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Abstract

Animal models of addictive behaviors are useful for uncovering neural mechanisms involved in 

the development of dependence and for identifying risk factors for drug abuse. One such risk 

factor is biological sex, which strongly moderates drug self-administration behavior in rodents. 

Female rodents are more likely to acquire drug self-administration behaviors, consume higher 

amounts of drug, and reinstate drug-seeking behavior more readily. Despite this female 

vulnerability, preclinical addiction research has largely been done in male animals. The study of 

sex differences in rodent models of addictive behavior is increasing, however, as more 

investigators are choosing to include both male and female animals in experiments. This 

commentary is meant to serve as an introductory guide for preclinical investigators new to the 

study of sex differences in addiction. We provide an overview of self-administration models, a 

broad view of female versus male self-administration behaviors, and suggestions for study design 

and implementation. Inclusion of female subjects in preclinical addiction research is timely, as 

problem drug and alcohol use in women is increasing. With proper attention, design, and analysis, 

the study of sex differences in addiction has the potential to uncover novel neural mechanisms and 

lead to greater translational success for addiction research.
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INTRODUCTION

There has been recent recognition of the importance of addressing sex differences in 

preclinical neuroscience studies. Although the field of neuroscience has long been and 

continues to be dominated by male-only studies (Beery & Zucker, 2011; Hughes, 2007; Will 

et al., 2017), recent policy changes from major funding agencies such as the National 
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Institutes of Health (NIH Policy on Sex as a Biological Variable, n.d.; Lee, 2018) and 

growing recognition that female animals are not more variable or difficult to study than male 

animals (Becker, Prendergast, & Liang, 2016; Prendergast, Onishi, & Zucker, 2014) are 

helping to correct this bias (Mamlouk, Dorris, Barrett, & Meitzen, 2020). As such, 

investigators studying rodent models of addictive behaviors are increasingly likely to be 

including both male and female animals in their studies.

Inclusion of female animals is a positive development for the field of addiction research. 

Data from clinical populations suggest that women have particular vulnerabilities to drugs of 

abuse. For example, women who drink alcohol are more likely to suffer from alcohol-related 

health problems than men (Brady & Randall, 1999; Lynch, Roth, & Carroll, 2002). 

Moreover, although women on average use drugs and alcohol less and have lower rates of 

alcohol and substance use disorders (AUDs/SUDs) compared to men (Kranzler & Soyka, 

2018; McHugh, Votaw, Sugarman, & Greenfield, 2018), there is evidence suggesting that 

women who do use drugs and alcohol may escalate their use faster over a shorter time period 

(Anglin, Hser, & McGlothlin, 1987; Piazza, Vrbka, & Yeager, 1989; Westermeyer & 

Boedicker, 2000). Women may also find it more difficult to achieve abstinence versus men 

(Perkins, 2001). At least some of these vulnerabilities appear to be driven by ovarian 

hormones (Moran-Santa Maria, Flanagan, & Brady, 2014). On top of these vulnerabilities, 

rates of drug use and AUDs/SUDs are currently increasing at a much faster rate in women 

than they are in men (Grant et al., 2017; Marsh, Park, Lin, & Bersamira, 2018; White et al., 

2015).

Such statistics highlight the critical need for more studies of addictive behavior in female 

animals. Review of past research comparing female to male rodents demonstrates a clear 

vulnerability to drugs of abuse in females (Becker & Koob, 2016; Lynch et al., 2002). 

Females have a greater propensity for self-administration behaviors versus males, and as in 

humans, ovarian hormones contribute to these differences (Anker & Carroll, 2011). These 

vulnerabilities may be due to increased sensitivity to the rewarding effects of drugs of abuse 

(Anker & Carroll, 2011; Lynch et al., 2002). Females are also thought to be more likely to 

use drugs and alcohol to deal with stress and negative affect, demonstrating a potential 

vulnerability to negative reinforcement of addictive behavior (Pang, Zvolensky, Schmidt, & 

Leventhal, 2015; Peltier et al., 2019). As such, female rodents are a valuable model of 

addiction vulnerability. Although research investigating the neural mechanisms of this 

vulnerability in females has been limited thus far, the increasing inclusion of females in 

preclinical neuroscience studies has the potential to provide novel mechanistic insights 

regarding the development of addiction in both sexes.

This commentary is meant to serve as an introductory guide for preclinical investigators new 

to the study of sex differences in addiction. We first provide an introduction to the self-

administration models used to study addictive behaviors in rodents and a broad overview of 

the state of the field regarding sex differences, as new investigators will need to be aware 

that female rodents often respond differently than males in drug self-administration 

paradigms. Next, we offer considerations and guidelines for experimental design and key 

questions for future studies. With proper attention, design, and analysis, the inclusion of sex 
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as a biological variable in preclinical studies has the potential to uncover novel mechanisms 

and lead to greater translational success for addiction research.

