
1.  Introduction
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), quickly spread across the globe since it was detected in December 2019 (Bi et al., 2020), and three 
months later, WHO declared it a pandemic (Budd et al., 2020). At the time of this writing, there were over 
140,000,000 confirmed cases and 3,000,000 total deaths, globally. The outbreak and spread of COVID-19 are 
being widely concerned and bringing in big challenges all over the world. Most countries have implemented 
varied protection measures during the ongoing COVID-19 pandemic. The strictest measures of lockdown 
have remarkably controlled the spread of COVID-19, such as in Chinese cities (Cheng et al., 2020; Leung 
et  al.,  2020; Yin et  al.,  2021). However, these measures have led to massive economic losses and other 
underlying impacts on daily life and society. The implementation of lockdown is also not sustainable and 
tolerated by population in the long-term. Many contries are gradually lifting their lock-down and social 
distancing measures in the course of reopening their economies and societies. There is still a huge risk of 
disease resurgence particularly in densely populated urbanized areas, before the herd immunity achieved 
by a long-way mass vaccination globally (Huang et al., 2021; Kissler et al., 2020; López & Rodó, 2020). For-
tunately, recent vaccine research has made some promising progress, and several vaccines have received 
approval for emergency use (WHO, 2020). However, the supply of vaccines will not be sufficient to achieve 
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herd immunity in the immediate future. Therefore, how to distribute vaccine effectively is an urgent and 
critical issue when vaccine is a highly scarce resource at this stage.

Mathematical models have been broadly used in vaccine distribution studies, such as susceptible-ex-
posed-infected-recovered (SEIR) and its variants (Gojovic et al., 2009; Medlock & Galvani, 2009; Mukan-
davire et al., 2020; Sah et al., 2018; Tuite et al., 2010). Object, timing and places are three important dimen-
sions to evaluate vaccine resource allocation strategies. Based on these models, to whom vaccine should be 
provided (Medlock & Galvani, 2009; Sah et al., 2018; Tuite et al., 2010) and when the vaccination is initiated 
(Gojovic et al., 2009; Sypsa et al., 2009) were widely discussed. Most studies suggested that vaccine should 
be prioritized to people by age and risk (Lee et al., 2010; Medlock & Galvani, 2009; Sah et al., 2018; Tuite 
et al., 2010; Wallinga et al., 2010). However, spatial optimization of vaccine allocation was few explored. In 
the limited studies, meta-population models were applied to explore the effectiveness of spatially targeted 
vaccination (Araz et al., 2012; Azman & Lessler, 2015; Dowdy et al., 2012; Engebretsen et al., 2019). De-
tails of the complex behavior patterns of individuals were neither captured in mathematical models nor in 
meta-population models. Discussions of vaccination effectiveness at the population scale could not reflect 
individuals’ behavior and their spatial interactions. Ignoring the spatiotemporal dimension, the vaccine's 
distribution strategy might be ineffective.

Integrating an agent-based model and SEIR model may shed light on the problem. An agent-based model is 
a bottom-up modeling method which was developed from a complex adaptive system (Parker et al., 2003). 
It is an important tool to analyze and simulate complex urban systems (Benenson, 1998; Li & Liu, 2007; 
Liu et al., 2006). An agent is an autonomous computer entity capable of interacting with other agents and 
adapting its behavior to a changing environment. Each agent can be given specific rules and followed its 
own behaviors. Agents can represent heterogeneous entities, for example, people, animals or institutions 
etc. Agent-based model has been widely used in uncovering the dynamic spatiotemporal process and its 
complex mechanism of infectious disease over the past decades (Chao et al., 2010; Crooks & Hailegior-
gis, 2014; Eubank et al., 2004). As we know, the spread of the epidemic is a process in which human mobili-
ty, contact behavior and the epidemiological feature interplay with each other. Human mobility and contact 
have fundamental roles in shaping the transmission pattern of infectious disease (Wesolowski et al., 2012), 
especially for person-to-person contact-transmissible infectious diseases, such as COVID-19. Their impact 
on COVID-19 spread had been extensively investigated using mobile phone data. Additionally, age was con-
sidered as a principal factor in explaining the pattern of COVID-19 transmission dynamic. Several studies 
showed age-specific differences in the biological susceptibility to infection (Ayoub et al., 2020; Zhang, Lit-
vinova, Liang, et al., 2020). A descriptive report results of over 70,000 patient records from China CDC also 
showed that the age distribution of cases in China are mainly concentrated in 30–79 ages, accounting for 
86.6% (Surveillances V, 2020). Hence, agent-based model provides a perfect solution to simulate COVID-19 
transmission that individual age-specific differences in the biological susceptibility to infection, mobility, 
and contact behavior between individuals are fully considered. Prior to our study, two articles used agent-
based models to evaluate the importance of the spatiotemporal dimension in vaccine's distribution (Grauer 
et al., 2020; Tao et al., 2018). However, the simulations of these studies were implemented on a virtual space, 
which is far from the fact that realistic space is highly complex, dynamic and mobile. The according vaccine 
distribution strategy might be ineffective based on a biased assumption. Uncovering the spatiotemporal 
transmission process clearly in a realistic urban space is a key to solve the problem.

