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ABSTRACT

Around half of the genomes inmammals are composed of transposable elements (TEs) such as DNA transposons and retro-
transposons. Several mechanisms have evolved to prevent their activity and the detrimental impact of their insertional mu-
tagenesis. Despite these potentially negative effects, TEs are essential drivers of evolution, and in certain settings,
beneficial to their hosts. For instance, TEs have rewired the antiviral gene regulatory network and are required for early
embryonic development. However, due to structural similarities between TE-derived and viral nucleic acids, cells can mis-
identify TEs as invading viruses and trigger themajor antiviral innate immune pathway, the type I interferon (IFN) response.
This review will focus on the different settings in which the role of TE-mediated IFN activation has been documented, in-
cluding cancer and senescence. Importantly, TEsmayalso play a causative role in the development of complex autoimmune
diseases characterized by constitutive type I IFN activation. All these observations suggest the presence of strong but op-
posing forces driving the coevolution of TEs and antiviral defense. A better biological understanding of the TE replicative
cycle as well as of the antiviral nucleic acid sensingmechanisms will provide insights into how these two biological process-
es interact and will help to design better strategies to treat human diseases characterized by aberrant TE expression and/
or type I IFN activation.
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INTRODUCTION

Transposable elements (TEs) are a driving force in evolu-
tion but pose a potential threat to the fitness of the host
by disrupting the function and/or expression of genes sur-
rounding novel insertions or by promoting chromosomal
rearrangements (Garcia-Perez et al. 2016; Bourque et al.
2018). To prevent these issues, TEs expression is generally
repressed, either at the epigenetic, transcriptional, or
post-transcriptional level. Intriguingly, in specific cellular
contexts and developmental stages TE expression is acti-
vated and may have beneficial consequences. For in-
stance, the RNA derived from the major mammalian
retrotransposon, LINE-1, appears to be essential for main-
taining the pluripotency-specific gene expression pro-
grams (Percharde et al. 2018). During viral infections the

expression of TEs is also up-regulated, but it remains un-
clear if this is required to establish a proficient antiviral
state, or is a secondary effect of the robust transcriptional
response triggered upon infections (Macchietto et al.
2020; Srinivasachar Badarinarayan et al. 2020). This review
will focus on the role of mammalian TE-derived nucleic ac-
ids in stimulating the antiviral innate immune response.
We provide a brief overview of the major mammalian
TEs and innate antiviral defence mechanisms to under-
stand the evolutionary interactions between TEs and anti-
viral defence.

MOUSE AND HUMAN TRANSPOSABLE ELEMENTS:
AN OVERVIEW

TEs can be defined as DNA fragments that are able to mo-
bilize fromone place to another within the genome and are
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divided in two major groups based on their mobilization
mechanism (Finnegan 1989; Beck et al. 2011). On the
one hand, DNA transposons (or class II elements) mobilize
through a “cut and paste” mechanism, in which the trans-
poson is excised from thedonor site and inserted in adiffer-
ent genomic location. They comprise ∼3% of the human
genome and are no longer competent for mobilization
(Lander et al. 2001). On the other hand, retrotransposons
(or class I elements) mobilize through a “copy and paste”
mechanism that involves the reverse transcription of an
RNA intermediate to generate a new copy of the element.
Retrotransposons can be further divided based on their
structure and the mechanism of reverse transcription. In
the case of retrotransposons with long terminal repeats,
LTR retrotransposons including endogenous retroviruses
(ERVs), the double-strandedDNA (dsDNA) copy is generat-
ed in the cytoplasm using a tRNA as a primer for reverse
transcription. Once synthesized, the dsDNA travels to the
nucleus, where it is inserted into the genome by the inte-
grase enzyme (Fig. 1A; Bannert and Kurth 2006). In con-
trast, non-LTR retrotransposons, which include long
interspersed elements (LINEs) and short interspersed ele-
ments (SINEs), have developed a different strategy: A
LINE-1-encoded endonuclease nicks the target DNA gen-
erating an exposed 3′-OH that serves as a primer to pro-
duce a new cDNA molecule at the site of integration. This
mechanism is called target-primed reverse transcription
(TPRT) (Fig. 1B; Luan et al. 1993; Cost et al. 2002).

In terms of genomic structure, ERVs resemble retrovirus-
es. ERVs contain gag and pol genes which encode struc-
tural and enzymatic proteins, including the reverse
transcriptase, but lack functional envelope env genes.
Although human ERVs (HERVs) comprise 8% of our ge-
nome, to date, no competent HERVs have been described.
However, these elements impact gene expression in many
ways, acting as enhancers or via the production of long
noncoding RNAs (lncRNAs) regulating pluripotency main-
tenance (Garcia-Perez et al. 2016). In mice, ERVs account
for 10% of the genome and, in contrast to humans, several
subfamilies are actively mobilized, including IAP (intracis-
ternal A-particle) andMusD (Mus-type D related retrovirus-
es) elements, among others (Lueders and Kuff 1977).

Around 40% of the human and mouse genomes are
made of non-LTR retrotransposons and in both species,
several families are active. LINEs are autonomous (i.e.,
they encode the proteins required for their mobilization),
while SINEs require the proteins encoded by LINE ele-
ments to mobilize (Moran et al. 1996; Dewannieux et al.
2003;Hancks et al. 2011; Richardsonet al. 2015). Threedis-
tant families of LINEs, LINE-1, LINE-2, and LINE-3, account
for 21% of the human genome (Lander et al. 2001); howev-
er, only elements belonging to the LINE-1 family have re-
mained active (Brouha et al. 2003; Khan et al. 2006). A
competent LINE-1 is typically ∼6 kb long and contains a
5′ untranslated region (5′UTR), two nonoverlapping open

reading frames (ORF1 and ORF2) and a short 3′UTR con-
taining a poly(A) tail. ORF1 encodes an RNA binding pro-
tein with nucleic acid chaperone activity, whereas ORF2
encodes a protein with endonuclease (EN) and reverse
transcriptase (RT) activities. Both ORFs are required for
LINE-1 retrotransposition, but only ORF2 is essential for
mobilization (for review, see Richardson et al. 2015). The
LINE-1 5′UTR has an internal RNA polymerase II promoter
that directs transcription of the full-length element and an
antisense promoter (Swergold 1990; Speek 2001).
Antisense transcription can lead to chimeric transcripts
containing a portion of the LINE-1 5′UTR and locus-specific
upstream genomic sequences. Furthermore, the antisense
promoter drives the expression of a small peptide, ORF0,
whose function is still unclear (Denli et al. 2015). It is pre-
dicted that all 5′UTRs from the 16 different primate-specific