FEMALE VULNERABILITY IN DRUG SELF-ADMINISTRATION STUDIES

Although cultural and societal confounds make it difficult to determine the influence of 

biological sex on drug abuse vulnerability in humans, rodent models avoid many of these 

confounds. Studies in rodents overwhelmingly suggest an influence of biological sex on 

addictive behavior, with females being more likely to consume and seek drugs in self-

administration paradigms. These effects are consistent across factors such as species (i.e., rat 

vs. mouse) and genetic background, though they are more pronounced in certain types of 

paradigms. Below, we review the models used to assess addictive behavior in rodents and 

then present evidence suggesting that females are more likely to consume drugs across these 

paradigms.

Studying addictive behavior in practice

Self-administration of drugs has been used since at least the 1960s in the study of drug abuse 

(Schuster & Thompson, 1969) and has high predictive validity for identifying drugs with a 

liability for abuse (O’Connor, Chapman, Butler, & Mead, 2011; Spanagel, 2017). Self-

administration can be accomplished by providing access to drugs in the home cage or in a 

standard operant chamber. These paradigms allow researchers to investigate behaviors 

related to motivation and reward-seeking (Sanchis-Segura & Spanagel, 2006), as well as to 

compare among groups based on factors such as sex, genetic differences, or other 

experimental manipulations (Schuster & Thompson, 1969; Panlilio & Goldberg, 2007; 

Schuster & Thompson, 1969). In mice and rats, self-administration can be used for a wide 

variety of drugs, including stimulants (Pickens, 1968), opioids (Ettenberg, Pettit, Bloom, & 

Koob, 1982), alcohol (Ulm, Volpicelli, & Volpicelli, 1995), cannabinoids (Fattore, Fadda, & 

Fratta, 2009), and nicotine (Donny, Caggiula, Knopf, & Brown, 1995). Depending on the 

drug and issues of experimental design, some types of administration (i.e., intravenous vs. 

oral) might be more appropriate than others.

When drugs are provided in the home cage, self-administration behavior is most typically 

operationalized as consumption or intake of the drug solution. When multiple solutions are 

presented, drug preference can also be calculated. With this type of experimental setup, 

drugs are available for oral consumption, making home-cage access best suited and most 

commonly employed for ethanol (EtOH) self-administration studies. A number of variations 

of such paradigms exist, including continuous-access models in which drug is available for 

24 hr/day and intermittent-access models. Examples of the latter include the commonly 

employed two-bottle-choice intermittent-access (3 days/week) and limited-access (2 to 4 hr) 

“drinking in the dark” models of EtOH drinking (Becker, 2012; Rhodes, Best, Belknap, 

Finn, & Crabbe, 2005; Simms et al., 2008; Thiele & Navarro, 2014). Aversion-resistant 

drinking (i.e., consumption that continues despite the risk of negative consequences) can 

also be assessed by pairing a punisher such as the aversive tastant quinine with drug intake 

(Hopf & Lesscher, 2014). The advantages of home-cage access models are that their 
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implementation is straightforward and they can be employed without major investments in 

time or equipment.

Drug self-administration is also commonly assessed in an operant response chamber. In this 

setting, drugs may be provided orally or via intravenous infusion. Practically, intravenous 

administration is accomplished by implanting a catheter into a vein, typically the jugular. 

This is a fairly invasive procedure in which the animal is anesthetized, the vein is exposed, 

and a very small, delicate catheter is implanted (see Current Protocols article; Thomsen & 

Caine, 2005; Thomsen & Caine, 2007). This method of administration is particularly 

challenging given the necessity of flushing the catheter routinely with saline and antibiotics. 

Rodents may also pick at the catheter, and one major concern is ensuring that the catheter 

stays in place throughout the duration of the experiment (Thomsen & Caine, 2007). 

