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Abstract

One of the ultimate goals in systems biology is to develop control strategies to find efficient 

medical treatments. One step towards this goal is to develop methods for changing the state of 

a cell into a desirable state. We propose an efficient method that determines combinations of 

network perturbations to direct the system towards a predefined state. The method requires a set 

of control actions such as the silencing of a gene or the disruption of the interaction between two 

genes. An optimal control policy defined as the best intervention at each state of the system can 

be obtained using existing methods. However, these algorithms are computationally prohibitive for 

models with tens of nodes. Our method generates control actions that approximates the optimal 

control policy with high probability with a computational efficiency that does not depend on the 

size of the state space. Our C++ code is available at https://github.com/boaguilar/SDDScontrol.
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1 Introduction

Thanks to the recent explosion of available experimental data, generated by high throughput 

technologies, many mathematical models has been proposed to describe the behavior of 

genes and their interaction within the cell (Kauffman et al., 2003; Huang et al., 2009; 

Abou-Jaoudé et al., 2016). The interaction of genes and their products, which is commonly 

abstracted as Gene Regulatory Networks (GRN), is fundamental to understand many 

important cellular processes. Thus, much of the modeling efforts in the past decades focused 

on finding correct models to reproduce the experimental evidence that characterize GRN. In 

the recent years, however, some algorithms for control of GRN has been proposed. These 

methods focus on finding perturbations to a GRN that induce the transition of a cell towards 

a new predefined cellular state. These algorithms promise to be the building blocks of future 

methods aimed at design of optimal therapeutic treatments.

Models of GRN can be classified according to how the time and the population of 

gene products are treated. There are methods based on continuous gene populations 
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and continuous time, based on ordinary differential equations (Alon, 2019; Fall et al., 

2010); discrete populations and continuous time, such as models based on the Gillespie 

formulation (Gillespie, 1977); and discrete population and discrete time framework such as 

Boolean networks (BN)(Kauffman et al., 2003; Thomas and D’Ari, 1990; Shmulevich et 

al., 2002). The BN modeling framework and its extensions are of particular interest for the 

development of control algorithms of GRN due to their discrete formulation, which allows 

for 1) a natural incorporation of control actions and their effect on the model and 2) a 

suitable computational tractability for testing methods by exhaustive exploration, although 

only for small systems. In this paper, GRN are modeled by stochastic discrete dynamical 

systems (SDDS) introduced in (Murrugarra et al., 2012), which is an extension of the 

deterministic BN that allows the incorporation of stochasticity in the transitions of the GRN 

model.

In the BN framework, every node of the GRN is assigned a binary value that represents 

the gene expression level, which depends on the values of the other nodes. The state of 

the GRN is then represented by the set of values of all the nodes of the BN. Importantly, 

special states of the system called attractors are hypothesized to correspond to functional 

cellular states, such as senescence or apoptosis (Huang, 1999; Kauffman, 1969). Controlling 

a GRN involves the application of perturbations (control actions) to the GRN to drive the 

cell towards a desired state. The control actions represent gene silencing (node deletion) and 

the disruption of protein-protein interactions (edge deletion). The methods to control GRN 

based on discrete models can be divided into two categories. There are methods that aim 

to find a set of structural perturbations on the network that change the dynamic behavior of 

the system in the long run (Zañudo and Albert, 2015; Murrugarra et al., 2016; Zañudo et 

al., 2017; Sordo Vieira et al., 2019). The method proposed in this work belongs to a second 

category, which is composed of methods that require a set of candidate actions as input 

(Yousefi et al., 2012; Bertsekas, 2005; Chang et al., 2013; Sutton and Barto, 1998), and aim 

to find the optimal sequence of combined actions that will drive the systems towards the 

desirable state.

The optimal control methods that are based on the theory of Markov decision processes 

(MDP) provide an action for each state of the system that will eventually make the system 

transition into a desirable state. Most of these methods become computationally unfeasible 

if the size of the Boolean network is large; they are currently applied to GRN of about tens 

of nodes. Recently built networks, however, consist of about a hundred of nodes (Naseem 

et al., 2012; Raza et al., 2008; Saez-Rodriguez et al., 2007; Singh et al., 2012; Kazemzadeh 

et al., 2012; Madrahimov et al., 2013; Saadatpour et al., 2011; Zhang et al., 2008; Samaga 

et al., 2009; Helikar et al., 2008, 2013; Tomas and et. al., Tomas and et. al.). Thus, there 

is a need for more efficient methods to find optimal control sequences for large GRN. This 

paper introduces an algorithm to approximate the optimal control strategy from a set of 

potential actions. Importantly, the complexity of the proposed algorithm does not depend on 

the number of possible states of the system, and can be applied to large systems. We used 

approximation techniques from the theory of Markov decision processes and reinforcement 

learning (Bertsekas, 2005; Sutton and Barto, 1998; Kearns et al., 2002; Bertsekas, 2019) to 

generate approximate control interventions to drive the GRN away from undesirable states. 