A
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FIGURE 1. Mammalian LTR versus non-LTR retrotransposon replica-
tive cycles. (A) ERVs are flanked by long-terminal repeats (LTRs) and
encode Gag and Pol proteins while lacking a functional env gene.
After transcription, the single-stranded RNA (ssRNA) from ERVs is ex-
ported to the cytoplasm. A transfer RNA (tRNA) binds the ssRNAmol-
ecule and serves as a primer for discontinuous reverse transcription to
generate a dsDNA copy. The dsDNA is then imported to the nucleus
where it integrates in the genome. (B) SINE elements, which include
human Alu and mouse B1/B2 elements, typically contain an RNA
pol III transcription start site (black arrow), sequences required for tran-
scription (A and B boxes) and a terminal poly(A) repeat [(A)n]. Below
SINEs, the structure of a full-length LINE-1 element is represented,
containing a 5′ untranslated region (5′UTR), with sense and antisense
RNA pol II promoter transcription start sites (black arrows), two non-
overlapping open reading frames (ORF1 and ORF2) and a short
3′UTRwith a poly(A) tail. The ssRNA from LINEs and SINEs is exported
to the cytoplasm and bound by LINE-1 encoded proteins, forming a
ribonucleoparticle that is imported into the nucleus. ORF2p endonu-
clease domain nicks the genomicDNA (gDNA) at a target site, and the
exposed 3′ OH group is used by the reverse transcriptase domain to
prime the reverse transcription of the RNA template. This mechanism,
called target-primed reverse transcription (TPRT), generates an
RNA/DNA hybrid intermediate. In the next steps, which are still not
completely understood, a new dsDNA copy of the SINE or LINE ele-
ment is formed and integrated into a new genomic location.
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amplifying LINE-1 subfamilies (L1PA16–L1PA1) have the
ability to drive transcription, despite lacking sequence ho-
mology, while the antisense promoter region is only con-
served among the youngest families (L1PA6–L1PA1) (Khan
et al. 2006). However, the vast majority of LINE-1 copies in
mammaliangenomesare5′ truncatedand therefore inactive
andonly∼80–100 copies from theyoungest LINE-1 subfam-
ily L1PA1, also called L1Hs, have retained the potential to
mobilize (Brouha et al. 2003; Beck et al. 2011). In mice,
around 3000 copies of mouse LINE-1, from subfamilies A,
TF, andGF, remainactive.The5′UTRofmouseLINEsconsists
of monomeric repeats and contains an RNA polymerase II
sense strand promoter, while the antisense promoter is lo-
cated at ORF1 (Deberardinis and Kazazian 1999; Li et al.
2014). Thebidirectional transcriptionofopposedLINE-1 ret-
rotransposon sequences could potentially result in the for-
mation of double-stranded RNAs (dsRNAs), as previously
suggested (Yang and Kazazian 2006). Although at the struc-
tural level mouse LINE-1s are similar to human LINEs, they
differ at the 5′UTR sequence, suggesting that the transcripts
derived from this region could adopt different RNA second-
ary structures. LINE-1 insertions within genes are biased to-
ward theantisenseorientation (Smit 1999; Flaschet al. 2019;
Sultana et al. 2019), which suggests that for an important
number of LINE-1 copies, full-length antisense LINE-1
RNA synthesis could be driven by the host gene promoter.
SINEsmake up∼13% and∼8%of the human andmouse

genome, respectively. Several families (e.g., human Alu
and SVA elements, and mouse B1 and B2 elements) are
still active and hijack the LINE-1-encoded proteins to be
mobilized in trans (Dewannieux et al. 2003, 2005; Hancks
et al. 2011). The most abundant SINEs elements, human
Alu and mouse B1 and B2, are respectively ∼300, ∼135,
and ∼200 bp-long, and are all transcribed by RNA-poly-
merase III (for review, see Richardson et al. 2015).
However, Alu elements are highly prevalent in RNA-poly-
merase II transcripts, due to their preference for inserting
in gene-rich regions (Lander et al. 2001). Within genes,
Alus are generally located in introns and UTRs, in both
sense and antisense orientations, suggesting that two dif-
ferent Alus present in the same transcript could form intra-
molecular dsRNA interactions (Deininger 2011).
DsRNA structures adopted by TEs resemble viral RNAs,

which cells can aberrantly recognize as invading viruses
and trigger the type I interferon (IFN) response. In the
next section, the type I IFN response is discussed, and
more specifically, the types of nucleic acids and receptors
involved in their recognition.

THE TYPE I INTERFERON RESPONSE AND NUCLEIC
ACID SENSING MECHANISMS: AN OVERVIEW

In mammals, the type I IFN response constitutes the major
innate defense mechanism against viruses, and it is trig-
gered after sensing the presence of viruses. To this end,

mammalian cells have evolved a plethora of sensors that
recognize typical traits of viral nucleic acids. Upon detec-
tionof viral nucleic acids, signaling pathways that culminate
in the expression of type I IFNs and proinflammatory cyto-
kines are activated. Secreted IFNs act in both a paracrine
and autocrine manner. By binding the IFN receptor
(IFNAR1/2) and stimulating the JAK/STAT pathway, IFNs
trigger the expression of hundreds of interferon-stimulated
genes (ISGs). ISGs are responsible for establishing an anti-
viral cellular state to prevent viral infection and replication
as well as stimulating the adaptive immune response to
generate long-lasting antiviral immunity (Schneider et al.
2014; Ivashkiv and Donlin 2015).
In this section, we will describe the nucleic-acid sensing

mechanisms present in mammalian cells. Nucleic acid sen-
sors localize in the cytoplasm, the cell surface, and endoso-
mal compartments to detect the presence of viral
genomes or replication intermediates. While most cyto-
plasmic sensors are widely expressed, the expression of
endosomal receptors is generally restricted to specific
cell types. Besides initiating the type I IFN response, nucle-
ic acids sensors can also activate other antiviral pathways,
such as the host translational shutoff. Here, wewill summa-
rize the different mammalian nucleic acid-sensing path-
ways based on the types of virus-derived nucleic acids
they recognize, and that are relevant for the focus of this
review.

Double- and single-stranded RNA

The presence of cytoplasmic dsRNA is the hallmark of viral
infections and active viral replication (Kumar and
Carmichael 1998). Virus-derived dsRNAs are sensed by
the cytoplasmic retinoic acid-inducible gene I (RIG-I)-like
receptors (RLR), which are composed of the three ATP-de-
pendent DExD/H box RNA helicases, RIG-I, MDA5 (mela-
noma differentiation-associated gene 5), and LGP2
(laboratory of genetics and physiology 2). RIG-I preferably
binds short stretches of dsRNA (<300 bp) bearing 5′-di/tri-
phosphate groups (Hornung et al. 2006; Pichlmair et al.
2006; Myong et al. 2009; Schmidt et al. 2009; Goubau
et al. 2014), while MDA5 binds long molecules of dsRNA
(>1 Kbp) (Kato et al. 2008; Feng et al. 2012). Both RIG-I
and MDA5 contain amino-terminal caspase activation re-
cruitment domains (CARD) that interact with themitochon-
drial antiviral signaling (MAVS) protein to activate the
nuclear translocation of the transcription factors interferon
regulatory factor 3 (IRF3) and IRF7 and nuclear factor kB
(NF-kB) to trigger the expression of type I IFNs and proin-
flammatory cytokines such as interleukin 6 (IL-6), IL-8 and
tumor necrosis factor α (TNF-α) (Fig. 2; Kawai et al. 2005;
Seth et al. 2005). Despite the ability of LGP2 to bind
dsRNA, the absence of CARD domains prevents the signal
transduction for IFN production and it is assumed that the
main role of LGP2 is regulating the signaling activity of both
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RIG-I and MDA5 (Yoneyama et al. 2005; Deddouche et al.
2014).

Type I IFN expression can also be triggered by toll-like
receptor 3 (TLR3)-mediated dsRNA recognition. This sen-
sor belongs to the toll-like family receptor (TLR) and, de-
pending on the cell-type, is localized at the cell
membrane or endosomal compartment. TLR3 binding to
dsRNA activates a TRIF-dependent signaling pathway
that culminates in expression of type I IFNs and proinflam-
matory cytokines (Alexopoulou et al. 2001; Oshiumi et al.
2003). Other members of the TLR family recognize viral
RNA of a single-stranded conformation (ssRNA). Human
TLR7 senses ssRNA and TLR8 binds ssRNA in conjunction
with products of RNase degradation to trigger type I IFN
expression in a myeloid differentiation primary response
88 (MyD88)-dependent pathway (Fig. 2; Diebold et al.
2004; Heil et al. 2004; Greulich et al. 2019; Ostendorf
et al. 2020).