Integrating the SEIR model and the agent-based model makes a promising way to simulate how urban mo-
bile individual interact with each other in the process of an epidemic. The former reveals the mechanism of 
epidemical progression, and the latter simulates the spatial interaction of individuals. The spatiotemporal 
simulation of COVID-19 intra-city transmission will help understanding how epidemic spreads naturally 
until achieving the state of herd immunity. Also, we can simulate epidemic spreading process in several 
realistic scenarios in which different strategies of vaccine intervention are employed.

With these considerations, this study proposes an individual-based spatial model by integrating agent-based 
model and SEIR. It characterizes the spatiotemporal dynamic process of COVID-19 intra-city transmission. 
It tests theoretical hypothesis that (1) the herd immunity rate is spatially heterogeneous in a city when 
COVID-19 is spreading naturally; (2) the vaccine distribution can be optimized by a spatial heterogeneous 
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strategy. By simulating the dynamics of virus infection and transmission, we obtain some valuable insights 
into the optimal vaccine strategies on epidemic control.

2.  Data and Methods
2.1.  Study Area and Mobile Phone Data

This study applied mobile phone trajectory data in Guangzhou to identify individuals’ actual movements. 
Guangzhou is the capital of Guangdong province, located in the south of China, near Hong Kong, Macaw 
and Shenzhen (Figure 1). Selecting Guangzhou as a case in scenario simulation, because Guangzhou is 
one of the megacities in China and an international city, with nearly 20 million population, representing a 
typical city with densely populated and high mobility. Furthermore, during the epidemic outbreak period in 
China, Guangzhou is also one of the prior targets for epidemic prevention and control besides Wuhan. Until 
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Figure 1.  Study Area. Guangzhou is selected as a case study. It is the capital of Guangdong province, and near to Hong 
Kong, Macau and Shenzhen. The study area is located in the southwest of Guangzhou, a highly urbanized area.
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the time of this writing, a total of 377 cases of COVID-19, including 1 death, have been reported in Guang-
zhou. The city is still under severe pressure of preventing imported virus carriers from abroad. Therefore, 
taking Guangzhou as a case to study epidemic spread and vaccine delivery strategies is both representative 
and timely. The study area is a highly urbanized area located in the southwest of the city (Figure 1).

The mobile phone trajectory data of Guangzhou was provided by a major mobile communication service 
company in China, which shared about 20% of the market. The data contained 1-day trajectory of more than 
5 million users on December 28, 2016, an ordinary Wednesday without major events or extreme weather. 
One-day tracked data in the working day (December 28, 2016) is representative for daily mobility pattern, 
because previous research has found that human trajectories show a high degree of temporal and spatial 
regularity (Song et al., 2010), and the pattern of human daily mobility are not random and to be very pre-
dictable (Gonzalez et al., 2008). Several studies also utilized 1-day mobile phone data to estimate human 
daily mobility pattern (Song et al., 2019; Xu et al., 2016). The trajectories are positioned by base stations (not 
users’ actual locations) that interact with the users' mobile phones. Users’ locations were recorded by 1-h 
interval. When a user traveled across many base stations, the longest stayed one was identified. To protect 
users’ privacy, locations were geocoded by spatial units (500 × 500 m grids). In this research, 10,000 mobile 
phone users were randomly selected from the data set. The spatial distribution of these 10,000 users were 
shown in Figure 1. Filtering out samples with missing information (age), 8,146 users were taken as the final 
samples. These 8,146 users were distributed in 3,430 grids, accounting for 26% of the study area, with 13,390 
grids in total. Samples are representative since their spatial distribution is highly consistent with the total 
mobile phone users in Guangzhou (correlation coefficient = 0.95, p-value ≤ 0.05).

2.2.  Agent-Based Model

The definition of agent’ decision behavior is essential to agent-based models. Our agent-based model in a 
realistic environment is proposed as follows, based upon the mechanism of SEIR (Kermack and McKen-
drick, 1927; 1932) (A full description of SEIR is available in the supporting information Text S1).

The agents represent mobile phone users in our model. The life cycle of an individual agent is divided into 
four states: susceptible, exposed (but not yet infectious), infectious, and removed (isolated, recovered, or 
otherwise no longer infectious, etc.). Each agent can be in one out of the above four states with its own 
unique attributes (sex, age, latent duration, infectious duration, etc.). Agents are born in a “susceptible” 
state, except for a few initial infections. Agents are moving or stopping according to their own trajectories. 
Once susceptible agents meet infectious agents and get infected, the state of susceptible agents is trans-
formed to “exposed.” At this stage, they cannot infect other agents yet. After a given “latent period,” those 
individuals become “infectious” which can infect other agents. Finally, after an “infectious period,” indi-
viduals become “recovered” which are immune against the disease and would never be infected again. A 
simplified agent-based simulation diagram is displayed in Figure 2a. The model was performed in an open 
source software named “NetLogo” (version 6.1.1), which is a programmable modeling environment for 
simulating natural and social phenomena (Wilensky, 1999; Yang & Wilensky, 2011).

