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Abstract
The relative roles of rivers versus refugia in shaping the high levels of species di-
versity in tropical rainforests have been widely debated for decades. Only recently 
has it become possible to take an integrative approach to test predictions derived 
from these hypotheses using genomic sequencing and paleo-species distribution 
modeling. Herein, we tested the predictions of the classic river, refuge, and river-
refuge hypotheses on diversification in the arboreal sub-Saharan African snake genus 
Toxicodryas. We used dated phylogeographic inferences, population clustering anal-
yses, demographic model selection, and paleo-distribution modeling to conduct a 
phylogenomic and historical demographic analysis of this genus. Our results revealed 
significant population genetic structure within both Toxicodryas species, correspond-
ing geographically to river barriers and divergence times from the mid-Miocene to 
Pliocene. Our demographic analyses supported the interpretation that rivers are in-
dications of strong barriers to gene flow among populations since their divergence. 
Additionally, we found no support for a major contraction of suitable habitat during 
the last glacial maximum, allowing us to reject both the refuge and river-refuge hy-
potheses in favor of the river-barrier hypothesis. Based on conservative interpreta-
tions of our species delimitation analyses with the Sanger and ddRAD data sets, two 
new cryptic species are identified from east-central Africa. This study highlights the 
complexity of diversification dynamics in the African tropics and the advantages of 
integrative approaches to studying speciation in tropical regions.
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1  | INTRODUC TION

Three major allopatric diversification mechanisms have been pro-
posed in the classical literature to explain species diversity in the trop-
ics. The “river hypothesis” in which species and populations diverged 
across riverine barriers (Ayres & Clutton-Brock, 1992; Bates, 1863; 
Hershkovitz,  1977; Mayr,  1942; Sick,  1967; Wallace,  1853); the 
“refuge hypothesis” in which forests fragmented during the cold, 
dry Pleistocene glaciation cycles, causing isolation and divergence 
in small forest patches (Haffer,  1969, 1974, 1982; Prance,  1982; 
Vanzolini,  1973; Vanzolini & Williams,  1970); and an amalgamate 
“river-refuge hypothesis,” in which speciation was promoted by a 
combination of river barriers and climate-driven vegetation changes 
(Ayres & Clutton-Brock, 1992; Haffer, 1992, 1993). These hypoth-
eses have been widely employed as the context for studies of 
Neotropical biodiversity and the mechanisms of its production (e.g., 
Gascon et al., 2000; Haffer, 2008; Patton & Silva, 2005; Richardson 
et  al.,  2001; Weir,  2006). However, because the early scientific 
focus was primarily on the Amazon (Amorim, 1991; Cracraft, 1985; 
DeMenocal, 2004; Haffer, 1969, 1997; Plana, 2004; but see Fjeldså, 
1994; Mayr & O'Hara, 1986) and given political instability in tropical 
Africa (Greenbaum,  2017; Siddig,  2019; Tolley et  al.,  2016), rigor-
ous testing of the predictions stemming from these hypotheses has 
been neglected for the West and Central African rainforests until 
only recently.

Based on pollen core records (Bonnefille & Riollet,  1988; 
Brenac, 1988; Girese et al., 1994; Maley, 1987, 1989, 1991; Maley & 
Brénac, 1987; Maley & Livingstone, 1983; Sowunmi, 1991) and spe-
cies distribution data (Colyn, 1987, 1991; Richards, 1963; Rietkerk 
et al., 1995; Sosef, 1991), Maley (1996) proposed several Pleistocene 
rainforest refugia for sub-Saharan Africa that are still considered 

today (e.g., Bell et al., 2017; Hughes et al., 2017; Huntley et al., 2019; 
Jongsma et al., 2018; Larson et al., 2016; Penner et al., 2011; Portik 
et al., 2017; Figure 1). Many of these hypothesized refugia are lo-
cated in highland areas (e.g., the Cameroon Volcanic Line and the 
Albertine Rift; Figure  1, refugia 4 and 10, respectively). However, 
a major fluvial refuge, that is, a refugium associated with a river, lo-
cated in the gallery forests around the Congo River (Figure 1, refu-
gium 9), has been supported by pollen core data (Maley, 1996), and 
distributional patterns of multiple bird (Huntley et al., 2018; Levinsky 
et al., 2013), mammal (Colyn et al., 1991; Levinsky et al., 2013), and 
plant taxa (Robbrecht, 1996).

Major river barriers in West and Central Africa include the 
Volta, Sanaga, Ogooué, Congo, Niger, and Cross Rivers (Figure  1). 
The exact ages of many of these rivers are unknown but are gener-
ally estimated to date back to the Late Mesozoic to Early Cenozoic 
(80–35  mya; Couvreur et  al.,  2021; Goudie,  2005; Stankiewicz & 
de Wit, 2006). However, while the Congo basin is quite old (Flügel 
et  al.,  2015; Stankiewicz & de Wit,  2006), the present course of 
the Congo River appears to be much younger, dating to the mid to 
late Miocene and corresponding to the uplift of the East African 
Rift (Flügel et  al.,  2015; Stankiewicz & de Wit,  2006; Takemoto 
et al., 2015).

Numerous phylogeographic studies have supported the impor-
tance of rivers, refugia, or both as drivers of diversification across 
disparate plant and animal species. Rivers alone have been shown 
to be important barriers for some species of primates (Mitchell 
et al., 2015; Telfer et al., 2003), shrews (Jacquet et al., 2015), and 
frogs (Charles et al., 2018; Penner et al., 2011, 2019; Wieczorek 
et al., 2000; Zimkus et al., 2010), but do not appear to represent 
an important barrier for many plant species (Dauby et  al.,  2014; 
Debout et  al.,  2011; Hardy et  al.,  2013; Ley et  al.,  2014; Lowe 