Besides IFN production, the presence of dsRNA in the
cytoplasm of cells can activate other pathways that are im-
portant for antiviral defense. These include the activation
of the inflammasome, the host translational shutoff, the
formation of stress granules and widespread RNA degra-
dation. Recognition of dsRNA by the DEAH-box helicase
33 (DHX33) activates the NLR family pyrin domain contain-
ing 3 (NLRP3) inflammasome, a proinflammatory pathway

characterized by the production of IL-1β and IL-18
(Mitoma et al. 2013). Upon dsRNA binding, the interfer-
on-inducible protein kinase R (PKR) phosphorylates the ini-
tiation factor of translation eIF2α to block cap-dependent
mRNA translation of viral and host mRNAs in a nonselec-
tive manner (Levin and London 1978). The inhibition of
translation also results in the formation of stress granules
in response to viral dsRNA accumulation (Kedersha et al.
1999; Okonski and Samuel 2013). These cytoplasmic foci
are composed of untranslated mRNAs and translational
incompetent complexes (Miller 2011). Finally, the IFN-stim-
ulated oligoadenylate synthetase (OAS)/RNase L system,
whose activity is also triggered by the presence of virus-de-
rived dsRNA, causes widespread degradation of cytoplas-
mic RNAs (Kumar and Carmichael 1998). Activation of
OAS enzymatic activity by dsRNA results in the generation
of 2′–5′ oligoadenylates. These oligomers promote the
dimerization and activation of RNase L, an endonuclease
that causes widespread degradation of cytoplasmic
ssRNA, thus also promoting the translational arrest charac-
teristic of infected cells (Floyd-Smith et al. 1981; Kodym et
al. 2009; Burke et al. 2019; Rath et al. 2019). Interestingly,
the OAS/RNase L system was also shown to be involved in
controlling LINE-1 and IAP retrotransposition levels (Zhang
et al. 2014).

Other IFN-stimulated dsRNA binding proteins that are
important in regulating type I IFN activation include the
adenosine deaminase acting on RNA 1 (ADAR1), which
converts adenosines to inosines in dsRNA molecules
(George et al. 2014). ADAR1 activity results in the destabi-
lization of dsRNA structures, thus preventing RLR-depen-
dent activation of the type I IFN response (Mannion et al.
2014). This activity has been shown to be important for de-
stabilizing dsRNA-structures formed by Alu elements to
avoid their recognition as virus-derived dsRNAs (Chung
et al. 2018).

Double- and single-stranded DNA

The major pathway for cytoplasmic viral DNA sensing is
initiated by the cyclic GMP-AMP synthase (cGAS) (Sun
et al. 2013). Stimulation of cGAS activity by dsDNA results
in the formation of cyclic-GMP-AMP (cGAMP) and signal-
ing through the endoplasmic reticulum-associated stimu-
lator of interferon genes (STING) protein. Analogous to
RLR-signaling, the cGAS/STING pathway promotes IRF3
and NF-kB nuclear translocation to induce type I IFN and
proinflammatory cytokines expression (Wu et al. 2013).
Although activation of cGAS is dependent on the length
of dsDNA, this sensor can also bind stem–loop structures
formed within ssDNA or DNA/RNA hybrids (Fig. 2;
Mankan et al. 2014; Herzner et al. 2015; Luecke et al.
2017). cGAS has been classically considered a cytoplasmic
sensor, but it can also localize in the nucleus and recognize

FIGURE 2. Mammalian nucleic acids sensors. Sensors are classified
depending on their subcellular localization and the type of nucleic
acid they recognize (DNA vs. RNA). Toll-like receptors (TLRs) usually
reside at the cell membrane or the endosome and recognize several
types of nucleic acids: TLR3 for dsRNA, TLR7-8 for ssRNA, and TLR9
for ssDNA and RNA/DNA hybrids. cGAS and the RIG-I-like (RLR) fam-
ily of receptors are typically cytoplasmic, although cGAS can also be
found in the nucleus. cGAS recognizes DNA, while RLRs, MDA5 and
RIG-I recognize long or short dsRNA molecules, respectively. Upon
nucleic acid recognition, these receptors trigger a signalling cascade
that promotes nuclear translocation of the IRF3/7 andNF-kB transcrip-
tion factors and expression of type I IFNs and proinflammatory cyto-
kines. Other cytoplasmic proteins recognize virus-derived dsRNA to
induce the host translational shutoff response (PKR), widespread cyto-
plasmic RNA degradation (OAS/RNase L) and deamination of dsRNA
molecules (ADAR1).
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viral-derived DNA in this compartment (Lahaye et al.
2018).
The endosomal TLR9 receptor preferentially recognizes

unmethylated ssDNA (Hemmi et al. 2000) but is also stimu-
lated by DNA/RNA hybrids (Rigby et al. 2014). Similarly to
TLR7 and 8, TLR9 signals in a MyD88-dependent manner
leading to the production of type I IFNs and proinflamma-
tory cytokines through the activation of transcription fac-
tors IRF3/-7 and NF-kB (Fig. 2; Kawai et al. 2004; Hoshino
et al. 2006).
Viral dsDNA can also trigger the absent in melanoma 2

(AIM2)-inflammasome resulting in the production of IL-1β
and IL-18, as well as pyroptosis, a caspase-1 dependent
cell death program associated with inflammation
(Fernandes-Alnemri et al. 2009; Rathinam et al. 2010). In
mice, all AIM2-like receptors are dispensable for the type
I IFN response to intracellular DNA (Gray et al. 2016).
Besides IFN production and inflammasome activation,

the presence of cytoplasmic DNA is sensed by the family
of cytidine-deaminases known as apolipoprotein B
mRNA-editing enzyme or APOBEC (Salter et al. 2016).
Their enzymatic activity catalyzes the conversion of cyti-
dines to uridines in ssDNA, as well as in RNA. This activity
has been shown to hypermutate the cDNA of both HIV-1
and retrotransposons (LINEs, SINEs, and ERVs), suggesting
that APOBECs have a role in defending against both en-
dogenous and exogenous genomic parasites (Harris et al.
2003; Esnault et al. 2005; Chiu et al. 2006; Muckenfuss
et al. 2006; Carmi et al. 2011; Richardson et al. 2014).
The APOBEC, ADAR, and RNase L examples illustrate

the substantial overlap between themechanisms guarding
defence against viruses and TEs. In addition, TE-derived
nucleic acids can be sensed by cellular nucleic acid sensors
and trigger the type I IFN response, pointing out that TE
activity needs to be tightly controlled to improve the accu-
racy of antiviral defence.

TE-DERIVED NUCLEIC ACIDS AS TRIGGERS
OF THE TYPE I IFN RESPONSE

There is mounting evidence of TEs acting as substrates for
the classical viral-nucleic acid sensors in fields ranging from
autoimmune diseases to cancer. Here we will summarize
the literature reporting TE-mediated IFN activation and
discuss some of the questions that these findings raise con-
sidering the current knowledge in TE biology and nucleic
acid sensing.

