statistical packages for meta-
analysis (both Bayesian and frequentist) could eas-
ily be used to model event rates such as IFR (Car-
penter, 2016; Wiȩcek & Meager, 2020), these mod-
els may encounter problems or provide biased results
when in a large proportion of studies no deaths are
observed, as is sometimes the case for COVID-19 in
younger populations. To address this, we use death
data and estimates of prevalence as inputs instead of
IFRs, so that the model is generative, following best
practice for such models (Betancourt, 2016; Gelman
et al., 2020). We then construct a new, reproducible
model for IFRs. Methodological details of the model
are described in the Appendix.2 Crucially, we assume

1Since this is only an assumption, rather than a fact which we can
derive directly from data, we will present both the overall esti-
mate across studies, or the expected lower risk. Similarly, users
of our tool can choose between different assumptions.

2Briefly, let k index populations and lock their locations (coun-
tries, regions). Let dk be observed deaths for data point k; μ

(p)
k

the reported mean prevalence and σ
(p)
k its standard error, on

logit scale; nk the total population; X is a vector of median ages,
expressed in decades and centered at 25 years. The hierarchical
model is as follows:

dk ∼ Binomial(nk, pkIFRk), (1)
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that the fixed effect of age and random effects of lo-
cation on IFR are on logistic scale, as is typical for
meta-analysis models of binary data.

While our IFR estimates capture average risks
within different age groups and even heterogene-
ity across regions or countries, they still refer to the
general population (of a given age, in a given lo-
cation). A prospective HCT participant would be
screened for health issues and comorbidities, fur-
ther reducing the risk in comparison to the mem-
bers of general population. To account for this, we
perform an additional analysis using OpenSAFELY
(Williamson et al., 2020), a large observational data
set on COVID-19 mortality factors that includes co-
morbidity and age information, as well as data on
gender, comparing the risk in general population to
lower-risk subpopulation.3 Similarly to adjustment
for heterogeneity across general populations, the ad-
justment for screening can be turned on or off in
our tool.

Input data for the Bayesian IFR model is based
on a nonsystematic review of the literature and ear-
lier meta-analyses, particularly by Levin, Cochran,
and Walsh (2020) but we have also opportunistically
included other studies, and data from other official
sources as detailed in the Appendix. However, the
list of studies is not fixed, since new and better char-
acterized data sets are becoming available over time.
For this reason, we have made sure that incorporat-
ing additional prevalence and death data from newer
studies and/or updated data sets is straightforward.
We will continually update the model to assure that

logit(pk) ∼ N
(

μ
(p)
k ,

(
σ

(p)
k

)2
)

, (2)

logit(IFRk) = θlock
+ Xβ, (3)

θ j ∼ N (τ, σ 2), where j = 1, . . . , Kloc. (4)

The parameters of the model are pk, the true prevalence; θ ,
location-specific (random) effects on IFR; β, (fixed) effect of
age; τ and σ , the hypermean and hyperscale parameters for IFR.
We implement our model in Stan (Carpenter et al., 2017), with
weakly informative priors on all parameters. The prior for τ is
centered at one death per 10,000 cases.

3The lower-risk group is defined as nonobese, nonsmoking, and
without the following risk factors (following those used by
Williamson et al., 2020): asthma, other chronic respiratory dis-
ease, chronic heart disease, diabetes mellitus, chronic liver dis-
ease, chronic neurological diseases, common autoimmune dis-
eases (rheumatoid arthritis, systemic lupus erythematosus, or
psoriasis), solid organ transplant, asplenia, other immunosup-
pressive conditions, cancer, evidence of reduced kidney function,
and raised blood pressure or a diagnosis of hypertension.

any estimates provided to participants or used for
decisions include all relevant data, rather than only
using data that was available when the analysis was
first performed.

We use the age- and gender-specific data from
Salje et al. (2020) for the rate of death of hospitalized
patients to impute the relative risk of hospitalization
based on our meta-analysis for mortality risk.

Our model is available publicly, together with
input data and source code for the tool and under
an open license, at https://github.com/1DaySooner/
RiskModel (Manheim, Wiecek, Choi, & Wick, 2021).