2.3.  Model Parameterization

The model involves three parameters, the average latent period eD , the mean infectious period iD  and the 
probability of being infected per contact   and its differences across age groups.

We set the latent period and infectious period based on recently published estimates, which have estimated 
the mean incubation period of COVID-19 (from infection to symptom onset) is ∼5 days (Lauer et al., 2020; 
Li et al., 2020; Linton et al., 2020; Zhang, Litvinova, Wang, et al., 2020) and the mean infectious period (from 
symptom onset to hospital admission) is about 6 days, from day 4 to day 9 (Li et al., 2020; Linton et al., 2020; 
Tindale et al., 2020; Zhang, Litvinova, Wang, et al., 2020). However, early evidence shows that virus trans-
mission occurs during a presymptomatic stage (Bai et al., 2020; Tindale et al., 2020; Yu et al., 2020), and 
infers that infection is transmitted on average about 2 days before symptom onset (Tindale et al., 2020). In 
other words, a latent period should be 2 days shorter and an infectious period should be 2 days longer. Giv-
en the above comprehensive considerations, eventually, we assumed the mean latent period and infectious 
period as 3  and 8 days respectively. Different from SEIR model, in which the mean latent period eD  and 
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infectious period iD  are always constants, an agent-based model considers the inter-personal diversity and 
allows each agent to have a unique latent period and infectious period. We assume that each agent's latent 
period and infectious period follow normal distributions with a mean of 3 days and a standard deviation of 
1 day (latent period), and a mean of 8 days and a standard deviation of 2 days (infectious period), respec-
tively (see Table 1).

Parameter   (the probability of being infected per contact) determines how likely an agent would be infect-
ed when contacting another agent in a 500 × 500 m grid. Although some recent studies estimated the prob-
ability of be infected from close contacts (Bi et al., 2020), it is not applicable to us because the spatial scale 
of our model (500 × 500 m grid) is far from close contact. We estimate parameter   according to the basic 
reproduction number 0R , which is defined as the average number of secondary cases produced by a typical 
primary case during its infectious period in a completely susceptible population (Diekmann et al., 1990). 
Parameter   can be inferred based on an mathematical expression (Lipsitch et  al.,  2003) as 0 iR k D , 
where k  is the average number of contacts, and iD  is the average infectious period. Therefore, parameter   
is inferred as:

  0 / iR kD� (1)
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Figure 2.  Schematic diagram of agent-based simulation. A simplified agent-based simulation diagram is displayed. The horizontal axis represents time, and 
the vertical axis represents different scenarios. A completely natural epidemic transmission process without any intervention measures (a), different vaccine 
intervention strategies on epidemic spreading process (b–e).
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Obviously, parameter   depends on the above three parameter 0, iR k and D . iD  has just been determined as 
8 days. 0R  for COVID-19 epidemic of China has been estimated in several studies (Li et al., 2020; Liu, Hu, 
Kang, et al., 2020; Read et al., 2020; Sanche et al., 2020; Shen et al., 2020; Tang et al., 2020; Wu et al., 2020). It 
ranges from 2 to 6, with an average of about 3. Therefore, we set 0R  = 3 here, but we will also do a sensitivity 
analysis under different 0R  assumptions: the relatively mild ( 0R  = 2) and severe outbreak ( 0R  = 4). Param-
eter k  need to be known. We use another agent-based model to simulate parameter k (how many people 
an agent would encounter in one day). The simulation is implemented using the mobile phone trajectory 
data from the 8,146 users. The simulation reproduces these users’ actual mobility and encountering process 
in a day (December 28, 2016). Based on the simulation, the number of encounters that an agent meets can 
be observed. The average number of encounters per agent estimates parameter k . The detailed simulation 
process is available in the supporting information Text S2.

The simulation values are shown in Figure S1. The mean value of k  is 29.45 (0.2), which means the average 
number of encounters per day for an agent is about 30 agents. According to Equation 1, parameter   is easily 
calculated as 12‰ (when 0R  = 3), 8‰ (when 0R  = 2) and 16‰ (when 0R  = 4).

Additionally, there is evidence that the susceptibility to the infection of COVID-19 increases with age (Ay-
oub et al., 2020; Zhang, Litvinova, Liang, et al., 2020). As referenced, this model divides the entire pop-

ulation into five age groups: under 18, 19–30, 31–45, 46–60, and above 
60. The heterogeneous susceptibility to infection is modeled by a weight 
function  w θ  which is a relative weight of the contact infected rate θ and 
differentiated by age groups. Age group 31–45 is taken as the reference 
group. The relative weight of different age groups is exhibited in Table 2.