Cancer

Several types of cancer show reactivation of ERVs and LINEs
expression, a feature that is considered to contribute to cel-
lular transformation (Burns 2017; Bannert et al. 2018). The
transcriptional silencing of both types of TEs in healthy cells
is controlledbyDNAmethylation, KRAB-zinc fingerproteins

and histone repressive marks (Rowe and Trono 2011).
Tumors are generally characterized by low DNACpGmeth-
ylation levels compared to healthy tissues. Considering that
most methylated CpG sites are concentrated in the highly
repetitive sequences of the genome, the expression of
ERVs and LINEs is, as a consequence, reactivated in cancers
(Ehrlich 2009; Burns 2017). Counterintuitively, DNA-methyl-
ation inhibitors are used as therapeutic agents in specific
types of cancer, such as hematologicalmalignancies, raising
the question of what themolecular consequences of further
demethylation of cancerous cells are. Two independent re-
ports showed that treatment of colorectal and ovarian carci-
nomacells with lowdosesof thedemethylatingagent 5-aza-
2′-deoxycytidine (5-aza) led to the accumulation of dsRNAs
and subsequent activation of the IFN response (Chiappinelli
et al. 2015; Roulois et al. 2015). In colorectal cancer, 5-aza
treatment resulted in activation of the IFN response in a
MDA5/MAVS-dependent manner with a concomitant up-
regulation of ERV expression (Roulois et al. 2015). In ovarian
carcinomacells, treatmentwith5-aza resulted inactivationof
IFN and ISG expression through the TLR3/MAVS pathway,
an effect that was partially rescued by inhibiting the expres-
sionof twospecificERVs.Although the relationshipbetween
IFNs andcancer is complex, IFNsarepositiveplayers in stim-
ulating antitumor immunity (Budhwani et al. 2018; Borden
2019). For instance, treatment with demethylating agents
slowed the population doubling time of colorectal cancer
cells in vitro and theirability todevelop tumors after injection
in nudemice, and importantly, theseeffectswere abrogated
by preventing IFN activation. In a mouse model of melano-
ma, 5-aza sensitized cells to anti-CTLA4 immune checkpoint
therapy (Chiappinelli et al. 2015). All these results suggest
that dsRNA-mediated immune activation of the RLR path-
way could constitute a novel therapeutic target to control tu-
mor growth. Other chemotherapeutic agents, such as
doxorubicin and anthracyclines have also been shown to
trigger a TLR3-dependent IFN activation (Sistigu et al.
2014). The chemotherapeutic agent RRx-001 was also re-
ported to induce an IFN and ISG response in a human colon
carcinoma cell line. Treatment with RRx-001 caused accu-
mulation of dsRNA, as revealedbyanti-dsRNA immunofluo-
rescence (J2 antibody), and a concomitant reactivation of
the expression of endogenous retroviral genes (Zhao et al.
2017). Similarly, loss of proteins responsible for ERV silenc-
ing, such as SETDB1, Trim24, and KAP1, resulted in IFN ac-
tivation in cancerous and noncancerous settings upon
accumulation of ERV and LINE transcripts (Herquel et al.
2013; Cuellar et al. 2017; Tie et al. 2018).
Only recently, failure to epigenetically silence LINE-1

retrotransposon expression has been associated with IFN
activation. The absence of p53, themost commonlymutat-
ed tumor suppressor gene in cancer, resulted in increased
expression of locus-specific copies of LINE-1 and was ac-
companied by an inflammatory signature. This activation
of the immune response was reverted by treatment with
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the reverse transcriptase inhibitor (RTi) lamivudine (3TC)
(Tiwari et al. 2020). RTis are compounds that can disrupt
the replication cycle of both exogenous retroviruses and
endogenous retrotransposons by interfering with the re-
verse transcription step. Some RTis, such as lamivudine
and emtricitabine, are selective and only inhibit LINE-1
RT (Banuelos-Sanchez et al. 2019). These findings suggest
that the nucleic acid responsible for IFN activation in the
absence of p53 is the product of LINE-1 retrotranscription
(Tiwari et al. 2020). Previously, p53-deficient mouse em-
bryonic fibroblasts were found to accumulatemitochondri-
al-derived dsRNAs capable of triggering IFN expression
(Wiatrek et al. 2019), and SINE B1 and B2 elements, which
led to a “suicidal” IFN response (Leonova et al. 2013).
These findings suggest that several types of TEs and other
endogenous nucleic acids could be responsible for trig-
gering the IFN response in the context of p53 deficiency.
An alternative epigenetic pathway controlling LINE-1 ex-
pression is orchestrated by the human silencing hub
(HUSH) complex. The expression of the central subunit,
MPP8, was found to be decreased in cancer and correlated
with tumors displaying an immune signature. Loss of the
HUSH complex resulted in increased LINE-1 expression
and IFN activation in a RLR/MAVS-dependent manner,

suggesting that LINE-1 dsRNA can also act as a trigger
of the IFN response (Tunbak et al. 2020).

It is becoming increasingly evident that the expression
of dsRNA-forming loci is activated after treatment with
DNA demethylating agents or inactivation of epigenetic
repressors (Fig. 3A). However, the exact origin of the nu-
cleic acids responsible for the immune activation is still un-
clear. A recent attempt to answer this question found that
the innate immune sensor MDA5 recognizes Alu elements
from colorectal cancer cells in vitro, despite Alu expression
not being increased after low-dosage 5-aza treatment
(Mehdipour et al. 2020). Therefore, amore targeted search
for in vivo RNA ligands of the RLR receptors, for instance
using CLIP-seq (cross-linking and immunoprecipitation
coupled to high-throughput sequencing) or similar tech-
niques, will help to elucidate the identity of the specific
substrates for activating the IFN response in cancer after
demethylating treatment.

Cellular senescence

Cellular senescence is an irreversible state of cell cycle arrest
associatedwith aging, but alsowoundhealing anddevelop-
ment, typically triggered in response to stress or damaging

agents. For instance, telomere short-
ening, mitochondrial dysfunction, oxi-
dative stress and DNA damage can
trigger senescence (Hernandez-
Segura et al. 2018). Apart from the per-
manent cell cycle arrest, the senescent
state is characterized by the “senes-
cence-associated secretory pheno-
type” (SASP), where cells release
cytokines, chemokines, extracellular
matrix components, and growth fac-
tors (Novakova et al. 2010; Lopes-
Paciencia et al. 2019). Senescence is
also accompanied by changes in the
genome architecture, resulting in the
loss of repressive epigenetic marks
and heterochromatin formation and
consequent increased expression of
the human retrotransposons Alu, SVA,
and LINE-1 (Wang et al. 2011; De
Cecco et al. 2013; Van Meter et al.
2014). The increase in retrotransposon
expressionhasbeenobserved indiffer-
ent models of in vitro-induced cellular
senescence. High cell-passage num-
bers, oxidative stress, hypomethylation
(5-aza) and treatment with chemother-
apyagents (adriamycin) resulted indys-
regulation of TE expression, with LINE-
1 and ERV-1 elements being the pre-
dominant up-regulated biotypes.