2.2. Transforming Individual Risk into Study Risk

Once a suitable challenge virus is manufactured,
itself a complex process (Catchpole et al., 2018), the
risk of the individual from a challenge trial depends
on the dose of virus given. The uncertainties about
dose–response lead to a number of additional uncer-
tainties about overall study risk. For other viruses,
such as H1N1 and H3N2 influenza, a dose–response
relationship has been found (Han et al., 2019; Mem-
oli et al., 2015). The specific dose–response relation-
ship, and its functional form must be determined ex-
perimentally, which is an outcome rather than an in-
put of a dosing study like the one we are considering.4

This uncertainty is a key issue, so, as suggested by
Morgan and Henrion, we advise that this structural
uncertainty should not be treated as a probabilistic
variable, and instead sensitivity analysis should be
used to enable the consideration of a range of plau-
sible outcomes (Morgan, Henrion, & Small, 1990).

Given the specifics of a study design, the rela-
tionship between individual risk and the risks in the
overall study is straightforward, assuming indepen-
dence of risk between individuals in the study.5 The
risk to an individual of severe disease in the study
given dose d is Sd, and the risk of mortality is Md. The
probability that someone in a group of size N expe-
riences the corresponding outcome is 1 − (1 − Sd )N

and 1 − (1 − Md )N . By simulating the probability of
impact for each dosed group and, in the case of more
complex studies, conditioning the trial of later groups

4There is an assumption implicit in the model that the trial uses
dose escalation or other data to ensure that the dose given does
not greatly exceed the typical natural dose, or that a larger than
natural dose does not increase disease severity.

5The assumed independence is conditional on the age and health
status of participants, and for dose–response studies, also infec-
tion severity by dose.

https://github.com/1DaySooner/RiskModel
https://github.com/1DaySooner/RiskModel
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on the results of earlier ones, we can find the overall
risk in more complex studies.

In the current version, we have restricted the tool
to consider to a simple N-person study. This means
the tool provides an upper bound for risk of mortal-
ity and hospitalization, higher than in a more com-
plex dose-escalation study.6 However, the underlying
model structure allows simulation of dose-dependent
and/or conditional study designs, as necessary, to ac-
commodate dose–response information and allow for
the simulation of more complex trials.

2.3. Interface

The web tool we built allows exploration of
two related types of risk. The first allows individu-
als to explore their personal risk, for example, by
gender and age, if they volunteer to participate in
a study, while the second displays overall risk of a
single round dosing study with a given number of
participants. Assumptions on study design and the
underlying risk can be adjusted to allow interactive
exploration by policymakers and participants. In
considering personal risk, the tool uses precalculated
outputs from the risk model to calculate and display
predictions for hospitalization rate and death rate
for individuals as a function of age and sex.

Deaths are further translated into micromorts—
the expected number of deaths per million events, a
standard method of showing mortality risk often used
for patient consent (Ahmad, Peterson, & Torella,
2015; Howard, 1980). Quantities which cannot be
transformed into micromorts, are presented as prob-
abilities.7

The tool allows both the public and policymak-
ers to explore how overall risks change depending
on differences in study design. This also helps main-
tain transparency into clinical trial design concerns,
thereby better informing potential challenge trial
volunteers. We also note that for trial designers and
ethicists, the relationship between risk of different
impacts and compensation is critical (Blumenthal-
Barby & Ubel, 2020; Grimwade et al., 2020; Palmer
& Schuck, 2020).

The importance of transparency and public en-
gagement has been widely noted in the literature on

6This is equivalent to assuming that the risk of infection at each
dose is above the threshold for infection to replace a dose–
response curve.

7See discussion below about incorporating other risks in the
model as more data become available.

challenge trials (Jamrozik & Selgelid, 2020a). For this
reason, the tool is available for public use, and is al-
ready being used to inform people who have volun-
teered to be contacted to potentially participate in a
challenge trial (1Day Sooner, 2020).

3. RESULTS

The analysis data set for age-specific IFRs con-
tains 167 data points from 34 studies, with each con-
taining between 2 and 11 different age groups; all
data are presented in Tables 3 and 4 of the Appendix
and are included in the code repository accompany-
ing this article. A glance at available data also con-
firms the necessity of using a more complicated mod-
eling approach: only 37 inputs contain individuals
aged between 20 and 30; however, out of these 37,
only three cover precisely the main age group of in-
terest, that is, people between 20 and 30 years of age.

The basic evidence synthesis model, which in-
cludes all data, but does not adjust for health status,
finds that average IFR in 20–29 age group for the
studies included in this analysis is 15.1 per 100,000
cases (95% uncertainty interval8 11.8–19.2). Extend-
ing the HCT population to include 20–39-year olds
gives mean IFR of 26.5 per 100,000 (95% interval
20.6–33.5).