The proposed method was tested in three GRN of varying sizes and compared with exact 
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solutions obtained by methods based on exact MDP and value iteration (Abul et al., 2004; 

Datta et al., 2004; Pal et al., 2006; Yousefi et al., 2012; Chen et al., 2012).

This paper is structured as follows. In the next section (Methods) we briefly describe 

the class of Boolean networks and the modeling framework under consideration. We then 

define the control actions, formulate the optimal control problem, and present the proposed 

approximation algorithm. In the Results and Applications section, we test the approximation 

method in three biological systems of different sizes. We discuss our results in the final 

section.

2 Methods

In this section we present the modeling framework to be used, a definition of the control 

actions, the optimal control algorithm, and an approximation method for an efficient 

computation of near-optimal policies.

2.1 Modeling Framework

Our methods for finding control policies are applied to GRN modeled with stochastic 

discrete dynamical systems introduced in (Murrugarra et al., 2012). This framework is an 

appropriate setup to model the effect of intrinsic noise on network dynamics. A SDDS in 

the variables x1, … , xn, which in this paper represent genes, is defined as a collection of n 
triplets

F = fk, pk, pk k = 1
n

where for k = 1, … , n

• fk : {0, 1}n → {0, 1} is the update function of xk,

• pk ∈ [0, 1] is the activation propensity,

• pk ∈ [0, 1] is the degradation propensity.

The stochasticity originates from the propensity parameters pk and pk, which should be 

interpreted as follows: if there would be an activation of xk at the next time step, i.e., xk(t) 

= 0, and fk(x1(t), … , xn(t)) = 1, then xk(t + 1) = 1 with probability pk. The degradation 

probability pk is defined similarly. Parameter estimation techniques for computing the 

propensity parameters of SDDS have been developed in (Murrugarra et al., 2016).

The SDDS framework can be described as a finite-state Markov chain by specifying its 

transition matrix as follows. Let F = fk, pk, pk k = 1
n

 be a SDDS and consider x ∈ {0, 1}n 

and z ∈ {1, 0}. For all k we define the function θk,x (z) by
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θk, x
F (z) =

pkδz
fk + 1 − pk δz

xk, if xk < fk(x),

pkδz
fk + 1 − pk δz

xk, if xk > fk(x),

δz
xk, if xk = fk(x),

where δi
j is the Kronecker delta function. This operator defines the probability of xk to 

become z in the next time step. If the possible future value of the k-th coordinate is 

larger (smaller, resp.) than the current value, then the activation (degradation) propensity 

determines the probability that the k-th coordinate will increase (decrease) its current value. 

If the k-th coordinate and its possible future value are the same, then the i-th coordinate of 

the system will maintain its current value with probability 1. Notice that θk, x
F (z) = 0 for all z 

∉ {xk, fk(x)}.

The dynamics of F, from a Markov chain point of view, is defined by the transition 

probabilities between the states of the system. For a Boolean SDDS with n genes there 

are 2n possible vector states. For x = (x1, … , xn) ∈ S and y = (y1, … , yn) ∈ S the transition 

probability from x to y is:

Px, y = ∏
k = 1

n
θk, x

F yk . (1)

2.2 Definition of Control Interventions: edge and node manipulations

Let F = fk, pk, pk k = 1
n

 be an SDDS and W be wiring diagram associated to F. That is, W

has n nodes, x1, … , xn, and there is a directed edge from xi to xj if fj is a function that 

depends on xi. Notice that the presence of the interaction xi → xj implies that fj depends on 

xi, say fj xj1, …, xjm  with xi ∈ xj1, …, xjm . Methods for identifying edge and node controls 

in BN has been developed in (Murrugarra et al., 2016; Murrugarra and Dimitrova, 2015). 

For completeness, we reproduce the control definitions below.