A B C

FIGURE 3. Recognition of TEs as viral nucleic acids in cancer, senescence, and Aicardi–
Goutières syndrome (AGS). (A) Treatment of cancer cells with demethylating agents (5-aza)
or geneticmanipulation of factors involved in epigenetic repression (HUSH complex) or genet-
ic stability (p53) leads to increased expression of different types of retrotransposons, including
HERVs, LINEs, and SINEs. The RNAmolecules derived from these elements are recognized by
nucleic acid sensors, triggering the type I IFN response. (B) Changes in the genomic architec-
ture of senescent cells are responsible for increased expression of LINE-1 elements. In senes-
cence, the sensor cGAS recognizes the retrotranscription product (cDNA) of LINE-1 triggering
IFN expression. (C ) Mutations in genes involved in nucleic acid metabolism (TREX1, SAMHD1,
RNASEH2A/B/C, and ADAR1) and nucleic acid sensing (IFIH1, which encodes MDA5) are as-
sociated with AGS, a disease characterized by IFNs expression in the absence of infections.
LINE-1 cDNA accumulation in the absence of functional TREX1 has been suggested to trigger
IFN expression in a cGAS-dependent manner, this mechanism could also operate in the con-
text of SAMHD1 mutations. The accumulation of unedited dsRNA Alu molecules in the ab-
sence of functional ADAR1 triggers IFN expression in a MDA5-dependent manner and the
host translational shutoff by PKR. Gain-of-function mutations of IFIH1 lead to recognition of
dsRNA-Alu molecules as nonself and consequent IFN activation. The role of TE in the context
of RNASEH2 mutations is still unclear, but, hypothetically, accumulation of LINE-1 RNA/DNA
hybrids could be triggering the IFN response in this context.
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Interestingly, TE up-regulation was found to be accompa-
nied by activation of the proinflammatory phenotype
(SASP) and the type I IFN response (Colombo et al. 2018).
Using a model of late senescence, LINE-1 was found to be
responsible for activation of the type I IFN response in a
cGAS/STING-dependent manner (Fig. 3B). Treatment of
cells with shRNAs against LINE-1 or the RTi lamivudine re-
verted the activation of the IFN response, suggesting that
the LINE-1 cDNAwas responsible for triggering IFN expres-
sion (DeCeccoet al. 2019). Similar results were reported in a
mousemodel of premature aging. SIRT6 knockoutmice dis-
play increased genomic instability and a premature aging
phenotype which is accompanied by increased LINE-1 ex-
pression and a cGAS-dependent activation of the type I
IFN response (Mostoslavsky et al. 2006; Van Meter et al.
2014; Simon et al. 2019). Many of the phenotypes associat-
ed with SIRT6 deficiency, such as premature aging, colitis
and increased IFNexpression,were reverted after treatment
with RTis, suggesting a central role for the LINE-1/IFN inter-
action in the disease-associated traits of SIRT6 KO mice (Si-
mon et al. 2019).
An additional exciting observation is the requirement

of an active IFN response for establishing a full senescent
phenotype. Blocking IFN signaling by knocking out
the IFN receptor (IFNAR) abolished the establishment of
a fully mature SASP response (De Cecco et al. 2019).
Interestingly, the cGAS/STING pathway has also been
shown to be necessary to establish senescence (Glück
et al. 2017; Yang et al. 2017). The exact role of the IFN re-
sponse in promoting a full-senescent phenotype remains
an open question.
One common observation from these reports is the pro-

posed role for cytoplasmic-localised LINE-1 cDNA as the
molecule responsible for triggering IFN expression in a
cGAS-dependent manner. Considering that the accepted
model for the LINE-1 lifecycle suggests that the retrotran-
scription step occurs in the nucleus, further experimenta-
tion is necessary to reconcile these findings. It is possible
that senescent cells localize both LINE-1 retrotranscription
and/or cGAS in different subcellular compartments than
actively cycling cells. For instance, senescent cells could
be retrotranscribing LINE-1 in the cytoplasm, if cytoplas-
mic RNA/DNAmolecules could act as primer. Only recent-
ly, Alu elements have been shown to be retrotranscribed in
the cytoplasm by the LINE-1-encoded machinery inde-
pendently of its retrotransposition, bringing closer the
possibility that LINE-1 RNA could be also used as template
to generate LINE-1 cDNA in the cytoplasm (Fukuda et al.
2021). Alternatively, LINE-1 cDNA could also be recog-
nized by cGAS in the nucleus, as a significant proportion
of this sensor has been found in the nuclear compartment
of specific cell types (Xia et al. 2018; Gentili et al. 2019;
Volkman et al. 2019). It is important to note that nuclear
cGAS does not react to genomic DNA because its binding
to nucleosomes maintains this sensor in an “inactive” state

and incompetent for signaling (Zierhut et al. 2019; Boyer
et al. 2020; Cao et al. 2020; Kujirai et al. 2020; Pathare
et al. 2020). In addition, BAF, a chromatin-associated pro-
tein, has also been recently shown to compete cGAS for
dsDNA binding, thus preventing recognition of self-DNA
(Guey et al. 2020). Considering that newly retrotranscribed
LINE-1 cDNA will lack chromatinization during de novo in-
sertion, we hypothesize that this could provide a short win-
dow of opportunity for nuclear cGAS to sense the LINE-1
cDNA as an invading pathogen. It will be interesting to
measure BAF levels in senescent cells as well as the nuclear
envelope integrity, but also test whether nuclear/cytoplas-
mic cGAS is responsible for recognizing the LINE-1 cDNA
or DNA/RNA intermediate during the reverse transcription
step. This will help to clarify how LINE-1 cDNA can trigger
the cGAS–STING sensing pathway.

Autoimmune diseases

In recent years, TEs-derived nucleic acids have attracted
much attention as molecules that may be responsible for
driving inflammation in the context of autoimmune diseas-
es. In this section, we will summarize the literature report-
ing TE-mediated immune activation in disease, both in the
context of the rare autosomal recessive autoinflammatory
disorder Aicardi–Goutières syndrome and the much
more common autoimmune disease, systemic lupus
erythematosus.

Aicardi–Goutières syndrome

Aicardi–Goutières syndrome (AGS) is a heritable form of in-
flammatory encephalopathy with symptoms resembling
congenital viral infections of the brain (Crowet al. 2014), in-
cluding a characteristic elevation of type I IFN levels both in
serum and cerebrospinal fluid of patients (Goutières et al.
1998). Mutations in different genes involved in the metab-
olismor sensing of nucleic acids can lead toAGS (Crowand
Manel 2015; Rice et al. 2020). Therefore, AGS has become
the paradigm in the study of the role of aberrant accumula-
tion/sensing of endogenous nucleic acids as triggers of the
IFN response. Although theprecise origin of the nucleic ac-
ids driving IFN activation is still unclear, here, we will sum-
marize the current evidence supporting the hypothesis that
retrotransposition-intermediates (RNAandDNA) can act as
the immunostimulatorymolecules triggering the type I IFN
response in AGS.
Gain-of-function mutations in the sensor IFIH1 and par-

tial loss of function mutations in TREX1, SAMHD1, and
ADAR1 genes, as well as the genes encoding for the three
subunits of the RNase H2 complex can lead to AGS.
Besides the classical function of most of these genes in
regulating different aspects of nucleic acids metabolism,
TREX1, SAMHD1, and ADAR1 have also been implicated
in restricting the mobilization of LINE-1 retrotransposons

Nucleic acid sensing of transposable elements

www.rnajournal.org 741



(Stetson et al. 2008; Zhao et al. 2013; Orecchini et al. 2016;
Li et al. 2017a). Intriguingly, RNase H2 has been described
both as a promoter as well as an inhibitor of LINE-1 retro-
transposition (Bartsch et al. 2017; Benitez-Guijarro et al.
2018). The role of these genes in controlling retrotranspo-
sition suggests that their loss of function in AGS may lead
to increased accumulation of TE-intermediates that could
trigger innate immune activation in an RNA (ADAR1) or
DNA-dependent (TREX1, RNase H2, and SAMHD1) man-
ner (Fig. 3C). Below, we summarize the proposed roles
for proteins mutated in AGS on the control of TEs.