Details of model parameter values are provided in Table 1. We assume 
that the epidemic starts with several infectious agents and the rest pop-
ulations are initially susceptible. Each simulated epidemic is seeded 
by infecting four randomly chosen agents, and each simulation stops 
when there are no more transmissible agents, with only susceptible and 
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Variables Value

Input

Population 8,146

Number of susceptible individuals 8,142

Number of exposed individuals 0

Number of infected individuals 4

Number of removed individuals 0

Latent period, eD   3,1eD N

Infectious period, iD  (8,2iD N )

The contact infected rate,  (without age differences) 8‰ (R0 = 2), 12‰ (R0 = 3), 16‰ (R0 = 4)

The contact infected rate,  by age groups See Table 2

Output

Attack rate (%) /

Herd immunity (%) /

The effective reproduction number, Rt /

Durations (day) /

Note. Attack rate means the proportion of those experiencing infection at the end of an epidemic; Herd immunity 
equals to attack rate when spreading naturally; Durations is the time that the epidemic lasts.

Table 1 
Model Parameter Setting

Age Under 18 19–30 31–45 46–60 60+

w(θ) 0.3θ 0.8θ θ 1.2θ 1.8θ

Note. θ is the probability of being infected per contact (i.e., the probability 
of an agent being infected when encountering another agent in a 
500 × 500 m grid). It increases with age, Age group 31–45 is taken as the 
reference group. The relative weight of different age groups are shown.

Table 2 
Weight of the Contact Infected Rate θ Among Different Age Groups
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removed agents remaining in the simulation. The attack rate (the proportion of those having experienced 
infection at the end of an epidemic), herd immunity and the epidemic durations would be outputted. Herd 
immunity equals the attack rate in a natural spreading scenario without any interventions. At the same 
time, the effective reproduction number tR —the average number of secondary cases per primary case at 
time t (Nishiura, 2007)—can be also evaluated during the process of epidemic.

2.4.  Model Scenarios Setting

Simulations were conducted in seven different scenarios that scenarios 1 and 2 simulated the spatiotempo-
ral process of the epidemic, and scenarios 3–7 focused on vaccine allocation optimization.

Both scenarios 1 and 2 simulated a completely natural epidemic transmission process without any inter-
vention measures. Considering the classical herd immunity threshold theorem (Smith, 1970)—that if pop-
ulation is randomly mixed without heterogeneity, the incidence of the infection would decline if the pro-
portion of immune exceeds  01 1 / R , which implies that  01 1 / R  threshold is often used as the goal of 
immunization coverage. Achieving that can lead to eradication of target infectious disease. Consequently, 
scenario 1 assumed that all agents were equally susceptible, and equally infectious if they became infected. 
The simulation result of scenario 1, simulated herd immunity, was then compared with the classical herd 
immunity threshold (  01 1 / R ) to validate the model. While, scenario 2 considered individual infection vul-
nerability (age-specific contact infected rate). The spatiotemporal dynamic transmission process of COV-
ID-19 and spatial heterogeneity of herd immunity would be examined in scenario 2.

Scenarios 3–7 aimed to evaluate the impacts of vaccine intervention strategies on epidemic spreading dy-
namic and identify the optimal vaccine strategy, as well as the most appropriate vaccine coverage. On the 
basis of scenario 2 (base scenario), vaccine intervention measures were implemented using this model, in 
which some individuals were selected for vaccination. We evaluated four strategies of vaccine distribution. 
Scenario 3 distributed vaccines randomly (random strategy). Scenario 4 distributed vaccines by age vulnera-
bility where a vaccination priority was assigned to age groups with high contact infected rates (age strategy). 
The order of vaccine allocation by age group was: ≥60, 46–60, 31–45, 19–30, ≤18, with each time fulfilling 
target group before proceeding to the next age group. Scenario 5 was a spatial vaccination strategy where a 
vaccination priority was assigned to areas with the highest herd immunity rate (space strategy). Specifically, 
vaccinated areas were ranked in a descending order of herd immunity rate, and distribution to a given area 
begins only after target population have been met in the higher ranker area. Scenario 6 considered both spa-
tial risk and age vulnerability (space & age strategy). We assumed the vaccine coverage as 20% in scenario 
3–6 (a simplified simulation diagram is shown in Figures 2b–2e). We considered two outcome measures to 
evaluate the vaccination strategies: the attack rate and durations. These two indicators were selected for the 
purpose of minimizing the infections, as well as slowing transmission to avoid overburdening healthcare 
systems (known as flattening the curve). Subsequently, we estimated different coverages (30%–80%), and 
identified the most appropriate vaccine coverage to control the epidemic, which aims to achieve herd im-
munity with minimal vaccine.