Nevertheless, this route of administration has been used for decades and has been an 

invaluable tool in studying drug self-administration. Oral self-administration paradigms are 

often used for drugs that are typically consumed orally, most commonly EtOH (Samson, 

Pfeffer, & Tolliver, 1988). In an operant chamber, oral drug solutions may be delivered via 

dipper-style cups (which are lowered and refilled each time the response requirement is 

met), fixed drinking cups, or a drinking spout (fixed or retractable) (Heyser, Roberts, 

Schulteis, & Koob, 1999; Samson & Czachowski, 2003; Sneddon, Ramsey, Thomas, & 

Radke, 2020). When a drinking spout is available, lickometers can be used to more precisely 

measure consumption in oral settings (Blegen et al., 2018; see Current Protocols article; 

Gaillard & Stratford, 2016). Models using inhalation of vaporized substances such as 

nicotine, alcohol, and fentanyl have also been developed and are growing in use (de 

Guglielmo, Kallupi, Cole, & George, 2017; Moussawi et al., 2020; Smith et al., 2020).

Rodents respond for drugs in the operant chamber via levers, nose-poke holes, or touch-

sensitive screens. In this type of experiment, data are generally expressed as responses or the 

amount of drug consumed. Experimenters often assess performance across a range of drug 

doses, establishing a dose-response curve, and vary the length of the self-administration 

session [e.g., short (2-hr) vs. long (6-hr) access]. Once animals have acquired the self-

administration behavior, it is common to assess a period of maintenance or escalation of 

intake. Reinstatement of drug-seeking following forced or voluntary abstinence is a widely 

used model of relapse-like behavior (Bossert, Marchant, Calu, & Shaham, 2013). Because 

drug consumption is not equivalent to drug addiction, researchers have also developed 

variants of simple fixed-ratio operant self-administration paradigms intended to more closely 

model addictive behavior (Banks, Hutsell, Schwienteck, & Negus, 2015; Deroche-Gamonet 

& Piazza, 2014; Goltseker, Hopf, & Barak, 2019; Radke et al., 2017). Progressive-ratio 

schedules, which assess motivation to obtain the drug by determining a response breakpoint, 

and choice paradigms in which animals choose between drug and another reward such as 

food, social interaction, or exercise are frequently used (Ahmed, 2018; Augier et al., 2018; 

Banks et al., 2015; Richardson & Roberts, 1996; Stafford, LeSage, & Glowa, 1998; 

Townsend, Negus, Caine, Thomsen, & Banks, 2019; Venniro et al., 2018). The addition of 

punishers to the operant box (e.g., footshock or adulteration of oral solutions with bitter 

compounds) is becoming a popular means of assessing drug use despite negative 

consequences (i.e., “aversion-resistant” or “punishment-resistant” drug-seeking) (Monroe & 

Radke, 2020; Radke et al., 2017; Seif et al., 2013; Sneddon et al., 2020).
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Sex differences in addictive behaviors

In general, contemporary research indicates that female rats and mice are more susceptible 

to drug self-administration than males. This pattern of female vulnerability is observed in 

home-cage drinking (Rhodes et al., 2005; Sneddon, White, & Radke, 2019; Zanni et al., 

2019) during the acquisition, maintenance/escalation, and reinstatement phases of operant 

self-administration (Anker & Carroll, 2011; Lynch et al., 2002), as well as in models of 

aversion resistance (Monroe & Radke, 2020; Radke, Held, Sneddon, Riddle, & Quinn, 2020; 

Sneddon et al., 2020; Radke, Sneddon, Frasier, & Hopf, 2021).

In studies of home-cage EtOH drinking, female rodents generally consume EtOH in higher 

amounts and exhibit greater preference for EtOH versus males. This pattern is well 

established in mice (Cailhol & Mormède, 2001; Hwa et al., 2011; Jury, DiBerto, Kash, & 

Holmes, 2017; Middaugh, Kelley, Bandy, & McGroarty, 1999; Tambour, Brown, & Crabbe, 

2008) and rats (Almeida et al., 1998; Juárez & Barrios de Tomasi, 1999; Lancaster & 

Spiegel, 1992; Priddy et al., 2017; Rosenwasser, McCulley, & Fecteau, 2014) using a 24-hr, 

continuous-access paradigm. When EtOH is presented in an intermittent fashion (typically 

three 24-hr sessions/week), both male and female rodents will escalate their intake and reach 

higher levels of consumption than under conditions of continuous access (Hwa et al., 2011). 

Higher levels of EtOH consumption following intermittent-access procedures have been 

observed in females in many (Amodeo et al., 2018; Hwa et al., 2011; Li et al., 2019; Priddy 

et al., 2017), but not all (Radke et al., 2020; Schramm-Sapyta et al., 2014), studies, 

highlighting the importance of considering other factors, such as strain, age, and length of 

exposure, when studying sex differences in behavior. Females also drink more EtOH than 

males in limited-access paradigms (Grahame, Li, & Lumeng, 1999; Melón, Wray, Moore, & 

Boehm, 2013; Metten, Brown, & Crabbe, 2011; Rhodes et al., 2005; Sneddon et al., 2019). 