TREX1. This gene encodes a 3′ to 5′ DNA exonuclease
whose expression is controlled by IFNs (ISG) (Mazur and
Perrino 2001; Grieves et al. 2015). TREX1 loss of function
or dominant negative mutations have been reported in
AGS, familial chilblain lupus and systemic lupus erythema-
tosus patients (Crow et al. 2006a; Lee-Kirsch et al. 2007;
Rodero and Crow 2016). One of the first animal models
for Trex1 deficiency revealed that this enzyme is required
to prevent a lethal inflammatory phenotype in mice
(Morita et al. 2004). The cGAS/STING-dependent autoin-
flammatory phenotype of Trex1-deficient mice correlated
with the accumulation of ssDNA from LINE-1, LTR endog-
enous retroviruses and SINE elements (Stetson et al. 2008;
Gall et al. 2012; Gray et al. 2015). Supporting the notion
that Trex1 may regulate the levels of retrotransposition
byproducts, in vitro retrotransposition assays showed re-
duced mobilization of human LINE-1 element and the
mouse IAP LTR retrotransposon during Trex1 overexpres-
sion (Stetson et al. 2008). All this led to the hypothesis
that mouse Trex1 metabolizes the ssDNA products of TE
retrotranscription, preventing their accumulation and con-
sequent activation of the innate immune response.

In humans, neurons, neuronal progenitor cells (NPCs)
and astrocytes derived from TREX1-deficient human
stem cells also displayed an increase in intracellular DNA
species, including LINE-1 elements and elevated type I
IFN levels. The accumulation of LINE-1 cDNA and conse-
quent IFN activation was proposed to be responsible for
the neurotoxic phenotype, as this was reverted after treat-
ment with the RTis or after antagonizing IFN signaling
(Thomas et al. 2017). These results suggest that in both hu-
mans and mice, the absence of TREX1 can lead to LINE-1
cDNA accumulation triggering the IFN response through
the cGAS–STING pathway (Fig. 3C). However, this hypoth-
esis has been challenged by the observation that treat-
ment of Trex1−/− mice with RTis did not reduce the
spontaneous ISG signature, suggesting that retrotranspo-
son-independent mechanisms may also contribute to the
inflammatory phenotype (Achleitner et al. 2017).

RNase H2. The RNase H2 complex is composed of the
three different subunits: RNASEH2A, RNASEH2B, and
RNASEH2C. RNase H2 activity is essential for genome

stability and mammalian embryonic development (Hiller
et al. 2012; Reijns et al. 2012). This ribonuclease initiates
the removal of ribonucleotides incorporated in genomic
DNA during replication, and it is also thought to be in-
volved in resolving R-loops formed during transcription,
by catalyzing the degradation of RNA in RNA/DNA hy-
brids. Biallelic mutations in the genes encoding the three
subunits are the most common cause of AGS, and mono-
allelic mutations have been associated with increased
risk of systemic lupus erythematosus (Crow et al. 2006b,
2015; Günther et al. 2015). Analysis of mice with partial-
loss-of-function AGS disease mutations in Rnaseh2a and
Rnaseh2b, as well as experiments using Rnaseh2b knock-
out cells established that RNase H2 function is necessary
to prevent activation of the IFN response and ISG expres-
sion in a cGAS/STING-dependent manner (Mackenzie
et al. 2016; Pokatayev et al. 2016). For instance, mutation
in the highly conserved glycine residue (G37S), near the
catalytic center of the RNASEH2A subunit, causes a severe
early onset presentation of AGS. In mice, this mutation was
shown to activate ISGs expression, with a concomitant ac-
cumulation of cytoplasmic LINE-1 DNA. This led to the hy-
pothesis that accumulation of LINE-1 DNA in the absence
of functional RNase H2 could lead to activation of the IFN
response (Pokatayev et al. 2016). Similarly, a mouse model
for the most common missense mutation found in AGS
patients (RNASEH2B-A177T), led to ISG activation in
a cGAS/STING-dependent manner (Mackenzie et al.
2016). However, the role of RNase H2 in the control of ret-
rotransposons is still controversial, as it has been suggest-
ed to be necessary for both restricting and facilitating
LINE-1 activity. Restriction of LINE-1 retrotransposition
was suggested to involve a physical interaction with the
well-known LINE-1 restricting factor MOV10 (Choi et al.
2018), while two other reports contradicted these findings
and showed that RNase H2 function is necessary for LINE-1
mobilization (Bartsch et al. 2017; Benitez-Guijarro et al.
2018). The proposed model is that LINE-1 elements rely
on the endogenous RNase H activity of cellular RNase
H2 to degrade the RNA moiety after reverse transcription
and successfully synthesize their second strand cDNA to
complete their retrotransposition cycle (Benitez-Guijarro
et al. 2018). Considering this model, the absence of func-
tional RNase H2 could lead to the accumulation of unpro-
cessed LINE-1 RNA/DNA hybrids and potentially trigger
the IFN response in a cGAS/STING-dependent manner
(Fig. 3C; Mankan et al. 2014; Rigby et al. 2014).

Importantly, the absence of RNase H2 also causes a sig-
nificant increase in DNA damage, widespread DNA hypo-
methylation, and micronuclei formation, which can trigger
the IFN response independent of retrotransposon inter-
mediates (Reijns et al. 2012; Lim et al. 2015; MacKenzie
et al. 2017). Therefore, further investigation is necessary
to clarify the specific nature of the nucleic acids that trigger
IFN expression in the context of RNase H2 deficiency.
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SAMHD1. Mutations in this gene are found in AGS, as well
as in patients with solid tumors and leukemia (Rice et al.
2009; Clifford et al. 2014; Rentoft et al. 2016). This gene
encodes a deoxynucleoside triphosphate triphosphohy-
drolase (dNTPase) that controls dNTP levels in cells and
whose expression is controlled by IFNs (ISG). Ensuring op-
timal dNTPs levels is required for efficient cellular DNA
replication and cDNA synthesis of retrovirus and retro-
transposons. In the absence of functional SAMHD1,
ssDNA fragments from stalled replication forks are re-
leased to the cytoplasm where they are thought to activate
IFN expression in a cGAS/STING-dependent manner
(Coquel et al. 2018). Considering the impact of SAMHD1
on dNTP levels, this enzyme also acts as a restriction factor
against the HIV-1 retrovirus and the LINE-1 retrotranspo-
son (Fig. 3C; Lahouassa et al. 2012; Zhao et al. 2013).
SAMHD1-mediated restriction of HIV-1 can be ameliorat-
ed by dNTP supplementation, but the exact role of
SAMHD1 enzymatic activity in the context of LINE-1s re-
mains unclear, as its role in restricting LINE-1 mobilization
has been shown to be both dependent and independent
of its enzymatic activity (Zhao et al. 2013; Herrmann et al.
2018). For instance, AGS-associated SAMHD1 mutations
outside the catalytical sites also fail to restrict LINE-1 mobi-
lization (Zhao et al. 2013). The current proposed model is
that SAMHD1 restricts LINE-1 mobilization by both reduc-
ing ORF2p levels and LINE-1 reverse transcription, as a
consequence. Alternatively, SAMHD1 has been shown to
directly interact with ORF2p and locally deplete dNTP lev-
els to prevent LINE-1 retrotranscription at the site of inte-
gration (Zhao et al. 2013; Herrmann et al. 2018). In
addition to these models, SAMHD1 has also been pro-
posed to inhibit LINE-1 retrotransposition by promoting
the sequestration of the LINE-1 RNP in cytoplasmic stress
granules (Hu et al. 2015). The exact role of increased retro-
transposon intermediates in activating the IFN response in
the absence of functional SAMHD1 remains unknown.