F I G U R E  1   Locations of major rivers and hypothesized refugia (labeled 1–10) in West and Central Africa, adapted from Maley (1996)
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et al., 2010). Refugia are suggested to have played an important 
role in the diversification of rodents (Bohoussou et  al.,  2015; 
Nicolas et  al., 2011, 2012), primates (Clifford et  al.,  2004; 
Haus et  al.,  2013; Tosi,  2008), frogs (Bell et  al.,  2017; Jongsma 
et al., 2018), lizards (Allen et al., 2019; Leaché et al., 2017), birds 
(Fjeldså & Bowie,  2008), pangolins (Gaubert et  al.,  2016), and 
rainforest plants (Born et  al.,  2011; Budde et  al.,  2013; Daïnou 
et  al.,  2010; Dauby et  al.,  2010; Duminil et  al.,  2015; Faye 
et al., 2016; Gomez et al., 2009; Hardy et al., 2013; Ley et al., 2014, 
2016; Lowe et al., 2010). In some cases, divergence patterns match 
both refugial and riverine predictions (Anthony et al., 2007; Barej 
et al., 2011; Bohoussou et al., 2015; Gonder et al., 2011; Jacquet 
et al., 2014; Jongsma et al., 2018; Leaché & Fujita, 2010; Leaché 
et al., 2019; Marks, 2010; Portik et al., 2017), suggesting that both 
may have played roles simultaneously—or in combination—in evo-
lutionary diversification. However, because of the spatial overlap 
of refugia with montane and riverine systems (Hofer et al., 1999, 
2000), and the sparse pollen core and fossil records for the tropics 
(Colinvaux et al., 1996; Maley & Brenac, 1998), distinguishing be-
tween these three hypotheses has been difficult, especially when 
relying on phylogeographic data alone.

The three major allopatric diversification hypotheses make the 
following predictions regarding species diversification patterns in 
tropical African forests (a) river hypothesis: boundaries between 
population distributions should correspond to riverine barriers and 
the ages of populations should be relatively old, corresponding to 
the ages of the rivers; (b) refuge hypothesis: population distributions 
should be concordant with locations of hypothesized rainforest 
refugia during cold, dry periods, and populations are predicted to 
be relatively young, corresponding to the Pleistocene glaciation cy-
cles; (c) river-refugia hypothesis: population distributions should be 
correlated with the locations of rainforest refugia and bounded by 
rivers barriers, or will have been confined to refugial locations and 
additionally subdivided by rivers. Under this scenario, the timing of 
population splits should correspond to ages of rivers but would be 
expected to show patterns of range expansion and contraction for 
niche model projections to the Pleistocene.

In this study, we use the snake genus Toxicodryas as a model 
system to test multiple predictions derived from these hypotheses. 
The genus Toxicodryas consists of two species of large-bodied, rear-
fanged, venomous sub-Saharan African snakes, T. blandingii, and T. 
pulverulenta (Figure 2). For most of the 20th century, these taxa were 
placed in the Asian genus Boiga (Schmidt, 1923), and some authors 
still classify them as such, but recent phylogenetic analyses recover 
them as the sister genus to the African egg-eating snakes, Dasypeltis 
(Pyron et al., 2013; Weinell et al., 2020). No in-depth phylogenetic 
or phylogeographic analysis has been done within Toxicodryas. 
Both known species are primarily arboreal, feeding mainly on birds, 
bats, frogs, and arboreal lizards (Akani et  al.,  1998; Chippaux & 
Jackson, 2019; Nagy et  al., 2011; Spawls et  al., 2018). Because of 
their general arboreality, these species are predicted to have distri-
butions strongly correlated with forest and woodland habitats. In 
addition, Toxicodryas is widely distributed within the Congo Basin 
and broadly across West and Central Africa, making this genus a 
suitable system for testing the competing predictions of the river, 
refugia, and river-refugia hypotheses.

Recent advances in paleo-climate modeling and genome-scale 
DNA sequencing have opened new avenues to testing classic hy-
potheses of tropical rainforest speciation (Bell et al., 2017; Leaché 
et  al.,  2019; Portik et  al.,  2017). In this study, we integrate dated 
phylogeographic inference, population structure analyses, and ma-
chine learning-based demographic modeling to identify the timing 
of divergence as well as the location and permeability of past and 
present dispersal barriers. These genetic data are combined with 
paleo-distribution and climate stability modeling to determine 
the congruence of historical distributions with the refugial and 
river-refugial hypotheses. Our results demonstrate that, although 
population distributions alone could be congruent with any of the 
three hypotheses, diversification times predate the Pleistocene, a 
finding that aligns with predictions of the river-barrier hypothesis. 
Moreover, historical demographic analyses support models of no 
migration among populations since the time of divergence, and no 
signatures of population bottleneck and subsequent expansion were 
identified, as predicted under the refuge hypothesis. Additionally, 

F I G U R E  2   Left: Toxicodryas pulverulenta. Right: Toxicodryas blandingii (male). Both photographs were taken in Banalia, Tshopo Province, 
DR Congo. Photograph credits Konrad Mebert
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species paleo-distribution and climate stability modeling show 
no suggestion of suitable habitat contraction during or since the 
Pleistocene. Together, our analyses allow us to reject predictions of 
refugia hypotheses in favor of the prevailing role of riverine barriers 
in shaping, structuring, and maintaining diversity in this generally ar-
boreal, forest-associated group of endemic African snakes.

2  | MATERIAL S AND METHODS

2.1 | Sampling

We obtained 20 specimens of Toxicodryas (seven T. blandingii and 13 
T. pulverulenta) through fieldwork and from various museums (see 
Table S1). Sampling was representative of the known range of each 
species throughout the upper and lower Guinean forest blocks of 
West and Central Africa including the countries of Guinea, Liberia, 
Ghana, Cameroon, Gabon, and Democratic Republic of the Congo 
(DRC). Museum catalog numbers, GenBank accession numbers, and 
locality data for each specimen are presented in Table S1.

2.2 | Genetic data collection, bioinformatic 
processing, and locus assembly

Tissue samples were preserved in 95% ethanol or RNAlater™ (Sigma-
Aldrich), and genomic DNA (gDNA) was extracted using the Maxwell 
RSC system (Promega). The nuclear gene c-mos and the mitochon-
drial gene cytochrome b (cyt b) were PCR-amplified for each indi-
vidual using standard primers (c-mos: S67, S68; Lawson et al., 2005; 
cyt b: L4910B, H15720; Burbrink et al., 2000) and sequenced on an 
ABI 3730 capillary electrophoresis system (Applied BioSciences®). 
Electropherograms were edited manually in Geneious v5.6.7 (http://
www.genei​ous.com, Kearse et  al.,  2012), and resulting sequences 
were aligned in MAFFT v.5 with default parameters (Katoh & 
Kuma, 2002).