Finally, some recent studies using home-cage access paradigms to study oral opioid use have 

observed greater consumption in females versus males (Phillips et al., 2019; Zanni et al., 

2019; but see Forgie, Beyerstein, & Alexander, 1988; Monroe & Radke, 2020).

When drug self-administration is performed in an operant conditioning box, both the rate at 

which the behavior is acquired and the level of consumption during a period of escalation or 

maintenance are measured. Female rats acquire self-administration of cocaine and heroin 

(Lynch & Carroll, 1999), cannabinoid CB1 receptor agonists (Fattore et al., 2009), and 

nicotine (Donny et al., 2000; Swalve, Smethells, & Carroll, 2016) more rapidly than males, 

though the effect appears to be dose dependent. Under fixed-ratio schedules, female rats 

respond more for opioids than males (Carroll, Campbell, & Heideman, 2001; Cicero, 

Aylward, & Meyer, 2003; Mavrikaki, Pravetoni, Page, Potter, & Chartoff, 2017). Studies 

using oral or vapor delivery of opioids have also observed greater consumption among 

female rodents (Klein, 2001; Fulenwider, Nennig, Hafeez, et al., 2019; Moussawi et al., 

2020), though others have not observed a difference (Monroe & Radke, 2020). In addition, 

female rats and mice have been shown to maintain self-administration at higher levels than 

males for drugs such as cocaine (Lynch & Carroll, 1999), methamphetamine (Roth & 

Carroll, 2004), and EtOH (Sneddon et al., 2020). In some studies, these effects are 

concentration dependent, with females typically earning more drugs at higher concentrations 

(Mavrikaki et al., 2017; Sneddon et al., 2020). Breakpoints on progressive-ratio schedules 
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are higher in female animals for opioids and nicotine (Carroll et al., 2001; Cicero et al., 

2003; Donny et al., 2000). Females also escalate intake of psychostimulants faster than 

males (Reichel, Chan, Ghee, & See, 2012; Roth & Carroll, 2004).

Reinstatement of drug-seeking is studied by inducing a return to self-administration 

following a period of forced or voluntary abstinence via exposure to cues, drugs, or stress 

(Bossert et al., 2013). This type of relapse-like behavior appears to be more frequent in 

females versus males for a variety of drugs. For example, female rats exhibit enhanced drug- 

and stress-induced reinstatement behavior after self-administering cocaine (Anker & Carroll, 

2010; Feltenstein, Henderson, & See, 2011; Lynch & Carroll, 2000). Females also exhibit 

greater methamphetamine reinstatement than males and require fewer priming injections 

than males (Reichel et al., 2012; Ruda-Kucerova et al., 2015). Additionally, female rats 

show greater reinstatement than males when responding for heroin (Smethells, Greer, 

Dougen, & Carroll, 2020), EtOH (Bertholomey, Nagarajan, & Torregrossa, 2016), or 

cannabinoids (Fattore, Spano, Altea, Fadda, & Fratta, 2010). These types of studies suggest 

a biological influence of sex on relapse-like behavior.

Recent evidence also suggests that female rodents are more likely to consume and respond 

for drugs despite the risk of negative consequences. This has been demonstrated for EtOH 

drinking under continuous-access conditions (Fulenwider, Nennig, Price, Hafeez, & Schank, 

2019) and intermittent-access conditions (Radke et al., 2020). In the operant chamber, 

female mice demonstrated continued responding for EtOH mixed with quinine at quinine 

concentrations that reduced responding in males (Sneddon et al., 2020). Greater aversion 

resistance in female versus male mice has also been demonstrated for oral fentanyl 

consumption in the home cage, but not the operant chamber (Monroe & Radke, 2020). It is 

important to note that not all studies have found sex differences in aversion resistance 

(Bauer, McVey, & Boehm, 2021; DeBaker, Moen, Robinson, Wickman, & Lee, 2020; 

Sneddon et al., 2019), further demonstrating the importance of the behavioral paradigm in 

revealing female vulnerability to addictive behavior. See Table 1 for more information.

Ovarian hormones influence vulnerability for addictive behavior

There is some compelling evidence to suggest that many of the sex differences observed in 

self-administration behaviors are influenced by gonadal hormones (Finn, 2020). For 

instance, ovariectomized females show attenuated CB1 receptor agonist and EtOH self-

administration compared to non-ovariectomized females (Fattore et al., 2007; Forger & 

Morin, 1982). Estradiol administration to ovariectomized females also enhances acquisition 

of cocaine and heroin self-administration (Fattore et al., 2009; Jackson, Robinson, & Becker, 

2006; Roth, Casimir, & Carroll, 2002) compared to that in ovariectomized rats given vehicle. 