3.  Results
3.1.  Model Validation

The model was validated by comparing simulated herd immunity in scenario 1 with classical herd immu-
nity threshold (1−1/ 0 0,R R  = 3). The time evolution of simulated herd immunity and the effective repro-
duction number tR  are shown in Figure 3. Different from 0R , tR  shows the actual time-dependent variation 
due to the decline in susceptible individuals. Figure 3 shows that tR  goes up sharply above three first, then 
slowly down to 1, and finally down to 0. Simulated herd immunity goes up all the way, and finally approach-
es a balance. The whole simulation represents 150 days.

The simulation was repeated 100 times to balance the stochastic effect. The median value (of 100 simu-
lations) of simulated herd immunity is 66.11%. It indicates that our model is validated since the simulat-
ed herd immunity is almost equivalent to the classical herd immunity threshold 66.67% (1−1/ 0 0,R R  = 3). 
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We also did a sensitivity analysis under different 0R  assumptions: the relatively mild ( 0R  = 2) and severe 
( 0R  = 4) outbreak. Each of these tests also had 100 simulations. The simulated herd immunity (Table 3) 
again is consistent with the classical herd immunity threshold, which further confirms that our model is 
convincing.

3.2.  Spatiotemporal Process

The completely natural spatiotemporal dynamic process without any intervention measures from scenario 
2 is shown in Figure 4. Compared to scenario 1, individuals’ infection vulnerability (age-specific differenc-
es) is considered into scenario 2. Figure 4 shows that the infected cases are concentrated in space. Most of 
the cases appear in the city center at the beginning and then spread to the suburbs. With the simulation go-
ing on, more grids have infected cases, but grids with high attack rate were are still concentrated at locations 
with dense population or heavy traffic. Obviously, the transmission dynamics is geographically heterogene-
ous and the majority of transmissions occur in urban areas particularly the city center.

3.3.  Spatial Heterogeneity

Eventually, herd immunity would be achieved at the end of scenario 2 
simulation. The spatial distribution of herd immunity is shown in Fig-
ure 5. Notice that Figure 5 is presented at a spatial scale of Jiedao rather 
than a grid, because Jiedao is the smallest administrative unit in China 
and thus aggregating results into Jiedao scale is convenient for admin-
istrative management. Figure 5 exhibits strong spatial heterogeneity. A 
size-ranking diagram of herd immunity of each Jiedao is shown in the 
bottom left of Figure 5, displayed in descending order of herd immunity 
rate from left to right. Nearly half of Jiedaos’ herd immunity is above 
80%, while 16% of them have herd immunity below 20%. An indicator 
of Moran's I statistics was further applied to examine the level of spatial 
heterogeneity. Moran's I statistics is commonly used to test whether an 
observed spatial clustering is formed due to chance. The values of Mo-
ran's I would be approximately between +1 and −1. The higher the value 
is, the stronger the spatial clustering is. Global Moran's” I of Figure 4 is 
0.46 (p-value ≤ 0.05), indicating that there is a strong spatial heterogene-
ity of herd immunity. These evidences verify the Hypothesis 1 that ‘the 
herd immunity rate is spatially heterogeneous in a city when COVID-19 
is spreading naturally.
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Figure 3.  The variation of tR  and herd immunity over time (   = 3) in Scenario 1. This simulates a completely natural 
transmission without any intervention measures under   = 3, assuming that all agents are equally susceptible, and 
equally infectious. Red line represents actual time-dependent variation of tR . Blue columns represents herd immunity. 
The whole simulation represents 150 days.

Scenarios 0R

Simulated herd 
immunity

Classical 
herd 

immunity Durations

%, median [1st, 3rd 
quartile] * %, 1-1/ 0R

Days, median 
[1st, 3rd 

quartile] *

Scenario 1 2 50.23 [49.67, 50.70] 50.00 150 [132, 170]

Scenario 1 3 66.11 [65.70, 66.58] 66.67 128 [120, 143]

Scenario 1 4 74.69 [74.30, 75.25] 75.00 127 [115, 139]

Note. Scenario 1 simulates a completely natural transmission without any 
intervention measures, assuming that all agents are equally susceptible, 
and equally infectious. Sensitivity analysis are implemented under 
different 0R  assumptions. Each 0R  hypothesis ran 100 simulations to 
balance the stochastic effect. The median and quartiles values of 100 
simulations were included.

Table 3 
The Simulation Result When R0 = 2, 3 and 4 in Scenario 1
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3.4.  Optimizing Vaccine Distribution Strategies

The above results demonstrate that the herd immunity is not uniform in space and is spatially heterogene-
ous, implying that the vaccine distribution can be optimized by a spatial heterogeneous strategy (Hypothe-
sis 2). This hypothesis was tested in scenarios 3–6. We assumed the vaccine coverage was 20%. We evaluated 
the attack rate and the durations among four strategies.