We also sequenced genome-wide anonymous nuclear markers 
for each individual following a modified version of the ddRADseq 
protocol of Peterson et  al.,  (2012). For each individual, a total of 
300–500  ng of gDNA were double digested using the restriction 
enzymes SbfI (restriction site 5′-CCTGCAGG-3′) and MspI (restric-
tion site 5′-CCGG-3′). The resulting double digestion products were 
then bead-cleaned with AmpureXP beads (Agencourt) and individ-
ually barcoded using custom oligonucleotide adapters. Pooled sam-
ples were size-selected to a mean insert length of 541 base pairs 
(bp) (487–595 bp range) with internal standards with a Pippin Prep™ 
(Sage Science, Beverly, MA, USA). Resulting postligation products 
were amplified for eight cycles with a high-fidelity polymerase 
(Phusion™, New England Biolabs). An Agilent TapeStation was used 
to determine the final fragment size distribution and concentration 
of each pool. Library pools were combined in equimolar amounts for 
sequencing on one Illumina HiSeqX lane (with a 10% PhiX spike-in 
and 150 bp paired-end reads).

Illumina reads from the ddRAD libraries were processed using 
STACKS v. 2.4 (Catchen et al., 2013). Because the ddRAD protocol 
generates strand-specific libraries, prior to read filtering and assem-
bly, we used a read-stitching approach (Hime et al., 2019) to join the 
first read from an Illumina read pair with the reverse complement of 
the second, recapitulating the original orientation of fragments in 
the genome. Stitched reads were quality-filtered and demultiplexed 
by individual with the process_radtags function in STACKS with the 
following parameters: demultiplex each library by in-line barcode, 
check for both restriction enzyme cut sites, remove any read with an 
uncalled base, rescue barcodes and RAD-Tags, and discard any read 
with average Phred quality score <20 over sliding windows of 15% 
of the total read length. Next, we used STACKS to de novo assemble 
filtered and stitched Illumina read pairs.

We aimed to produce three separate ddRAD data sets, includ-
ing one for T. blandingii, one for T. pulverulenta, and a combined data 
set comprising both species. Because the optimal de novo assembly 
of ddRADseq data can vary widely across taxa (Paris et  al.,  2017; 
Shafer et al., 2017), we tested a range of assembly parameters to op-
timize the recovery of putatively single-copy orthologous loci. Final 
assembly parameters were selected based on the methods of Paris 
et al. (2017). According to their recommendations, in USTACKS, we 
kept m (the minimum number of reads needed to form a stack) at 
3 while in CSTACKS, we varied M (the number of mismatches al-
lowed during loci formation) and n (the number of mismatches al-
lowed during catalog formation) until we identified the parameters 
at which the maximum number of polymorphic loci were avail-
able across 80% (r = 0.8) of the population. For our data, this was 
found to be M = 5 and n = 15. Further parameters were tested in 
POPULATIONS separately for each species and for the genus as a 
whole in order to balance missing data and number of polymorphic 
loci. Within T. blandingii and T. pulverulenta, the percent missing data 
were low (5% and 7.3% missing data, respectively) and no further 
processing was needed, and r = 0.8 was used. Because of dissimi-
larity between the two species causing high levels of missing data in 
the combined data set, further restrictions were implemented. For 
the genus-wide data set, we set r = 0.5 and p = 4 [p is the minimum 
number of populations in which a locus must be present (here 4/5)]. 
This approach increased the number of informative loci, but also the 
amount of missing data. For each of our three separate data sets, we 
generated a data set comprising only a single random SNP per locus 
(for population clustering analyses and demographic modeling), and 
another data set comprising full-length sequences for all loci (for use 
in phylogenetic reconstruction).

2.3 | Phylogenetic analyses

We concatenated our Sanger data set (c-mos and cyt b) and im-
plemented bModelTest in Beast v. 2.6.2 to assess all possible 
substitution models for each gene using a Bayesian approach 
(Bouckaert & Drummond, 2017). We conducted a time-calibrated 
analysis on our partitioned data set in Beast v. 2.6.2 (Bouckaert 

http://www.geneious.com
http://www.geneious.com


     |  6137ALLEN et al.

et al., 2019) using a relaxed log-normal clock and a Yule tree prior 
assuming a constant lineage birth rate. Dating analyses were 
based on three fossils for calibration in the outgroup, one at the 
Elapoidea + Colubridae node (minimum age: 30.9 Mya), one at the 
Heterodon  +  Farancia node (minimum age: 12.08 Mya), and one 
at the Naja  +  Hemachatus node (minimum age: 17.0 Mya). Fossil 
ages and placement were based on Head et al.  (2016). Two runs 
of 100,000,000 generations were conducted and logged every 
10,000 generations. Convergence was assessed using Tracer v. 
1.7 (Rambaut et al., 2018). A burn-in of 10% was used to create 
a maximum clade credibility tree. Node ages are based on median 
tree heights.

We analyzed our SNP data set, including all samples of both spe-
cies of Toxicodryas, using both species tree summary quartet and 
maximum likelihood phylogenetic methods. The quartet method 
was implemented through SVDquartets (Chifman & Kubatko, 2014) 
in PAUP* v. 4.1a166 (Swofford, 2003). We sampled all possible quar-
tets and assessed support using 100 nonparametric bootstraps, 
and species tree topology was summarized with DendroPy v. 4.4.0 
(Sukumaran & Holder,  2010). We ran a maximum likelihood anal-
ysis of our genus-wide SNP data set in IQtree v. 1.6.12 (Nguyen 
et al., 2014) using 10,000 ultrafast bootstraps (Hoang et al., 2018) 
and the ModelFinder function to choose the best substitution model 
(Kalyaanamoorthy et  al., 2017). As no outgroups were included in 
our SNP data set, for both SVDquartets and IQtree the placement of 
the root of each phylogeny was chosen to match that of the Sanger 
phylogeny.

2.4 | Assessing genetic structure

We used multivariate, Bayesian, and admixture-based analyses to 
assess population structure. In all analyses, clustering algorithms 
were run on three data sets separately for comparison (T. blandin-
gii, T. pulverulenta, and both species combined [genus Toxicodryas]). 
A discriminant analysis of principal components (DAPC) was run 
using Adegenet v. 2.1.1 (Jombart & Ahmed,  2011). This approach 
uses discriminant functions to maximize variation among clusters 
and minimize variation within clusters. The best-clustering scheme 
was chosen based on Bayesian information criterion (BIC) scores. 
Numbers of clusters (K) ranging from 1–10 for the genus-level 
analysis and 1–5 for each species were evaluated and a discriminant 
function analysis of principal components (DAPC) was performed 
based on the number of suggested clusters. Ancestry propor-
tions of all individuals were inferred using LEA v. 1.6.0 (Frichot & 
François, 2015) through the Bioconductor v. 3.4 package. The sNMF 
function was used to assess K values from 1–10 for the genus-level 
analysis and 1–5 for each species with 20 replicates each. Individual 
admixture coefficients were estimated and the value of K that 
minimized cross-entropy was selected (François,  2016; Frichot 
et al., 2014). Population structure and admixture were also tested 
using the Bayesian method STRUCTURE v. 2.3.4 (Falush et al., 2003; 
Pritchard et  al.,  2000). Each data set was evaluated for K  =  1–10 

for the genus-level analysis and 1–5 for each species, with 10 runs 
per K and a MCMC burn-in of 10,000 steps followed by 100,000 
steps (Porras-Hurtado et  al.,  2013). Results were evaluated using 
the Evanno method (Evanno et al., 2005) and plotted through the R 
package pophelper v. 2.3.0 (Francis, 2017).