The model assumes a log-linear relationship be-
tween age and IFR. As seen in Fig. 1, the assump-
tion is met across the entire age range we considered,
from children to people older than 80. The model es-
timates that IFR increases on average 3.06-fold per
each additional decade of age.

These results align with two recent meta-analyses
of IFRs (Brazeau et al., 2020; O’Driscoll et al., 2021).
Both studies also show log-linear relationships be-
tween age and IFR, as well as considerable variation
in IFR by context. O’Driscoll et al. report median
IFRs of 0.6 and 1.3 per 10,000 among those aged 20–
24 and 25–29, respectively, while Brazeau et al. report
3 and 4 per 10,000, respectively.

Based on OpenSAFELY data, we estimate that
in healthy population (defined as lack of any comor-
bidities listed above), the average mortality risk in
20–29-year olds is 1.9 times lower than in the gen-
eral population, with 95% interval from 1.3 to 2.8.
Expanding to 20–39-year olds only slightly increases
the risk reduction factor, from 1.9 to 2.

8All intervals reported here are Bayesian posterior intervals. For
brevity, we just refer to them as “x% interval” or “uncertainty
interval” (Gelman, 2010).
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Fig 1. IFR as a function of age. Panel A is untransformed data. Panel B shows the same data on log 10 scale. Red points are data, i.e., model
estimates of mean IFRs in particular studies, with bars representing 95% uncertainty intervals. Black and gray are modeled IFRs: lines are
means, ribbons are 95% intervals: the narrower is average across all included studies, the wider takes into account heterogeneity between
studies. Details and input values are given in the Appendix.

We also note that there is large heterogeneity
across the studies, due to treatment availability and
other factors.9 The HCT volunteer population will re-

9Denoting by σ the hyperscale parameter in the hierarchical
model, 2σ impact corresponds to 3.96-fold mean decrease in

ceive the best available care, including the most up-
to-date treatment options. They will also be screened
based on socioeconomic and other population risk

IFR. That means we expect 2.5% of studies to have IFR more
than four times lower than the average IFR.
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factors, trading off diversity for safety. For these rea-
sons, we consider the population for an HCT to be
akin to a best-case scenario. In the current analysis,
this is France, where the estimated risk for 20–29-
year olds is 4.67 × 10−5, approximately 1

3 the mean
risk across all populations.

It is unclear how much double-counting occurs
when adjusting for both available medical care and
population screening, and for screening out comor-
bidities. However, using this estimate, we see that a
simple 50-person challenge trial has a 99.87% prob-
ability of having no induced fatalities, and a 98.9%
probability of having no cases serious enough to re-
quire hospitalization. In other words, the probabil-
ity of at least one death during a 50-person trial is
0.13% and the probability of at least one hospital-
ization is 1.1%. This represents an upper bound of
risk for the notional 50-person trial, since the dosing
study will escalate doses until a sufficient number of
participants are infected, and therefore not everyone
dosed is likely to develop an infection.

While the estimate is specific to a dosing study, it
can also be useful for understanding the risk of later
vaccine trials, though in that case other factors, in-
cluding the possibility of vaccine-enhanced infection,
would need to be assessed.

Due to lack of reliable data, the current model
does not include estimates of longer-term impacts,
and instead includes a more qualitative discussion
of these risks (Smela, Kleinwaks, Sexton, & Schmit,
2020), but the model and interface will be updated
with such estimates as they become available. The
model interface can be used to explore how these un-
certain factors can interact, as shown in Fig. 2.

4. DISCUSSION

We have demonstrated that we can model certain
risks associated with HCTs. However, our model is
incomplete, and considerable concerns remain about
the risks of HCTs. While a full accounting of chal-
lenge trial ethics is beyond the scope of this arti-
cle, we consider several factors below that inform
our work on HCT design, especially unmodeled risks.
For a more complete perspective on the ethics of
COVID-19 HCTs, we direct the reader to the World
Health Organizations’ (WHO) key considerations
(Jamrozik et al., 2020) and the recent discussion
in Lancet Infectious Disease (Jamrozik & Selgelid,
2020a; Manheim, 2020) on how these issues are be-
ing addressed.