In adolescent female rats, cocaine self-administration responses are positively correlated 

with estradiol levels (Lynch, 2008). Further, estradiol treatment in ovariectomized rodents 

increases consumption and responding for EtOH (Ford, Eldridge, & Samson, 2002a; 

Rajasingh et al., 2007; Reid et al., 2002; Hubbell, & Reid, 2003; Satta, Hilderbrand, & 

Lasek, 2018).

Another way to investigate the influence of circulating hormones in female rodents is by 

monitoring the estrous cycle, which in rodents consists of four stages (proestrus, estrus, 
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metestrus, and diestrus) and cycles every 4 to 5 days (Byers, Wiles, Dunn, & Taft, 2012; 

Marcondes, Bianchi, & Tanno, 2002). The results from studies of estrous effects on 

addictive behaviors are mixed. Many studies report no association between self-

administration behaviors and estrous cycle phase (Amodeo et al., 2018; Donny et al., 2000; 

Fulenwider, Nennig, Price, et al., 2019; Li et al., 2019; Mavrikaki et al., 2017; Melón, 

Nolan, Colar, Moore, & Boehm, 2017; Priddy et al., 2017; Ruda-Kucerova et al., 2015). For 

EtOH, limited effects of the estrous cycle have been observed (Ford, Eldridge, & Samson, 

2002b; Forger & Morin, 1982). For example, one study reported that consumption was lower 

during estrus, but only in rats with synchronized cycles (Roberts, Smith, Weiss, Rivier, & 

Koob, 1998). Studies with cocaine demonstrate that female rats will choose higher doses 

(Lynch, Arizzi, & Carroll, 2000) and reach higher breakpoints on a progressive-ratio 

schedule (Roberts, Bennett, & Vickers, 1989) during estrus and suggest differential 

regulation of cue-motivated cocaine-seeking during this phase of the cycle (Fuchs, Evans, 

Mehta, Case, & See, 2005; Johnson et al., 2019; Nicolas et al., 2019). Together, these data 

suggest that gonadal hormones in females contribute to sex differences in drug self-

administration but that daily fluctuations in hormone levels may not be the primary driver of 

these effects for most drugs.

CONSIDERATIONS FOR EXPERIMENTAL DESIGN AND IMPLEMENTATION

Many preclinical addiction researchers find themselves overwhelmed at the prospect of 

including sex as a biological variable in their study designs. Traditional thinking in the field 

has led many to believe that studies with female rodents require extra investments of time 

and resources. Common themes echoed among our peers include concerns about having to 

test many more animals and perform unfamiliar procedures such as estrous-cycle monitoring 

and gonadectomy. Below, we hope to dispel some of these myths and encourage all 

addiction researchers to include both male and female animals in their studies. We also aim 

to provide practical advice for investigators as they design and implement studies of sex 

differences in addictive behavior. Finally, although we have focused the current article 

specifically on models of voluntary drug intake, it is important to recognize the existence of 

sex differences in the effects of drugs following passive exposure (Becker & Koob, 2016), 

including locomotor activation (e.g., Cailhol & Mormède, 1999; Harrod et al., 2004), 

development of place preferences (e.g., Russo et al., 2003; Yararbas, Keser, Kanit, & Pogun, 

2010), effects on intracranial self-stimulation reward thresholds (e.g., Galankin, Shekunova, 

& Zvartau, 2010; Tan et al., 2019), and expression of withdrawal behaviors (e.g., Radke, 

Gewirtz, & Carroll, 2015; Radke, Holtz, Gewirtz, & Carroll, 2013, Varlinskaya & Spear, 

2004). Many of the considerations discussed below are equally applicable to those models.

Should I include both female and male animals in my initial study?

When designing a new experiment, investigators may find themselves wondering whether 

they should include both male and female subjects. The answer here is very likely “yes” as 

there are few reasons to include only one sex in behavioral studies. Whereas sexually 

dimorphic behaviors (i.e., those that take one of two exclusive forms) are qualitative and can 

only be studied in one sex (e.g., postpartum care can only be studied in females), studies of 

addictive behaviors do not generally fall into this category. Instead, sex differences in 
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addictive behaviors are likely to be quantitative in nature, with males and females varying in 

the degree or magnitude at which they express a behavior (McCarthy, Arnold, Ball, 

Blaustein, & De Vries, 2012). Some established manipulations are only effective in one sex, 

usually males, which we note is likely a legacy of male bias in behavioral neuroscience. In 

these cases, there is some justification to study only one sex, although parallel studies 

exploring mechanisms underlying resilience/vulnerability in the other sex may also be 

fruitful. Notably, the existence of previous studies using one’s behavioral model in only 

male or female rodents does not by itself justify continued study of only one sex. Finally, it 

is important to be aware of the possibility for sex convergence or latent sex differences 

(Beltz, Beery, & Becker, 2019; McCarthy et al., 2012) in behavior. In these cases, a 

behavioral endpoint that appears the same in males and females results from different neural 

mechanisms. Thus, the absence of a sex difference in behavior does not justify inclusion of 

only one sex in mechanistic investigations.