2.5 | Demographic modeling and analysis of 
gene flow

To test for historic and recent gene flow between our populations, 
we used the R package delimitR (Smith & Carstens, 2020; https://
github.com/megan​lsmit​h/delimitR). This program uses a binned 
multidimensional folded site frequency spectrum (bSFS; Smith 
et al., 2017) and a random forest machine learning algorithm to com-
pare speciation models such as no divergence, divergence with and 
without gene flow, and divergence with secondary contact (Smith & 
Carstens, 2020). A bSFS was used because it stores the observed fre-
quencies of the minor alleles for multiple populations and bins them 
to avoid inference problems associated with sampling too few segre-
gating sites (Smith et al., 2017; Terhorst & Song, 2015). Demographic 
histories are simulated using the multi-species coalescent model 
implemented through fastsimcoal2 (Excoffier et  al.,  2013) under a 
user-specified guide tree and set of priors on divergence times, pop-
ulation sizes, and migration rates. The random forest classifier then 
creates a user-defined number of decision trees from a subset of 
the prior. Each decision tree compares the empirical bSFS to the SFS 
of each simulated speciation model and votes for the most similar 
model. The demographic model with the largest number of votes is 
chosen as the best model. Out-of-bag error rates are used to assess 
the power of the random forest classifier. The posterior probability 
of the selected model is then calculated by regressing against the 
out-of-bag error rates following Pudlo et al. (2015).

We created folded multidimensional site frequency spectrums 
for the two T. blandingii clades and the two Central African T. pul-
verulenta clades using easySFS (https://github.com/isaac​overc​ast/
easySFS), a wrapper for ∂a∂i (Gutenkunst et  al.,  2009). The West 
African T. pulverulenta clade was not included because of the low 
sample size available for this lineage. We simulated 100,000 data 
sets under four models: no divergence (Model 1), divergence with-
out gene flow (Model 2), divergence with secondary contact (Model 
3), and divergence with gene flow (Model 4). Priors for both models 
were drawn from uniform distributions for population size: 10,000–
1,000,000 haploid individuals (twice the number of estimated dip-
loid individuals), divergence time: 20,000–2,000,000 generations, 
migration rate: 0.000005–0.005 corresponding to 0.05–5 migrants 
per generation. We then coarsened our empirical site frequency 
spectra to 10 bins each. Our out-of-bag error rates were calculated, 
and 500 random forest classifiers were simulated using 100,000 
pseudo-observed data sets for each model. A confusion matrix was 
calculated to determine how often the correct model was selected 
and posterior probability for the “best” model was estimated for 
each species.

https://github.com/meganlsmith/delimitR
https://github.com/meganlsmith/delimitR
https://github.com/isaacovercast/easySFS
https://github.com/isaacovercast/easySFS
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The R package rangeExpansion (Peter & Slatkin, 2013, 2015) 
was used to assess signatures of population size change in the two T. 
blandingii clades and the two Central African T. pulverulenta clades. 
The West African T. pulverulenta clade was excluded because of its 
small sample size. This program implements a founder effect algo-
rithm using a steppingstone model, assuming that each colonizing 
event is associated with a founder event, to determine whether a 
population shows signatures of expansion or equilibrium isolation-
by-distance (Peter & Slatkin, 2013, 2015). If population expansion is 
identified, the program will infer the strength of the founder effect 
and the most likely expansion origin (Peter & Slatkin, 2013, 2015).

2.6 | Species delimitation

We conducted a species delimitation analysis on our Sanger data set 
using a Bayesian approach through BPP v.4.2.9 (Flouri et al., 2018; 
Yang, 2015) and a user-specified guide tree (Rannala & Yang, 2013; 
Yang & Rannala, 2010). Following Yang and Flouri (2020), we used 
the default prior for theta (θ = 0.002) and calculated the tau prior 
based on the estimated divergence times (τ  =  0.036). We used a 
burn-in of 20,000, a sampling size of 200,000, and a sampling fre-
quency of two. The analysis was run twice with a random seed to 
ensure consistency.

Additionally, the package DelimitR (Smith & Carstens, 2020; https://
github.com/megan​lsmit​h/delimitR) was used to conduct a species de-
limitation analysis on our ddRAD data set. As described above for the 
demographic analysis, this program uses a binned multidimensional 
folded site frequency spectrum (bSFS; Smith et al., 2017) and a random 
forest machine learning algorithm to compare the speciation models: 
no divergence, divergence with gene flow, divergence with secondary 
contact, and divergence without gene flow (Smith & Carstens, 2020). 
Each scenario is simulated using a multi-species coalescent model 
implemented through fastsimcoal2 (Excoffier et  al.,  2013) and user-
specified priors on divergence times, population sizes, and migration 
rates. The empirical bSFS to the SFS of each simulated speciation 
model is then compared by the random forest classifier and posterior 
probabilities, and out-of-bag error rates are calculated.

2.7 | Species distribution modeling

Occurrence data for each species were obtained from the specimens 
used in this study, “expert” identified individual occurrences from 
the Global Biodiversity Information Facility (GBIF), and research-
grade locality records from iNaturalist (www.inatu​ralist.org) that 
could be visually identified by the authors. Duplicate records were 
removed, and points were thinned within a distance of 10 kilometers 
using the spThin package (Aiello-Lammens et al., 2015) in R v. 3.4.4 
(R Core Team, 2019). This resulted in a total of 43 T. blandingii locali-
ties and 30 T. pulverulenta localities (Figure S1). A subset of points 
from each data set was set aside for model calibration (75%) and 
internal testing (25%) following Cobos et al. (2019).