ADAR1. This gene encodes two different isoforms of the
RNA-editing enzyme ADAR1, p110, and p150, and partial
loss-of-function mutations have been shown to cause AGS
(Rice et al. 2012). While ADAR1 p110 is constitutively ex-
pressed andmostly nuclear, the p150 isoform is IFN-induc-
ible and both nuclear and cytoplasmic (Mannion et al.
2015). Both ADAR1 isoforms catalyze the hydrolytic deam-
ination of adenosine to inosine in dsRNA molecules.
Editing can result in amino acid recoding when in pro-
tein-coding sequences or disrupt important base-pairing
interactions in dsRNA secondary structures. High-through-
put studies of the human transcriptome demonstrated that
the vast majority of edited residues correspond to noncod-
ing regions, with around 90% residing in the primate-spe-
cific Alu element (Athanasiadis et al. 2004; Levanon et al.
2004). The high abundance of sense and antisense Alu el-
ements suggest that they are prone to forming dsRNA

molecules, which can be deaminated by ADARs. Loss of
Adar1 in mice leads to early embryonic lethality (E11.5–
12.5), a phenotype that can be rescued to birth by prevent-
ing IFN activation of the RLR-sensing pathway by interfer-
ing with MDA5 or MAVS expression (Wang et al. 2000;
Hartner et al. 2009; Mannion et al. 2014; Liddicoat et al.
2015; Pestal et al. 2015). These results suggest that, in
the absence of ADAR1, unedited dsRNAs accumulate
and act as a substrate for the MDA5/MAVS signaling path-
way for IFN production (Fig. 3C). Supporting these obser-
vations, the accumulation of endogenous immunogenic
dsRNAs in the absence of ADAR1 also stimulated the
translational shutoff by stimulating PKR activity (Chung
et al. 2018) and the OAS/RNase L system (Li et al. 2017b).
ADAR1 has also been shown to control LINE-1 retro-

transposition independent of its deaminating activity by
binding to the LINE-1 RNP complex and restricting its ret-
rotransposition through direct interaction with the LINE-1
RNA (Orecchini et al. 2016). In other settings, the accumu-
lation of LINE-1 RNA in the absence of ADAR1 was also
shown to trigger the IFN response in an RLR-dependent
manner (Zhao et al. 2018). These results suggest that
both LINE-1 RNA and unedited Alu elements could act
as immunostimulatory molecules in the absence of func-
tional ADAR1.

IFIH1. This interferon-stimulated gene is the only known
factor mutated in AGS that is not directly involved in the
metabolism of nucleic acids, as it encodes the dsRNA sen-
sor MDA5. IFIH1 mutations are also associated with sys-
temic lupus and type I diabetes (Smyth et al. 2006;
Gateva et al. 2009; Oda et al. 2014; Rice et al. 2014).
Gain-of-function mutations in IFIH1 have been reported
to lead to IFN activation by preventing discrimination of
self versus nonself RNA. DsRNAs derived from sense and
antisense Alu elements have been proposed to be the pre-
ferred endogenous substrate for gain-of-function muta-
tions of MDA5 (Fig. 3C; Ahmad et al. 2018). Mutated
MDA5 was shown to bind and oligomerize on inverted
Alu repeats, with a preference for inverted repeats that
are in close genomic proximity (< 1Kb) and derived from
a single transcript, while wild-typeMDA5 could only oligo-
merize on unedited or perfectly paired Alu-dsRNA struc-
tures, suggesting that ADAR1-mediated editing of Alu-
dsRNAs could act as a protective mechanism to avoid their
erroneous recognition as nonself molecules (Ahmad et al.
2018; Mehdipour et al. 2020).

Retrotransposon-independent IFN activation in AGS. Despite
the increasing evidence of retrotransposon intermediates
as drivers of the IFN response in AGS, an alternativemodel
exists which suggests that IFN expression is activated by
DNAdamage. ConstitutiveDNAdamage signaling is asso-
ciated with cell cycle delay, cellular senescence, and up-
regulation of IFNs and ISGs. Importantly, DNA damage
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and genomic instability are phenotypes widely reported
upon mutation of several AGS-genes, including TREX1
(Yang et al. 2007), RNASEH2A, RNASEH2B, RNASEH2C
(Hiller et al. 2012; Reijns et al. 2012; Uehara et al. 2018),
and SAMHD1 (Günther et al. 2015; Kretschmer et al.
2015). For instance, cells lacking SAMHD1 showed accu-
mulation of DNAdamage and ssDNA fragment in the cyto-
sol, where they activated the cGAS/STING pathway to
induce expression of type I IFNs (Coquel et al. 2018).
Interestingly, RNase H2-deficient cells accumulated cyto-
solic DNA aggregates virtually indistinguishable from mi-
cronuclei (Bartsch et al. 2017), which colocalized with the
nucleic acid sensors cGAS inducing a cGAS/STING-depen-
dent innate immune response (Mackenzie et al. 2016,
2017). These findings point toward a link between AGS-re-
lated genes and the DNA-damage response through self-
DNA becoming exposed in the cytosol and consequent
IFN activation.

The hypothesis that unrestricted retrotransposon activity
contributes to AGS is supported by the observation that
RTis can treat and even prevent disease-associated pheno-
types of AGS. However, treatment of Trex1-null mice with
both specific and nonspecific LINE-1 RTis led to confound-
ing results. Beck-Engeser et al. reported an improved sur-
vival and reduced inflammatory infiltrates in the heart
after combinatorial RTi treatment (Beck-Engeser et al.
2011), but Achleitner et al. failed to reproduce these results
(Achleitner et al. 2017). In the human context, RTis rescued
the neurotoxicity phenotype of AGS-associated TREX1
mutations (Thomas et al. 2017). Recently, stavudine (d4T)
was shown to effectively block LINE-1 activity anddecrease
STING activation after hypoxia-ischemia, reducing neuro-
degeneration (Gamdzyk et al. 2020). Importantly, a clinical
trial using a similar strategy (ClinicalTrials.gov identifier:
NCT02363452) reported positive effects of a therapy con-
sisting of a combination of three RTis (lamivudine, abacavir,
and zidovudine) inpatientswithAGS. Treatment resulted in
a reduction in the IFN score and IFN-α protein levels.
Interestingly, this effect was greatest among the four pa-
tients with mutations in components of the RNase H2 com-
plex (Rice et al. 2018). These results support the hypothesis
that RTi therapy can prevent IFN signaling in AGS patients
by inhibiting reverse transcription driven by endogenous
retrotransposons. However, RTis have also been reported
to provide an intrinsic anti-inflammatory effect indepen-
dent of TLRs, the cGAS/STING pathway and its reverse
transcriptase inhibition activity (Tarallo et al. 2012; Kerur
et al. 2013; Fowler et al. 2014). Taken together, the avail-
able data suggest that accumulation of reverse-transcribed
DNA species results in an inflammatory phenotypemediat-
ed by the cGAS/STING pathway which can be reversed by
RTis; however, the exact contribution of their intrinsic anti-
inflammatory effect remains unclear.

There are other unanswered questions regarding the
mechanisms underlying the induction of the IFN response

by retrotransposon-intermediates in AGS and senescence.
For instance, it is unclear how the LINE-1 cDNAaccumulates
in the cytoplasm of AGS cellular models to engage with
cGAS for IFN activation. As previously suggested, one pos-
sibility is that the LINE-1 cDNA is synthesized directly in this
cellular compartment. For this, the LINE-1 RNA and encod-
ed proteinsmight perform reverse transcription in situ using
a nonstandard primer in the cytoplasm.