Will studying both sexes require a greater number of animals?

When determining group sizes for an experiment with male and female rodents, one 

recommended approach is to compose experimental groups of half males and half females 

and to test them concurrently (Shansky, 2019). This approach allows investigators to 

consider potential sex differences without increasing group size, experimenter time, or cost. 

Indeed, including female animals is potentially more efficient for labs maintaining an in-

house breeding colony, as 100% of the pups born in each litter can be tested. Imbedded in 

this approach is the requirement for investigators to disaggregate data by sex during analysis 

to uncover potential trends driven by sex (Beery & Zucker, 2011). If these initial results 

suggest no difference between males and females, the study will have reached its endpoint. 

If trends driven by sex are observed in the data, the study should be continued by testing 

additional balanced cohorts of male and female animals. In this scenario, group sizes should 

be increased so that the study has sufficient statistical power to detect an influence of sex on 

the outcome. Importantly, balanced numbers of male and female animals should always be 

tested together to permit statistical comparison of results by sex.

In the case of many addictive behaviors, it is important to consider that sex differences may 

emerge as main effects but not interactions. As reviewed above, female rodents often 

consume or respond for drugs at higher levels than males. For example, we reported that 

female mice drink more EtOH than males using a limited-access “drinking in the dark” 

paradigm (Sneddon et al., 2019). In a recent follow-up study (Sneddon, Schuh, Frankel, & 

Radke, 2021), we also observed greater consumption in females versus males (i.e., a main 

effect of sex), but the two groups responded equally to treatment (i.e., no sex × treatment 

interaction). In such a case, it is acceptable to combine the data and analyze males and 

females as one experimental group (see the section on data analysis below). Future studies 

of how that treatment affects drinking behavior may also be done in mixed-sex cohorts. 

Thus, experimenters employing behavioral paradigms with known sex effects should always 

be alert to the possibility of sex differences in the results but do not need to double group 

sizes by default.
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During study design, it is also the responsibility of the investigator to consider the literature 

on sex differences in the behavior or mechanism of interest. Many addictive behaviors are 

more pronounced in female rodents, but others are not affected by sex or have not yet been 

studied in both sexes. If there is strong a priori reason to believe that one’s measure is 

dependent on sex, it may be prudent to make initial plans for an experiment with statistical 

power to detect sex differences. If sex differences in the behavior of interest have not yet 

been explored, an initial study designed to answer this question alone may be warranted.

Do I need to monitor the estrous cycle in female rodents?

In contrast to the concerns of many researchers, it is not necessary to assess the effects of 

estrous cycle phase in most studies. Even when a sex difference in behavior or treatment 

outcome is found, estrous cycle phase is only one potential mediator of the result. As noted 

above, the effects of estrous cycle phase on addictive behaviors are mixed, with a number of 

studies finding no association with drug consumption or responding. Thus, investigators 

should consider published and preliminary data when deciding whether estrous cycle is a 

likely mediator of an experimental effect. Other factors to consider include the amount of 

variability in data collected from females versus males (McCarthy et al., 2012) and, for 

experiments that extend over multiple days, whether there are any apparent cyclical patterns 

in the data. Although data from female and male rodents are, on average, equally variable 

(Becker et al., 2016; Prendergast et al., 2014), increased variability in either sex may point to 

important hormonal effects (e.g., effects of reproductive cycle in females or dominance 

hierarchies in males) (McCarthy et al., 2012).