Environmental data were obtained from the WorldClim da-
tabase v. 1.4 (Hijmans et al., 2005). Fifteen of the 19 bioclim vari-
ables were downloaded at a 2.5-min resolution. We excluded bio8 
(Mean Temperature of Wettest Quarter), bio9 (Mean Temperature 
of Driest Quarter), bio18 (Precipitation of Warmest Quarter), and 
bio19 (Precipitation of Coldest Quarter) which, as combinations of 
other variables, are known to create artifacts in distribution mod-
els (Escobar et al., 2014). The same 15 variables were used for the 
Last Glacial Maximum (LGM) under three general circulation models 
(GCMs): CCSM4, MIROC-ESM, and MPI-ESM-P. In order to reduce 
spatial autocorrelation, principal component analyses (PCAs) were 
performed on present bioclim variables and projected to the LGM 
for the extent of sub-Saharan Africa.

Model calibration areas were defined as a 1,000-km buffer around 
occurrence points for each species. Model calibration, creation, pro-
jection, and evaluation were done using the R package kuenm (Cobos 
et al., 2019). In order to calibrate our models, we created 1,479 candi-
date models for each species by combining three sets of environmental 
predictors (PCAs 1–6, 1–5, 1–4), 17 possible regularization multipliers 
(0.1–1.0 at intervals of 0.1, 2–6 at intervals of 1, and 8 and 10), and all 
combinations of five feature classes (linear =  l, quadratic = q, prod-
uct = p, threshold = t, and hinge = h; Cobos et al., 2019).

Candidate models were run in Maxent (Phillips et al., 2006) and 
chosen based on significant partial receiver operating characteristic 
(ROC) scores (Peterson et al., 2008), omission rates of E ≤ 5% (Anderson 
et al., 2003), and corrected Akaike Information Criterion AICc ≤ 2 to 
minimize model complexity (Warren & Seifert, 2011). These models 
determined the parameter set used for final model creation.

Final models were created for each species using the full set of 
occurrence records and the parameters chosen during model cali-
bration. Models were run in Maxent with ten bootstrap replicates 
and logistic outputs. After models were run in the present, they were 
projected to the LGM and mid-Holocene for the three GCMs. The 
mobility-oriented parity (MOP) index was used to test for model ex-
trapolation (Soberón & Peterson, 2005). Models were visualized in 
QGIS 3.4 and thresholded to 5% to create presence-absence maps. 
Models from each time period were summed to estimate potential 
LGM and mid-Holocene distributions as well as continuous stability 
maps (Devitt et al., 2013; Yannic et al., 2014).

3  | RESULTS

3.1 | Genetic data collection, bioinformatic 
processing, and locus assembly

Our concatenated c-mos and cyt b data set (Sanger data set here-
after) consisted of 1,237  bp, including indels. Both genes were 
represented in all samples with the exception of c-mos for the out-
group Contia longicaudae. Information on samples used in the Sanger 
analysis, including museum catalog number and GenBank accession 
number, can be found in the Supporting Information. After filtering 
(see Section 2, above), our genus-level ddRAD data set consisted of 

https://github.com/meganlsmith/delimitR
https://github.com/meganlsmith/delimitR
http://www.inaturalist.org
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2,848 loci with 20.7% missing data (here defined as proportion of 
missing loci across all individuals), and an effective mean per-sample 
depth of coverage of 78.7x ± 13.6x. Our T. blandingii data set con-
sisted of 7,231 loci with 5.0% missing data, and an effective mean 
per-sample depth of coverage of 83.6x ± 12.0x. Our T. pulverulenta 
data set consisted of 4,471 loci with 7.3% missing data, and an ef-
fective per-sample mean depth of coverage of 77.9x ± 14.6x. The 
concatenated ddRAD data set used for phylogenetic analyses had a 
length of 450,512 bp and 3,024 SNPs.

3.2 | Phylogenetic structure and divergence dating

Broad-scale phylogenetic relationships estimated in analyses of our 
Sanger and SNP data sets were identical in topology, with strongly 
supported internal nodes throughout (Figure 3; Figure S2). Our two-
locus Sanger tree and our 2,848-locus ddRAD SNP trees both sup-
ported two divergent lineages of T. blandingii, in West and Central 
Africa, respectively, and three divergent lineages of T. pulverulenta, 
one from West Africa and two in Central Africa, north and south 
of the Congo River (Figure  3). Fossil-calibrated divergence dating 
suggests that T. blandingii and T. pulverulenta diverged in the mid-
Miocene (median age 12.2 Mya). Diversification within each spe-
cies is estimated to have taken place primarily in the Pliocene, with 
the two clades in T. blandingii diverging around 4.3 Mya, the West 
African clade of T. pulverulenta diverging around 3.3 Mya, and the 
two Central African clades diverging around 1.9 Mya (Figure 3).

3.3 | Population structure

A comparison of BIC values from the genus-level DAPC analyses sug-
gested a total of five genetic clusters, with two populations in T. blan-
dingii and three in T. pulverulenta, matching the clades identified in the 
phylogenetic analyses (Figure S3). Our admixture-based method, LEA, 
identified two distinct genetic clusters at the genus level, correspond-
ing to the two Toxicodryas species, and the same two populations for 
T. blandingii and three populations for T. pulverulenta as suggested by 
DAPC (Figure  4). A low amount of admixture was identified in the 
Cameroonian sample of T. blandingii, and varying levels of admixture 
were suggested for the Gabonese samples of T. pulverulenta (Figure 4). 
The population assignment of individuals between the two cluster-
ing methods was identical; however, admixture between populations 
was not detected by DAPC. Similarly, STRUCTURE suggested two 
populations at the genus level, and two in T. blandingii, but combined 
the Central African clades and suggested two populations, instead of 
three, for T. pulverulenta. Three populations were supported as the 
second highest ΔK and showed identical admixture proportions to 
those from LEA. We used five populations for our remaining analyses 
because multivariate-based analyses such as LEA and DAPC do not 
make assumptions about Hardy–Weinberg equilibrium and may be 
preferable over Bayesian methods such as STRUCTURE when sample 
sizes are small or uneven (Puechmaille, 2016).

3.4 | Demographic modeling and analysis of 
gene flow

Using machine learning-based demographic model selection, we 
identified divergence without gene flow as the best model for T. 
blandingii with a posterior probability of 0.68, and divergence with 
gene flow for T. pulverulenta with a posterior probability of 0.63 
(Figure  5). For both species, models representing no divergence 
and divergence with secondary contact received very low support 
(Tables  S2 and S3). The out-of-bag error rate for T. blandingii was 
17.3% and for T. pulverulenta was 22.8%, with all of the misclassi-
fications being between highly similar models (i.e., between diver-
gence with or without gene flow, as opposed to between divergence 
and no divergence). While it is possible that small sample sizes for 
several of our populations may have negatively impacted the power 
of our demographic analyses, our values for posterior probability 
and out-of-bag error rate are similar to those obtained by Smith 
and Carstens (2020), suggesting that the impact was minimal. The 
confusion matrix and number of votes per model can be found in 
Tables S2 and S3.