Our model suggests that the risk of a dosage–
response study is far lower than other risks that
are typically widely viewed as acceptable. The risk
for participants selected to be low risk is clearly
far lower than the risk in the general population
from comparable clinical infections. While modeling
the difference between the two is not possible, we
are confident that the risk in HCT would indeed
be lower than in observational, general population
data that we used, due to more intense monitoring
and availability of immediate high-priority medical
care and pharmaceutical treatments, which we did
not model here. We also note that HCTs have had
historical precedent, showing promise for both less
lethal human coronaviruses, and for yellow fever
(Shah et al., 2017). They also provided early indi-
cations regarding the possible efficacy of a leading
malaria vaccine candidate (Nielsen et al., 2018).
The discussions about earlier trials show that the
ethical challenges of HCTs should not be seen as
unique, but rather as laying along a natural contin-
uum of clinical studies (Franklin & Grady, 2001).
That said, the initial HCTs should be held to high
ethical standards, both for individual risks and to pre-
serve public trust in scientific and medical progress.
That includes emphasis on fully informed consent
of the participants, and, as noted by the WHO,
higher than typical ethical standards (Jamrozik et al.,
2020).

4.1. Limitations

Our model has a number of limitations. First,
hospitalizations and deaths for 20–30-year olds are
rare and may be subject to reporting bias. Sec-
ond, we do not yet have enough information on
long-term damage caused by COVID-19 and our
model does not currently account for that risk,
something we will discuss below. Third, although
our model uses hospitalization as a proxy for the
upper bound of serious nonfatal COVID-19 cases,
more data are required to see if this is an accurate
assumption.

Our model also may not capture changes in
COVID-19 risks over time. It also does not estimate
any indirect risks of the study. The model focuses on
the risk due to the strain which will be used in an ini-
tial challenge trial. The model may not be appropri-
ate for characterizing risk newer variants, including
B.117. We stress that our model is not a comprehen-
sive analysis of all available risks, but rather a tool
quantifying certain known risks that can be used by
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Fig 2. Interactive model interface.

trial participants and policymakers. We also limit our
investigation to “risk” understood as probability of
an event, as it is used in the medical literature (Kelly
& Cowling, 2013), rather than a broader and more
sociological understanding of risk.

Finally, this model captures only absolute risk.
Relative risk assessment, comparing the risk of HCTs
to other methods of finding the same information,
is not intended. Any relative risk assessment would
need to be combined with an assessment of relative
benefits of each design, including speed and accuracy,
as well as considering the ethical benefits of HCTs
like the voluntary nature and better understanding
and control of risks due to disease compared to other
forms of clinical trials.

4.2. Opportunity Cost

When evaluating clinical trial designs, it is not
sufficient to evaluate whether the proposed model is
good, or even whether benefits outweigh costs, but
also whether the alternatives are better. The key ben-
efit of a dosing study is to allow further research with
challenge trials, and alternative clinical trial models
have major practical difficulties and far higher costs
in a variety of ways. While this is not relevant for the
initial set of vaccines that have now been approved,
the challenge of conducting large-scale trials is mag-
nified for later vaccines.

For example, typical clinical phase 3 efficacy tri-
als for an ongoing novel pandemic would be field
trials, which rely on high numbers of trial partici-
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pants, and require that a large number of people are
treated with a new vaccine or drug. Such trials are
relatively expensive and expose more trial partici-
pants to negative side effects of a given treatment,
so that in many scenarios HCTs have been shown to
be superior (Berry et al., 2020). These trials are also
difficult to pursue now that an initial vaccine is avail-
able, due to ethical and logistical constraints. At this
point, it may not be possible to find enough willing
participants for field trials to study additional, poten-
tially more effective or safer, vaccines.

4.3. Nonmodeled Risks

We also note that there are several impacts we
do not model in the study, most notably the concern
about so-called “long COVID,” which is a catch-all
term referring to a combination of persistent symp-
toms, slow recovery, and new postrecovery symp-
toms (Carfì et al., 2020). It is understood that for
some cases, especially severe ones, recovery from
COVID-19 can take months. In other cases, there are
longer-term symptoms differing from those experi-
enced during the infection, perhaps similar to Post-
SARS syndrome (Moldofsky & Patcai, 2011; Perrin
et al., 2020). At the same time, COVID-19 recovery
has been found to be faster in younger, healthier pa-
tients (Tenforde et al., 2020), which may mean the
risk is lower in this group. It seems clear that the
risk is a subject of continuing scientific investigation,
and as it becomes better understood and quantified,
it will be incorporated into both the risk model, and
the web tool. Until then, the model contains an em-
bedded overview of what is currently understood and
known or unknown about longer-term risks (Smela
et al., 2020).