Although monitoring the estrous cycle is a relatively simple procedure, determining how an 

experimental result varies with cycle phase is not always as straightforward. Extended 

exposure to drugs of abuse can alter normal cycling in female rodents (e.g., King, Canez, 

Gaskill, Javors, & Schenken, 1993; Sanchis, Esquifino, & Guerri, 1985; Shuey, Stump, 

Carliss, & Gerson, 2008), as can group housing (McCarthy et al., 2012), an absence of males 

in the colony (Campbell, Ryan, & Schwartz, 1976), stress exposure (Grippo et al., 2005), 

food restriction (Bronson & Marsteller, 1985; Tropp & Markus, 2001), and some genetic 

manipulations (Arnold & Chen, 2009; Jablonka-Shariff, Ravi, Beltsos, Murphy, & Olson, 

1999; Ng, Yong, & Chakraborty, 2010). The estrous cycle is also a dynamic process that 

causes hormonal changes on the order of hours. As a result, the timing of estrous monitoring 

can introduce variability within an experiment and between research groups (Becker et al., 

2005). For these reasons, we recommend that investigations of estrous effects be conducted 

as dedicated, carefully controlled follow-up experiments and only when published or 

preliminary data suggest an influence. For a detailed commentary on designing and 

conducting these types of studies, readers are referred to an excellent review by Becker et al. 

(2005).

How should I analyze and report data from a study with both male and female animals?

Data from studies using equal numbers of male and female animals in each experimental 

group should always be analyzed with sex as a factor. If these analyses suggest no influence 

of sex (i.e., there are no trends suggesting that a sex difference may emerge with more 

statistical power), the data can be collapsed for further analysis and visualization. Any 
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resulting publications or presentations of the data should report how many animals of each 

sex were included in the experimental groups and note that preliminary analyses included 

sex as a factor but that no differences were found. It is also important to indicate whether the 

study had the necessary statistical power to detect effects of sex (Beltz et al., 2019).

When a sex difference is found, it should be reported by including sex as a factor in 

statistical analyses and plotting data from males and females separately. We recommend 

including such analyses in the main body of research articles instead of in supplemental 

materials, which are easily overlooked by readers. If, as discussed above, a main effect of 

sex is revealed but without a treatment interaction, it may be appropriate to combine males 

and females in visualizations of the data, as long as the results concerning sex effects are 

clearly described in the text. Indications of the magnitude of the sex difference, for example 

by reporting effect sizes, are also useful in determining the practical (vs. statistical) 

significance of such findings (Beltz et al., 2019). Investigators should additionally consider 

including information about sex differences in the title, abstract, and/or keywords of a 

manuscript.

When interpreting the data, consideration should be given to how the observed sex 

difference may interact with other factors, such as age, genetic background, stress, housing 

environment, or context. It is also important to consider that male and female animals can 

exhibit different behavioral repertoires and that task deficits in one sex may actually reflect 

the use of sex-specific behavioral strategies (Shansky, 2018). Thus, in some cases, it may be 

necessary to interpret behavioral outcomes through a sex-specific lens.

If I find a sex difference, what types of follow-up studies should I consider?

When a sex difference in behavior or treatment response is discovered, a likely next step is 

to investigate the mechanisms driving the difference. Hormones are responsible for a 

majority of sex differences, and it is therefore common to begin with follow-up 

investigations designed to assess which hormones are important in the effect and during 

which phase of development they exert their influence (Becker et al., 2005; McCarthy et al., 

2012). A common approach to determining whether a behavior is influenced by sex 

hormones is gonadectomy and replacement with exogenous hormone (Becker et al., 2005). 

This type of approach has demonstrated, for example, that ovariectomy (OVX) slows 

acquisition of intravenous heroin self-administration and that this deficit is restored by 

exogenous treatment with estradiol benzoate (Roth et al., 2002). Such data suggest that 

estrogens have a strong influence on heroin self-administration in female rats. Monitoring 

the estrous cycle in females or testosterone levels in male cage-mates can additionally 

provide insight into whether circulating hormones are driving differences. Sex hormones 

also have strong influences on brain development. Such “organizational” effects can be 

tested by treating animals with exogenous hormones or hormone receptor antagonists during 

the neonatal or pubertal periods (Becker et al., 2005).

In addition to sex hormones, the influence of sex chromosomes should also be considered, as 

the X and Y chromosomes each contain unique sets of genes that are known to contribute to 

sex differences in the brain and behavior (Arnold, 2004). The four core genotypes (FCG) 

model allows investigation of sex chromosome effects by dissociating gonadal development 
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(driven by the Sry gene, normally on the Y chromosome) from inheritance of the XX versus 

XY genotype (Arnold & Chen, 2009; De Vries et al., 2002). This approach allows 

comparison of XX and XY genotypes in mice with both male (Sry+) and female (Sry−) 

gonads. FCG mice have been used to identify a role for sex chromosomes in behaviors such 

as habit formation (Barker, Torregrossa, Arnold, & Taylor, 2010; Quinn, Hitchcott, Umeda, 

Arnold, & Taylor, 2007), reward-seeking (Seu, Groman, Arnold, & Jentsch, 2014), and 

relapse-like EtOH drinking (Sneddon et al., unpub. observ.). Other approaches for testing 

sex chromosome effects in rodents can also be useful (for a review, see Arnold, 2009).