Population size analyses for demographic signatures of range 
expansion versus equilibrium isolation-by-distance strongly re-
jected the expansion model for each of the four populations tested 
(West African T. blandingii: p  =  6.38; Central African T. blandingii: 
p = 28.01; Gabon T. pulverulenta: p = 833.43; Congo Basin T. pulver-
ulenta: p = 0.10). Accordingly, the strength of the founder effect (q) 
for each population was generally small, and the founder distance 
(d) was large (West African T. blandingii: q = 0.000037, d = 137.46; 
Central African T. blandingii: q  =  0.000028, d  =  180.61; Gabon T. 
pulverulenta: q = 0.000042, d = 120.65; Congo Basin T. pulverulenta: 
q = 0.00017, d = 29.35).

3.5 | Species delimitation

We tested five distinct clades of Toxicodryas: West African T. blan-
dingii, Central African T. blandingii, West African T. pulverulenta, and 
two Central African clades of T. pulverulenta using the Bayesian spe-
cies delimitation method BPP v. 4.2 (Flouri et al., 2018; Yang, 2015). 
Our analysis supported all five clades of Toxicodryas as distinct spe-
cies with high posterior probability (pp = 0.98). Our analysis was run 
twice with random seeds to check for consistency, and both runs 
gave highly similar results. Similarly, DelimitR identified divergence 
without gene flow as the best model for T. blandingii and divergence 
with gene flow for T. pulverulenta. For both species, models suggest-
ing lack of divergence or present-day gene flow had very low prob-
abilities (Tables S2 and S3).

3.6 | Distribution modeling

Species distribution modeling suggested widely overlapping ranges 
for T. blandingii and T. pulverulenta, with both species documented 
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from both rainforest and woodland habitats (Figure  6). Paleo-
distribution models for the LGM suggested a slight northern and 
southern contraction of suitable habitat for the genus in West and 
Central Africa. Toxicodryas pulverulenta showed evidence of a slight 
southward range expansion into Angola, while the range of T. blan-
dingii remained stable (Figure  6a). The mid-Holocene distribution 
was highly similar to the present-day distribution for all data sets 
(Figure 6b).

Continuous climate stability maps estimating the areas of per-
sistent suitable habitat from the LGM to the present suggest that 
the core distribution of each species has remained stable through 
time (Figure 6c). Instability in suitable habitat is only found on the 
edges of the species range, with the greatest potential for distribu-
tion change in southern Central Africa. No northward range expan-
sion past the present day was estimated at any time scale in Central 
Africa, but lesser degrees of northward expansion may have been 
possible in West Africa.

4  | DISCUSSION

The relative roles of rivers and refugia in shaping the high lev-
els of species diversity in tropical rainforests have been widely 

debated for decades (e.g., Amorim,  1991; Colinvaux et  al.,  2001; 
DeMenocal,  2004; Haffer,  1969, 1997; Mayr & O'Hara,  1986; 
Vitorino et al., 2016; reviewed in Couvreur et al., 2021). Only recently 
has it become possible to take an integrative approach to answering 
these questions with genomic sequencing and paleo-species distri-
bution modeling (Leaché et al., 2019; Portik et al., 2017). Herein, we 
tested alternate predictions of the classic river, refuge, and river-
refuge hypotheses for terrestrial faunal diversification using a novel 
study system: the arboreal African snake genus Toxicodryas. We 
found strong support for predictions derived from the river hypoth-
esis over the refuge and river-refuge hypotheses, based on the ages, 
locations, and timing of gene flow between each of our populations, 
as well as a lack of support for suitable habitat and population size 
contraction during the last glacial maximum.

4.1 | Species diversification

This study represents the first phylogenetic analysis of the genus 
Toxicodryas. Phylogenetic analyses of our two-locus Sanger data set 
and 2,848-locus RADseq SNP data set reveal two deeply divergent, 
strongly supported lineages in T. blandingii and three in T. pulveru-
lenta (Figure  3; Figure  S2). Although the two recognized species 

F I G U R E  4   Population structure of 
the genus Toxicodryas. Top: Bar plot of 
population structure and membership 
probabilities for K = 5 analyzed in LEA. 
Bottom: Geographic representation of 
population structure for K = 5 overlaid 
onto a map of major rivers

F I G U R E  3   Top: A time-calibrated Bayesian phylogeny for Toxicodryas with c-mos and cyt b genes. Highly supported nodes (PP ≥ 0.9) 
are denoted with a black circle. Fossil-calibrated nodes are denoted with an asterisk. Node bars represent 95% confidence intervals. 
RADseq phylogenies showed identical topologies. Bottom: Toxicodryas clade distributions overlaid onto a map of elevation, major rivers and 
hypothesized rainforest refugia
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are broadly sympatric, clades within each species are generally 
situated allopatrically across river barriers. Of the three T. pulveru-
lenta clades, one is distributed in West Africa (albeit with limited 
sampling) and two are distributed in Central Africa, separated by 
the western Congo River. The boundary between the two clades 
within T. blandingii is delimited somewhere between the Sanaga 
River in Cameroon and the Congo River in the DRC, and, while 
the species distribution reaches this area, no genetic sampling is 
available. Both rivers have frequently been interpreted as popu-
lation barriers in other terrestrial vertebrates (Blackburn,  2008; 
Jongsma et al., 2018; Leaché & Fujita, 2010; Leaché et al., 2019; 
Portik et  al.,  2017), and a recent analysis of morphological data 
by Greenbaum et al. (in press) of all available Toxicodryas material, 
including voucher specimens of the genetic samples used herein, 
has identified the most likely biogeographic barriers within the 
genus to be the confluence of the Congo and Ubangi Rivers for 
the Central African populations of T. blandingii and T. pulverulenta, 
and the Niger Delta as the barrier for the West and Central African 
populations of T. pulverulenta.