The results (Table 4) demonstrate that a spatial strategy has smaller attack rate and longer epidemic dura-
tions than a random or age strategy. Space optimization plays a greater role in reducing attack rate and slow-
ing the transmission to flatten the infection curve. In “random strategy” scenario, 45.36% (45.04%–45.78%) 
population would eventually be infected. Compared to “random strategy,” the median value of attack rate 
in “age strategy” is 44.07%, a decrease of 1.29%. However, when the vaccination is distributed according to 
“space strategy,” the attack rate drops even more, to 39.44% (38.57%–39.94%). Eventually, a “space & age 
strategy” has the lowest attack rate (with a median value of 37.66%). Simultaneously, the duration under 
“space & age strategy” is the longest (with a median value of 175 days) among four delivery strategies, which 
would alleviate pressure on the emergency services and give more time to deal with the epidemic. The re-
sults verify Hypothesis 2 that the vaccine distribution can be optimized by a spatial heterogeneous strategy.
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Figure 4.  Spatiotemporal dynamic spread process of Covid-19 in scenario 2. Scenario 2 considers individual infection vulnerability (age-specific contact 
infected rate) and simulates a completely natural transmission without any intervention measures. The spatial spread process at different time points are 
displayed.
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Figure 5.  Spatial distribution of Herd Immunity at Jiedao Level from Scenario 2. The scenario simulation would stop 
when there are no more transmissible agents with only susceptible and removed agents remaining in the procedure. 
At the point, herd immunity would be achieved. The herd immunity rate of each Jiedao are displayed in colors. In the 
bottom left, it is displayed in descending order of herd immunity rate from left to right.
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3.5.  Identifying the Optimal Vaccine Coverage

The space & age strategy has been proven to be the best vaccine allocation 
strategy. In subsequent analysis, we varied the level of vaccine coverage 
(30%, 40%, 50%, 60%, 70%, and 80%) to identify the optimal vaccine up-
take (scenario 7). Our aim is to achieve herd immunity with minimal 
vaccine. To quantify the effect, we compared the optimal strategy (space 
& age strategy) with “random strategy,” under the same vaccination 
coverage setting. The effective reproduction number tR , as mentioned 
earlier, is used to determine whether the epidemic is under control. If 

 1tR  (Nishiura,  2007), it suggests that the epidemic is in decline and 
regarded as being under control at time t (Nishiura & Chowell,  2009). 
Due to the large fluctuations of tR , it is necessary to smooth the calcu-
lation (Liu, Hu, Xiao, et al., 2020). tR  values are smoothed over a 8-days 
moving window considering the mean infectious period is 8 days in this 
study. The maximum value of tR  is used to evaluate vaccination coverage: 

  _ max ,t max tR R t T , where T is the epidemic duration. If  1tmaxR , 

tR in the whole epidemic spreading process would be less than 1. Similar-
ly, each coverage setting per strategy has 100 simulations.

The results (Table 5) show that 40% vaccines are needed to control the epidemic (The median value of 
_t maxR  = 0.81) under “space & age strategy,” while 70% vaccines (The median value of _t maxR  = 0.95) for “ran-

dom strategy.” Although the epidemic is under control at the corresponding vaccine coverage level, there 
are still 1.06% (0.1%–1.72%) and 3.89% (0.1%–6.21%) people being infected eventually in “space & age strat-
egy” and “random strategy,” respectively. The attack rate of “space & age strategy” is much lower than that 
of “random strategy” under any vaccination coverage. For example, there are still 36.74% (36.08%–37.49%) 
people at risk of infection under “random strategy,” while only 17.96% (14.39%–19.24%) under “space & age 
strategy,” when the vaccination coverage is 30%. There is no doubt that “space & age strategy” plays a signif-
icant role in minimizing the number of infections compared to “random strategy,” in which 18.78% people 
are protected from infection under 30% vaccine coverage, and 27.58% people under 40% vaccine coverage.

From the perspective of durations, “space & age strategy” greatly slow the transmission to avoid overbur-
dening healthcare systems, such as 264 [228–299] days for “space & age strategy” and 134 [114–142] days 
for “random strategy” when the vaccine coverage is 30%. While, the durations under “space & age strategy” 
are getting shorter than “random strategy,” as the coverage increased. This is because that attack rate under 
“space & age strategy” is much smaller than “random strategy” with the coverage increasing, which implies 
that epidemic only locally spreads across a small area and ends quickly under “space & age strategy.” In 
summary, “space & age strategy” improves the effectiveness of the vaccine usability and epidemic are under 
control with minimal vaccines under this strategy.

4.  Discussion
Through simulating spatiotemporal transmission process of COVID-19 in Guangzhou integrating agent-
based model and SEIR model with mobile phone trajectory data, we tested the hypothesis that herd im-
munity rate is spatially heterogeneous and that the vaccine distribution can be optimized by the spatial 
heterogeneous strategy. Our simulation results suggested that herd immunity is not uniform in space and 
give priority to those vulnerable individuals in high-risk areas in vaccine allocation would greatly improve 
vaccine effectiveness.