Finally, investigators should seek to uncover the neural mechanisms underlying sex 

differences in addictive behaviors. Although a thorough understanding of how chromosomal 

and hormonal influences contribute to behavior is important, most prior work has stopped at 

that level of analysis. To capitalize fully on the potential of work on sex differences, we 

recommend that investigators explore brain-based differences between males and females 

that drive female vulnerability to addiction. As an example, recent findings from Lasek and 

colleagues suggest that binge-like EtOH drinking in female mice is associated with 

enhanced ventral tegmental area neuron excitability driven by estrogen receptor α (ERα) 

and mGluR1 (Hilderbrand & Lasek, 2018; Vandegrift et al., 2020). Another notable line of 

work from Mermelstein and colleagues demonstrates that enhanced responsivity to cocaine 

in female rats involves the effects of ERα and mGluR5 coupling on dendritic spine plasticity 

in the nucleus accumbens (Martinez et al., 2016; Martinez, Peterson, Meisel, & 

Mermelstein, 2014; Peterson, Mermelstein, & Meisel, 2015). Additional studies exploring 

how divergences in gene or protein expression, neuron physiology, neurotransmitter 

signaling, or functional connectivity contribute to behavioral differences between males and 

females are needed. This approach requires identification of sex differences in brain 

structure and function and causal manipulations that link these observations back to the 

behavior of interest (Fig. 1).

CONCLUSIONS AND KEY QUESTIONS FOR FUTURE STUDIES

Understanding how sex influences the development of addiction is critical to achieve a full 

understanding of the disease and develop expedient therapeutics for individuals suffering 

from AUDs/SUDs. To date, preclinical studies on sex differences in addictive behaviors have 

revealed female vulnerability across drugs of abuse and self-administration models. 

Although ovarian hormones have been repeatedly linked to this vulnerability, investigations 

of the relevant neural mechanisms are limited.

As the field of addiction research enters what is hopefully a new era for studies of sex 

differences in addictive behaviors, there is much important work to be done. For example, it 

is critical that new behavioral models designed to better model the core features of addiction 

be validated in both male and female animals, and particular attention should be paid to 

whether animal models accurately reflect sex differences observed in clinical studies. Proper 

attention to sex in the validation of behavioral models has the potential to improve the 

translational efficacy of preclinical findings. Further, it will be important to determine how/if 

female vulnerability to addiction interacts with other vulnerability factors, such as age or 

exposure to stress. Discovery of mechanisms that contribute to such interactions could aid in 
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the development of more personalized treatments for AUD/SUD patients. With regard to 

future studies of the neural underpinnings of addictive behavior, females should be used to 

uncover novel mechanistic insights. Determining how female animals differ on already 

established contributors to drug use and dependence will not advance the field sufficiently. 

Instead, if the study of sex as a biological variable in addiction neuroscience is to reach its 

full potential, all future studies must include both male and female animals (NIH Policy on 

Sex as a Biological Variable, n.d.). This approach will ensure that important contributors to 

addiction vulnerability are not overlooked or discounted.

We hope that this article can serve as guide for investigators newly considering issues of sex 

in addiction research. Although sex difference research has historically been avoided by 

many for various reasons, current investigators should be aware that studies with proper 

attention to sex as a biological variable do not necessitate increased group sizes and can 

therefore be performed in the same amount of time and for the same cost as traditional male-

only studies. Determinations of whether a sex difference is under hormonal or chromosomal 

control (or an interaction of the two) can be done in dedicated follow-up studies. 

Importantly, novel mechanisms contributing to addiction vulnerability may be discovered by 

investigating the neural basis of drug self-administration in both male and female animals.
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Figure 1. 
Considerations for studying sex differences in drug self-administration. Studies of rodent 

drug self-administration should generally include animals of both sexes, with equal numbers 

of male and female animals run concurrently. It is not necessary to increase the planned 

sample size of the study unless preliminary analyses reveal trends or statistically significant 

results that suggest an effect of sex on the measure of interest. When sex differences are not 

revealed, data from males and females can be combined for final analysis and visualization. 

When sex differences are present, additional animals should be tested to attain the statistical 

power to detect an effect of sex, and all data analyses and visualization should include sex as 

a variable. All analyses involving sex (including those that were not statistically significant) 

should be clearly reported in the main body of any published reports on the dataset.
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