Our population structure analyses are concordant with phylo-
genetic analyses supporting five distinct genetic clusters (Figure 4), 
and our species delimitation analyses suggest that all of these clus-
ters represent distinct, independently evolving lineages. Minor lev-
els of admixture seem to have occurred between the T. pulverulenta 

clades separated by the western Congo River, and between the two 
clades of T. blandingii in the sample collected at the Sanaga River 
(Figure 4); however, our demographic analyses do not support con-
temporary gene flow, suggesting that this admixture is a result of 
historic introgression or incomplete lineage sorting. In both species, 
the Congo River barrier seems to be stronger in the west where the 
river is wider, and the current is stronger. In eastern DRC, samples 
of clades from both species can be found on either side of this river 
(Figure 4).

4.2 | Divergence time estimates

Divergence time estimates from a time-calibrated phylogeny 
also support predictions derived from the river-barrier hypoth-
esis. Toxicodryas blandingii and T. pulverulenta diverged in the mid-
Miocene, and subsequent intraspecific diversification took place in 
the Pliocene (Figure 3). If the Pleistocene rainforest refugia hypoth-
esis was supported, we would expect diversification times dating 
to the Pleistocene glaciation cycles, <2.5 million years ago. Similar 
mid-Miocene and Pliocene divergence times have been noted for 
other widespread Central and West African taxa including frogs (Bell 
et al., 2017; Jongsma et al., 2018; Zimkus et al., 2017), and terrestrial 
snakes (Portillo et al., 2019), and similar West to Central African dis-
tribution splits have been seen in forest cobras (Wüster et al., 2018), 
frogs (Leaché et  al.,  2019), lizards (Allen et  al.,  2019), and shrews 
(Jacquet et al., 2015).

Greenbaum et al. (in press) identified two major river systems, 
the Congo/Ubangi and the Niger Delta, as likely barriers between 
Toxicodryas clades based on a combined molecular and morpholog-
ical analysis of the genus. The Congo River and the Ubangi River, 
one of the Congo's tributaries, date back to the mid–late Miocene 
(Flügel et al., 2015; Stankiewicz & de Wit, 2006). The Congo is one 
of the largest rivers in the world, second only to the Amazon in dis-
charge volume, and first in the world for depth. Much of its length, 
especially in the lower Congo, is characterized by swift-flowing 
currents and waterfalls. The depth and intensity of this river have 
rendered it a well-known barrier to many species including pri-
mates (Harcourt & Wood,  2012; Mitchell et  al.,  2015; Takemoto 
et al., 2015; Telfer et al., 2003), shrews (Jacquet et al., 2015), and 
other snakes (Portillo et al., 2019). The Niger is the third largest river 
in Africa and it likely originated approximately 29–34 million years 
ago (Chardon et al., 2016; Reijers, 2011), reaching its full extent by 
the mid-Miocene as continental uplift progressed (Reijers, 2011). It 
is a biogeographic barrier for several species of frogs (Onadeko & 
Rödel, 2009; Rödel et al., 2014), primates (Eriksson et al., 2004), and 
shrews (Igbokwe et al., 2019).

4.3 | Alternate biogeographic barriers

While the timing and locations of population divergences in this 
study correspond with river barriers, the Miocene was also a time of 

F I G U R E  5   Four demographic models tested using DelimitR. 
Model 1: no divergence, Model 2: divergence without gene 
flow, Model 3: divergence with secondary contact, and Model 4: 
divergence with gene flow. Model 2 was chosen for Toxicodryas 
blandingii, and Model 4 was chosen for the two Central African 
clades of T. pulverulenta
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global climatic change characterized by dramatic cooling and vege-
tation shifts throughout sub-Saharan Africa (Couvreur et al., 2021; 
Herbert et al., 2016; Jacobs, 2004; Menegon et al., 2014). Although 
most research surrounding the role of refugia in driving diver-
sification has focused on the dramatic climate oscillations of the 
Pleistocene, it is likely that refugia are able to form during any 
period of climatic change (Haffer,  1997; Hampe & Jump,  2011; 
Jansson & Dynesius, 2002), but the role of possibly older refugia 
has received little attention in the literature (Couvreur et al., 2021; 
Hampe & Jump, 2011).

It is interesting to note that a number of biogeographic bar-
riers that often play a role in species diversification in Central 
Africa do not appear to influence the genetic patterns seen in 
Toxicodryas. One of these biogeographic barriers is the Dahomey 
Gap, a dry forest-savanna mosaic that separates the Upper and 
Lower Guinean forest blocks (Figure 1). Based on pollen cores and 
climatic modeling, the Dahomey Gap has existed in some form 
for at least the last 150,000 years (Allen et al., 2020; Dupont & 
Weinelt,  1996) and has played a variable role in species diver-
sification in West Africa (Droissart et  al.,  2018; Leaché et al., 

2020; Linder et al., 2012; Nicolas et al., 2010; Penner et al., 2011; 
White, 1979). The West African clade of T. blandingii crosses the 
Dahomey Gap and our species distribution analyses suggest that 
conditions are suitable for both species in that area, likely as a 
result of the forest-mosaic providing suitable habitat (Chippaux & 
Jackson, 2019).

In addition, the two mountain ranges that bisect both species of 
Toxicodryas' ranges, the Cameroon Volcanic Line and the Albertine 
Rift, do not appear to impact the genetic structure of these spe-
cies. Both mountain ranges originated approximately 30 million 
years ago with major geological developments occurring within 
the Miocene (Burke, 2001; Macgregor, 2015; Marzoli et al., 2000; 
Paul et al., 2014; Reusch et al., 2010) and both are continuing to un-
dergo uplift and volcanism. Both are also biogeographically import-
ant in Central Africa as proposed Pleistocene refugia (Maley, 1996; 
Figure  1, refugia 4 and 10) and as barriers to dispersal for a vari-
ety of herpetofaunal species (e.g., Evans et  al.,  2011; Greenbaum 
et  al.,  2015; Menegon et  al.,  2014; Wüster et  al.,  2018; Zimkus & 
Gvoždík, 2013). However, they seem to have played neither role in 
the evolution of the genus Toxicodryas.