We also note that vaccine-induced disease en-
hancement is a critical concern for vaccine chal-
lenge trials, but is not relevant to dosing studies. Still,
this risk must be considered in analyses of risks for
later trials, and the current model would need to
be adapted or supplemented to consider this if it
were used to inform decisions regarding those later
trials.

5. CONCLUSION

HCTs are not risk-free, but the balance of risk
and benefits seems to clearly favor allowing them,
as a large group of experts has argued (Sooner
et al., 2020). This conclusion is disputed by some,
but all decisions are made despite uncertainties

and debate—whether empirical or moral (Lockhart,
2000; MacAskill, Bykvist, & Ord, 2020). The ques-
tion is whether the both empirical and moral balance
of factors lead to the indicated conclusion. The alter-
native is a failure to act due to misguided risk aver-
sion, or worse, using uncertainty and disputed moral
claims as a positive stance to shut down further work,
as has occurred in the debate about HCTs (Martinez
et al., 2020).

It seems likely that HCTs are a viable way to
rapidly test vaccine efficacy, which is particularly
critical now for testing second-generation vaccines,
which are important in quickly expanding vaccine
availability (Castillo et al., 2021) and may prove su-
perior to first-generation vaccines. A dosing study is
an urgent first step, and the risk estimates and tools
developed for this article can assist in planning such
studies and informing volunteers.

Our model provides insight into the overall risk
of a trial of a given size, and can better inform HCT
participants about the dangers they face. Given that
an HCT may help select the multiple vaccines neces-
sary for global immunization while also assisting with
therapeutic testing, the risk of an initial study into
SARS-CoV-2 pathogenesis seems justified. If the
dosing study is successful, future HCTs of COVID-19
may provide a rapid and systematic way of screening
vaccine candidates for efficacy and safety, which is a
significant benefit.

The results presented here are a useful static es-
timate of risk. The model is already being used to in-
form potential volunteers (1Day Sooner, 2020) and
can be adapted and expanded in the future. Given
the evolving understanding of the disease, the model
should be continually updated with additional data
on mortality and hospitalization risks or other long-
term risks. This will contribute to the discussion of
whether or not to pursue challenge trials, which can
help with response to COVID-19 in a variety of ways
(Nguyen et al., 2021). Challenge trials may be an im-
portant tool for fighting COVID-19 and our model is
a step toward that goal.
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Additional supporting information may be found on-
line in the Supporting Information section at the end
of the article.

Table 1. Main parameters in the sensitivity analysis
models using subsets of data.
Figure 3. Comparison of model estimates (black)
with data on observed fatality risk (FR, red), com-
pared on logarithmic scale. FR is number of deaths
divided by overall population size. Bars are 95% pos-
terior interval; point is the mean. For better clarity,
we grouped the plot into four panels according to
observed FR X axes on each panel differ. For many
low-risk populations (upper-left quadrant) no deaths
were reported: we indicate this by plotting a red point
on the left-hand side of the panel plot.
Figure 4. IFR as a function of age. Narrower rib-
bon corresponds to the 95% posterior interval of av-
erage across all included studies (tau parameter in
the meta-analysis model), while the wider band takes
into account heterogeneity (tau and sigma). Lines are
means. Red points are model estimates of mean IFRs
in partciular studies, with bars representing 95% pos-
terior intervals. Panel A is untransformed data. Panel
B shows the same data on log 10 scale.
Figure 5. Fatality risks as a function of age in Open-
SAFELY data. Fatality risk is zero in the 0–10 and
10–20 age groups.
Table 2. Data from the OpenSAFELY database
grouped by age.
Figure 6. Comparison of posterior predictive num-
bers of deaths from the fitted Bayesian model (mean
and 95% uncertainty intervals) with data inputs (cir-
cles). For each age grouping we have 4 estimates:
male/female and healthy vs general population.
Table 3. Complete table of studies used by the meta-
analysis model.
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Figure 7. Comparison of model-estimated preva-
lences (95% CI’s reported by modelling studies) col-
lected by Levin, Cochran, andWalsh (2020) and our
distributional assumptions: additional circles show
95% CIs recreated by assuming logit-normal distri-
bution of prevalence. We group studies into 4 bands
of mortality to mirror earlier figures. Please note that
this approach produces discrepancies in a number

of US estimates where the confidence intervals were
skewed toward including 0. However, since we do
not have access to source data, we decided to use
the logit-normal assumption for all estimates. This as-
sumption may have an effect of overestimating mor-
tality risk in settings where prevalence was very low.
Table 4. Complete table of inputs used by the meta-
analysis model and crude IFR’s.