We propose a model in which by-products of active en-
dogenous retrotransposons in addition to the DNA dam-
age associated with some AGS-mutations are drivers of
the IFN response. Clearly, further work is needed to deter-
mine the importance of retroelement activity and the
detection of retroelement-derived nucleic acids by innate
immune sensors in AGS.

Systemic lupus erythematosus

The first noninfectioushumandisease tobeassociatedwith
an increase in type I IFN activity was systemic lupus erythe-
matosus (SLE) (Hooks et al. 1979). SLE is an autoimmune
disease characterized by the production of autoantibodies
targeting nucleic acids and nuclear-associated proteins. A
link betweenAGS and lupuswas highlighted by the discov-
ery of TREX1, SAMHD1, RNASEH2A/B/C, and IFIH1muta-
tions in SLE patients (Lee-Kirsch et al. 2007; Cunninghame
Graham et al. 2011; Ravenscroft et al. 2011; Günther et al.
2015). Crow and Rehwinkel were the first to report the sig-
nificant overlap between AGS and lupus and highlighted
the interplay between nucleic acid metabolism and auto-
immune disease (Crow and Rehwinkel 2009). Shortly after,
Crow put forward LINE-1 retrotransposons as potential en-
dogenous stimuli triggering the immune response andpro-
moting autoimmunity (Crow 2010). Indeed, TEs are
dysregulated in SLE and LINE-1 mRNA transcripts were
found to be increased, inducing type I IFN production in vi-
tro through both TLR-dependent and TLR-independent
pathways (Mavragani et al. 2016; Kelly et al. 2018). In
addition, the relationship between autoimmunity and
TEs also involves the production of autoantibodies.
Autoantibodies against the RNA binding protein Ro60
are present in individuals with SLE and other autoimmune
disorders. Alu elements were found associated with the
Ro60 immune complexes from the blood of individuals
with lupus (Hung et al. 2015), and autoantibodies against
LINE-1 ORF1 are characteristic of a population of SLE pa-
tients with severe and active disease and higher type I
IFN score (Carter et al. 2020).

Unlike non-LTRs, the potential role of HERV in autoim-
munity has been more widely explored. HERV proteins
can be recognized by the host as exogenous and trigger
an immune response and antibody production. Patients
suffering from autoimmune disorders present autoanti-
bodies against the gag and env regions of retroviruses
that can cross-react with endogenous factors. In SLE for
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example, patients produce autoantibodies against the p30
gag protein from the endogenous retrovirus HRES-1 that
can cross-react with the common autoantigen U1-70K
(Perl et al. 1995). Similar findings in other autoimmune dis-
eases have led to the formulation of a model in which HERV
antigens stimulate immunity due to their similarity to exog-
enous viral proteins, a process termed “molecularmimicry.”
Several reviews have extensively discussed the evidence for
HERV in the aetiopathogenesis of autoimmune disorders,
including lupus, diabetes mellitus, multiple sclerosis,
Sjögren’s syndrome, and rheumatoid arthritis, among oth-
ers (Balada et al. 2009, 2010; Brodziak et al. 2012;
Morandi et al. 2017; Grandi and Tramontano 2018a,b;
Greenig 2019; Morris et al. 2019; Talotta et al. 2020).

CONCLUDING REMARKS: IS THE RELATIONSHIP
BETWEEN TEs AND IFNs RELEVANT FOR EARLY
DEVELOPMENT?

The expression of ERVs and non-LTR retrotransposons is
generally silenced in mammalian adult tissues; however,
expression of retrotransposons is characteristic of germ
cells, early embryos and embryonic stem cells (ESCs)
(Peaston et al. 2004; Garcia-Perez et al. 2007; Macia
et al. 2011; Schumann et al. 2019). The epigenetic repro-
gramming of cells during early development to erase
germline-specific marks and acquire totipotent and plu-
ripotent capacity involves a general demethylated state
resulting in increased TE expression. After fertilization,
the zygote undergoes several divisions despite being
transcriptionally inactive. The embryonic genome be-
comes active during the two-cell stage in mouse, and
eight-cell stage in humans. During these stages, cells
are defined as totipotent, as they have the ability to gen-
erate a full organism, including the embryonic and extra-
embryonic tissues. Later in development, during the
blastocyst stage (day 3.5 post-fertilization in mice and
day 5 in humans), embryonic stem cells, which can be de-
rived from the inner cell mass, are only pluripotent, which
means that they can give rise to the three germ layers (ec-
toderm, endoderm, and mesoderm) that will form the
embryo, but not to the extra-embryonic tissue, such as
the placenta. Although many mechanisms have evolved
to prevent the deleterious effects of TE activity during
these stages, the expression of TEs may also be benefi-
cial during early development. Interestingly, the waves
of expression pattern of the different classes of transpos-
able elements differs, suggesting that they could contrib-
ute to modulating the cellular fate during early
development (for reviews, see Gerdes et al. 2016;
Torres-Padilla 2020). For example, mouse MERVL is high-
ly transcribed during the two-cell (2C)-stage, and se-
quences derived from this TE function as promoters to
drive the expression of 2C-stage specific transcripts
(Macfarlan et al. 2012). The HERVK is expressed during

the human embryonic genome activation stage (eight-
cell) and sustained during the blastocyst stage. During
these stages, the HERVK-encoded protein Rec can bind
the 3′UTR of cellular mRNAs promoting their association
with polyribosomes (Grow et al. 2015). The expression of
another primate-specific transposon, HERVH, is only acti-
vated later in development, during the blastocyst stage
(Göke et al. 2015). Interestingly, the lncRNA derived
from HERVH acts as a scaffold to maintain the pluripo-
tency transcriptional network typical of stem cells through
physical interaction with OCT4 and coactivators (Lu et al.
2014). More recently, the RNA from LINE-1 has been sug-
gested to be required for the maintenance of embryonic
stem cell self-renewal by silencing the 2C-stage transcrip-
tional program (Percharde et al. 2018).
Despite the high expression of TEs during early develop-

ment, TE-nucleic acids cannot trigger the IFN response
since this pathway is known to be inactive during this stage.
ESCs, both from human and mouse origin, are unable to
synthesize IFNs upon infections with viruses or when chal-
lengedwith viral DNAor RNAmimics, and the ability to pro-
duce IFNs only becomes active after differentiation (Burke
et al. 1978; Chen et al. 2010; Wang et al. 2013;
Witteveldt et al. 2019). In agreement, in vivo studies of
mouse development confirmed that the ability to produce
IFNs only becomes active after early postimplantation
(Barlow et al. 1984). The inability of pluripotent cells to pro-
duce IFNs has been attributed to both the lowexpression of
the RIG-I-like receptors and the action of miRNAs silencing
on MAVS, a central factor for RNA immunity (Wang et al.
2013; Witteveldt et al. 2019). ESCs also fail to produce
IFNs in response to cytoplasmic DNA, suggesting that the
cGAS/STING pathway is also inactive during pluripotency
(Witteveldt et al. 2019). Why the pluripotent stage of devel-
opment needs to silence the IFN response is unknown, but
we hypothesize it may be a requirement to prevent the ab-
errant production of IFNs upon recognition of TE-derived
nucleic acids. In addition, this may be required to avoid
the deleterious effects that IFN production has on ESC biol-
ogy. For instance, constitutive activation of the type I IFN
transcription factor IRF7 in ESCs has been shown to drive
the expression of a subset of ISGs as well as dysregulation
of pluripotency and lineage-specific genes (Eggenberger
et al. 2019). All these findings together lead us to hypothe-
size that TEs have exerted a strong evolutionary pressure to
supress themain antiviral response during earlymammalian
development.
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