4.1.  Spatial Heterogeneity in Herd Immunity

We observed a high degree of spatial heterogeneity in herd immunity rate under spreading naturally in 
this study. Geographical heterogeneity in herd immunity suggested that not all locations need to reach the 
threshold of herd immunity to end the epidemic. In low-density suburbs, the attack rate is lower when the 
whole city reaches herd immunity. In contrast, an extremely high attack rate is observed in dense urban 
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Scenarios

Attack rate Durations

%, median [1st, 3rd 
quartile]

Days, median 
[1st, 3rd 
quartile]

Scenario 3: random strategy 45.36 [45.04, 45.78] 131 [121, 163]

Scenario 4: age strategy 44.07 [43.26, 44.55] 146 [132, 159]

Scenario 5: space strategy 39.44 [38.57, 39.94] 154 [145, 171]

Scenario 6: space & age strategy 37.66 [37.12, 38.42] 175 [152, 197]

Note. On the basis of Scenario 2 (base scenario), vaccine intervention 
measures are implemented, in which some individuals are selected 
for vaccination. Four strategies of vaccine distribution are evaluated 
(scenarios 3–6). Each strategy was simulated for 100 times. The median 
and quartiles values of 100 simulations were shown.

Table 4 
Four Vaccine Delivery Strategies Under 20% Vaccination Coverage
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areas. The underlying reason may be the different contact patterns between rural and urban areas (Read 
et al., 2014) or different social groups in those places (Mossong et al., 2008). The spread of the epidemic is a 
process in which population, individual mobility, and the epidemiological feature interplay with each other. 
That means heterogeneity of all these dimensions affect the distribution of infected cases and herd immuni-
ty rates. Being aware of geographical heterogeneity in herd immunity is critical. Conventionally, preventing 
epidemic spread though vaccination is described in terms of the herd immunity threshold (1−1/ 0R ) under 
the assumption of the classic mean-field theory. Our results emphasized the existence of spatial heteroge-
neity in herd immunity. Previous studies also indicated that spatial heterogeneity may influence the imple-
mentation of interventions, and control strategies should aim at such heterogeneity (Dowdy et al., 2012; 
Nath et al., 2021; Shrestha et al., 2016; Yechezkel et al., 2020). Therefore, it is necessary to quantify the 
degree of spatial heterogeneity, identify the “hotspots” and apply intervention against the disease outbreak.

4.2.  The Importance of Space-Targeted Vaccination

Hypothetical scenarios on vaccine interventions strategies demonstrated that space-targeted vaccination has 
better perform than vaccination targeted to specific age groups or general population when distributing the 
same vaccine quantity. How to deploy limited control measures to minimize transmission, and to choose target 
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Vaccine coverage

(A) Space & age strategy (B) Random strategy

_ maxtR , _ maxtR ,

Median [1st, 3rd quartile] Median [1st, 3rd quartile]

30% Coverage 1.23 [(1.05, 1.46] 1.70 [1.58, 1.89]

40% Coverage 0.81 [0.52, 1.13] 1.53 [1.43, 1.76]

50% Coverage 0.56 [0.30, 1.08] 1.45 [1.30, 1.62]

60% Coverage 0.52 [0.25, 0.78] 1.31 [1.18, 1.47]

70% Coverage 0.25 [0.04, 0.50] 0.95 [0.53, 1.32]

80% Coverage 0.15 [0.06, 0.44] 0.72 [0.27, 1.08]

Vaccine coverage

Attack rate, Attack rate,

%, median [1st, 3rd quartile] %, median [1st, 3rd quartile]

30% Coverage 17.96 [14.39,19.24] 36.74 [36.08, 37.49]

40% Coverage 1.06 [0.10, 1.72] 28.64 [28.03, 29.09]

50% Coverage 0.12 [0.09, 0.28] 20.39 [19.83, 20.90]

60% Coverage 0.10 [0.06, 0.20] 13.10 [12.51, 13.49]

70% Coverage 0.07 [0.06, 0.09] 3.89 [0.10, 6.21]

80% Coverage 0.07 [0.06, 0.11] 0.14 [0.07, 0.47]

Vaccine coverage

Durations, Durations,

days, median [1st, 3rd quartile] days, median [1st, 3rd quartile]

30% Coverage 264 [228, 299)] 134 [114, 142]

40% Coverage 43 [21, 114] 131 [117, 144]

50% Coverage 24 [15, 45] 128 [117, 143]

60% Coverage 21 [13, 33] 142 [128, 159]

70% Coverage 14 [9, 20] 108 [20, 142]

80% Coverage 14 [10, 23] 25 [15, 65]

Note. All of the above scenarios are assumed that no other intervention measures are taken but only vaccination. 
Similarly, each coverage hypothesis per strategy would be simulated for 100 times. The median and quartiles values of 
100 simulations were taken into account.