F I G U R E  6   Paleo-distribution models showing (a) the suitable habitat for Toxicodryas during the last glacial maximum (LGM). The shade 
of blue represents agreement between global climate models (GCMs) with the darkest blue indicating agreement between all three GCMs 
and the lightest blue indicating support from only one GCM. (b) The suitable habitat for Toxicodryas during the mid-Holocene. The shade of 
green represents agreement between GCMs with the darkest green indicating agreement between all three GCMs and the lightest green 
indicating support from only one GCM. (c) The stability of suitable habitat across the LGM, mid-Holocene, and present, with red indicating 
high stability and blue indicating low stability
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4.4 | Population demography

We used machine learning-based demographic model selection to 
test different gene flow scenarios between the populations in each 
of our two species. If river formation was the major driver of diversi-
fication in these species, we might expect to see divergence with low 
or no gene flow at the time of divergence as the river was forming 
(Figure 5: models 2 and 4), but we would be less likely to see recent 
gene flow. Alternatively, we might be more likely to observe recent 
gene flow if the Pleistocene refugia hypothesis was supported, as 
populations diverge and reunite during glaciation cycles (Smith & 
Carstens, 2020; Figure 5: model 3). Our demographic analyses in-
dicate divergence without gene flow between the two T. blandin-
gii clades and divergence with minor gene flow across the Congo 
River in the two Central African T. pulverulenta clades (Figure  5). 
Recent gene flow was ruled out with high confidence in both species 
(Table S3), further supporting the river hypothesis over the refuge 
hypothesis. In addition, population expansion analyses found none 
of the signatures of population bottleneck with subsequent ex-
pansion that would be expected under the refuge hypothesis, and 
strongly rejected this hypothesis in favor of equilibrium isolation-by-
distance in all of our populations.

In light of the Miocene/Pliocene divergence times and lack of 
gene flow between these five clades, it is likely that they represent 
distinct evolutionary lineages. Based on these molecular results, 
significant differences in scale counts, and even venom toxicity, 
the Central African populations of T. blandingii (east of the Congo/
Ubangi Rivers) and T. pulverulenta (east of the Niger Delta) represent 
cryptic new species that are in the process of being formally de-
scribed (Greenbaum et al. in press). The two Central African clades of 
T. pulverulenta, separated by the Congo River will be conservatively 
described as one species based on the results of our STRUCTURE v. 
2.3.4 analysis (Falush et al., 2003; Pritchard et al., 2000).

4.5 | Paleo-distributions and habitat stability

The nature of the intervening habitat surrounding rainfor-
est refugia during the Pleistocene has been widely debated (re-
viewed in Couvreur et  al.,  2021). Some authors have argued that 
much of the Central African rainforest was replaced by savannas 
(DeMenocal, 2004; Maley, 1996; Maley & Brenac, 1998), whereas 
others have emphasized the possibility of more subtle shifts in for-
est composition (i.e., from wet to dry forest; Colinvaux et al., 1996, 
2001; White,  1981). A shift from rainforest to warm temperate 
woodland and temperate broadleaf evergreen forest, as opposed to 
savannas, during the last glacial maximum was strongly supported by 
recent, comprehensive global vegetation models (Allen et al., 2020).

Toxicodryas species are generally characterized as arboreal across 
rainforest and woodland habitats and the two species exhibit widely 
overlapping distributions in West and Central Africa (Chippaux & 
Jackson,  2019). Our paleo-distribution modeling suggested that 
no substantial contraction of suitable climate occurred for either 

species during the LGM (Figure 6a), and our habitat stability mapping 
suggested that core ranges of both species have remained stable for 
the past 22,000 years (Figure 6c). The greatest potential for habitat 
expansion in this species appears to be to the south into northern 
Angola and southern DRC (Figure 6).

Similar paleo-distribution studies on frogs have suggested sub-
stantial habitat contraction in Central Africa during the Pleistocene 
(Leaché et  al.,  2019; Portik et  al.,  2017). In contrast, our inferred 
widespread habitat stability in Toxicodryas may be a result of the rel-
atively reduced dependence of arboreal snakes on moist habitats, as 
reflected by their distribution in both woodland and rainforest. The 
stability of Toxicodryas habitat through the Pleistocene supports the 
hypothesis that rainforest composition shifted to dryer woodlands 
surrounding rainforest refugia, instead of a more dramatic shift to 
strict savanna habitat. Southward shifts in species suitability may 
correspond with predicted forest distribution shifts of White (1981) 
and Allen et al. (2020), suggesting a replacement of lowland rainfor-
est with cooler, more temperate forest.

5  | CONCLUSION

The complexity of geographic barriers in West and Central Africa, and 
the association of refugia with areas of high surface relief or riparian 
zones (Hofer et  al.,  1999, 2000; Figure 1), makes it extremely dif-
ficult to untangle the relative importance of different diversification 
mechanisms with distribution data alone (Leaché et al., 2019; Portik 
et al., 2017). This difficulty is particularly salient in our study system, 
where distribution data could suggest the association of populations 
with hypothesized refugia around the Congo River, Gabon, and in 
West Africa (refugia 9, 5–8, and 1–3, respectively, Figures 1 and 3). 
Yet, our dated phylogenies and paleo-distribution models reject the 
Pleistocene population age and habitat contraction predictions of 
the refugial hypotheses in favor of the river-barrier hypothesis.

It is important to note, however, that as a result of the difficulty 
in finding and obtaining tissues from arboreal, venomous, Central 
African snakes, the small sample sizes used in this analysis may have 
influenced the inference of our population demographic parameters 
(Hale et al., 2012; Nelson et al., 2012; Subramanian, 2016; Zwickl & 
Hillis, 2002). These impacts would have most likely led to an underes-
timation of the effects of more recent events in the population's his-
tory by missing alleles present at low frequencies (Hale et al., 2012; 
Nelson et al., 2012; Subramanian, 2016). While similar sample sizes 
have been used in phylogenomic studies of other difficult-to-find 
or difficult-to-sample organisms (e.g., Frugone et  al.,  2019; Muniz 
et al., 2018; Nash et al., 2018), and simulation studies on empirical 
data have suggested that small sample sizes (as small as three to 
four samples per population) can give accurate results if the num-
ber of SNPs in the data set is large (Jeffries et al., 2016; Landguth 
et al., 2012; Nazareno et al., 2017; Qu et al., 2020), more dense sam-
pling of the genus Toxicodryas from throughout their range would 
be ideal for fully understanding the demographic history of these 
species.
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These results highlight the importance of using an integrative, 
multidisciplinary approach to statistically distinguish among com-
peting hypotheses to explain high levels of geographically concen-
trated species biodiversity. Moving beyond pure pattern-based 
inference, a deeper and more nuanced understanding of the pro-
duction, partitioning, and maintenance of diversity in complex land-
scapes may lead to inference of environmental and evolutionary 
processes that accumulate terrestrial biodiversity in tropical areas, 
which coincide in many cases with Global Biodiversity Conservation 
Hotspots (Hrdina & Romportl, 2017; Mittermeier et al., 2000, 2011; 
Myers, 1988) and other imperiled ecosystems on Earth.
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