Table 5 
Vaccination Coverage Evaluation Under a Space & Age Strategy and a Random Strategy in Scenario 7
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population for optimal allocation of vaccine have been an critical question that public health policy makers 
face with, which have been discussed in many papers (Liu & Xia, 2011; Medlock & Galvani, 2009). The selec-
tion of target populations for allocation of vaccine were usually based on socio-demographic characteristics, 
such as age, sex, occupation, or other demographic characteristics (Lee et al., 2010; Medlock & Galvani, 2009; 
Sah et al., 2018; Shim, 2013). Actually vaccinating population by socio-demographic attributes did not capture 
the essence of disease transmission. The nature of epidemic diffusion is a process in which human mobility, 
contact behavior, and the epidemiological feature interplay with each other. The difference of demographic 
characteristics (e.g., age) affect the susceptibility to the infection in the biology (Ayoub et al., 2020) on the one 
hand. On the other hand, it leads to different patterns of mobility or contact. Because, the patterns of mobility 
are highly associated with socio-demographic factors (Mossong et al., 2008; Read et al., 2014). Peoples with dif-
ferent socio-demographic attributes have different patterns of behavior or activity. Indeed, human mobility and 
contact behavior are known as crucial determinants for the spread of COVID-19. In short, vaccinating popula-
tion by socio-demographic attributes actually did not capture the essence. Namely, socio-demographic attrib-
utes are not the nature of the vaccine problem, but just the outer skin of vulnerability and contacts. Although 
age differences in the biology of infection has been captured in the previous studies (Medlock & Galvani, 2009; 
Sah et al., 2018), the actual behavior and movement of individuals were not. Integrating an agent-based model 
in the study provides a perfect solution on this problem that both the susceptibility of infection and the interac-
tion between individual behaviors are fully considered. Further, since the agent-based simulation is ultimately 
embodied in the space aspects, it reveals that spatial optimization plays a greater role in vaccine allocation.

4.3.  Implications for Future Policy Decisions

Results suggested that targeted high-incidence areas (“hotspots”) vaccination is key to epidemic control, 
which is consistent with previous studies, where targeted vaccination in specific locations are implemented 
and considered as an efficient strategy (Azman & Lessler, 2015; Dowdy et al., 2012; Engebretsen et al., 2019). 
Targeting those high-incidence geographic areas on the one hand would serve to directly protect the pop-
ulation at high risk, and on the other hand may indirectly serve to protect the general population. Conse-
quently, quantifying spatial heterogeneity and identifying high-incidence areas are essential to fully harness 
the potential advantage of spatial targeting of COVID-19 vaccines. Public health government officials needs 
to know the specific hotspots of the city to fight against on-going COVID-19 epidemic. Furthermore, the 
intervention combining both spatial heterogeneity and age heterogeneity is the most effective strategy. This 
combined strategy requires 30%–40% vaccine coverage to control the epidemic, which is much lower than 
traditional herd immunity threshold (66.67%, 1−1/ 0R ). We therefore recommend immediate deployment of 
this strategy when determining vaccination prioritization.

4.4.  Limitations of This Research

However, this study has several limitations. First, only 1-day trajectory is available and we assume that hu-
man daily mobility patterns do not change much. Second, the current model differentiates the population 
only by ages but not by other demographic attributes such as sex, occupation, wealth, etc. Considering these 
additional attributes may lower the disease-induced immunity level even further. Quantifying this effect 
and to what extend more precisely remains to be done. Third, vaccine efficacy is not considered, and we as-
sumed vaccines with 100% efficacy. For simplicity, we also assume that all the vaccine is delivered at once by 
a given coverage. Indeed, the vaccine allocation is temporally constrained by the production and availability 
schedule. It is necessary to estimate the timing of vaccine delivery in future. Lastly, the type of location (i.e., 
schools, workplaces, hospitals, markets, shops, and restaurants etc.) and the travel mode (i.e., bus, subway, 
bike, car, etc.) were not considered in our model. Indeed, individuals in these different settings had different 
mixing patterns and contact intensity. These factors should be further considered in the future research.

5.  Conclusions
In conclusion, we proposed an integrated spatial model of an agent-based model and SEIR to evaluate 
the spatiotemporal process of COVID-19 intra-city transmission. Individual movements were projected by 
hourly mobile phone trajectory data. We found that herd immunity is not uniform in space, thus, vaccine 
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intervention strategies should be spatialized. Among four strategies, space & age strategy is substantially 
more efficient than the other three strategies. Additionally, space & age strategy requires 30%–40% vaccine 
coverage to control the epidemic, comparatively that for a random strategy is 60%–70%. Results demonstrate 
the importance of spatial optimization vaccines. It also highlights that this strategy will greatly improve the 
effectiveness of the vaccine usability. Our methodology can help global policymakers develop optimal strat-
egies based on their own specific spatial situations against on-going COVID-19 epidemic.
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