A SDDS with control is obtained by replacing the functions fj for Fj : {0, 1}n × U → {0, 1}, 

where U is a set that denotes all possible control inputs.
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Definition 2.1 (Edge Control)—Consider the edge xi → xj in the wiring diagram W. The 

function

ℱj x, ui, j ≔ fj x1, …, ui, j + 1 xi, …, xn

encodes the control of the edge xi → xj, since for each possible value of ui, j ∈ F2 we have 

the following control settings:

• If ui,j = 0, ℱj(x, 0) = fj x1, …, xi, …, xn . That is, the control is not active.

• If ui,j = 1, ℱj(x, 1) = fj x1, …, xi = 0, …, xn . In this case, the control is active, and 

the action represents the removal of the edge xi → xj.

Definition 2.2 (Node Control)—Consider the node xj in the wiring diagram W. The 

function

ℱj x, uj : = uj + 1 fj(x) (2)

encodes the control (knock-out) of the node xj, since for each possible value of uj ∈ F2 we 

have the following control settings:

• For uj = 0, ℱj(x, 0) = fj(x). That is, the control is not active.

• For uj = 1, ℱj(x, 1) = 0. This action represents the knock-out of the node xi.

The motivation for considering these intervention actions is the following: an edge deletion 

models the experimental intervention that represses the interaction of two biomolecules 

of system (this can be achieved for instance by the use of drugs that target that specific 

interaction, see Choi et al. (2012)); and a node deletion represents the complete silencing 

of a gene. For simplicity, we have considered only gene silencing in Equation 2, but it 

is possible to consider a control that maintains high expression of genes (the node is 

maintained in 1) as was done in (Murrugarra et al., 2016; Murrugarra and Dimitrova, 2015).

2.2.1 Control actions—The control methods in (Murrugarra and Dimitrova, 2015; 

Murrugarra et al., 2016) can identify a set E of control edges and a set V of control nodes. 

We will consider a control action a as an array of binary elements of size |U| = |E| + |V|. The 

kth element of a corresponds to an control node ul− if k < V and to a control edge ui,j if V ≤ k 

< |U|. Thus, a value of 1 in ak represents that its corresponding control intervention (node or 

edge) is being applied. Thus, an action array a is a combination of control edges and nodes 

that are being applied to the GRN simultaneously in a given time step. The set of all possible 

actions A = {(0, … , 0), (0, … , 1), … , (1, … , 1)} has |A| = 2|U| elements. Notice that the 

action a = (0, … , 0) represents the case where none of the control actions are applied.

2.3 Markov Decision Process for SDDS

In this section, we define a Markov decision process (MDP) for the SDDS and the control 

actions defined in the previous sections. An MDP for the set of states S and the set of actions 
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A, consists of transition probabilities Px, y
a  and associated costs C(x, a, y), for each transition 

from state x to state y due to an applied action a.

2.3.1 Transition Probabilities—The application of an action a results in a new SDDS, 

Fa′ = ℱk(x, a), pk, pk k = 1
n

. Then, for each state action pair (x, a), x ∈ S, a ∈ A, the 

probability of transition to each state y upon execution of action a from state x, Px, y
a , is 

computed using Equation (1) with the fk replaced by ℱk,i.e.,Px, y
a = ∏k = 1

n θk, x
Fa′ yk .

2.3.2 Cost distribution—We define the cost of going from state x to state y under 

action a, C(x, a, y), as a combination of two additive costs, one for actions Ca and one for 

states Cy:

C(x, a, y) = Ca + Cy

The application of control edges or nodes have a penalty, ce and cv, respectively, that 

represent expenses associated to the use of technologies and drugs required to silence nodes 

and edges. Thus, we simply determine the cost of actions as Ca = cvNv + ceNe where Nv and 

Ne are the number of applied control nodes and edges in a given action a. The cost of ending 

up in a state y is the weighted distance between state y and a user specified desirable state 

s*.

Cy = ∑
k = 1

N
wk yk − sk*

where wk are user specified weights. Note that if all the weights are one, then Cy is simply 

the Hamming distance between y and s*.

2.4 Optimal Control Policies

A deterministic control policy π is defined as a set π = {π0, π1, π2, … }, where the πt : 

S → A is a mapping that associates a state x(t) to an action a at time step t. We formulate 

the optimal control problem for infinite horizon MDPs with discounting cost as described in 

(Yousefi et al., 2012). Given a state x ∈ S, a control policy π, and a discounting factor γ ∈ 
(0, 1), the cost function Vπ for π, is defined as:

V π(x) = ∑
t = 0

∞
γtC(x(t), a)

where C(x(t), a) represents the expected cost at step t for executing the policy π from state x, 

C(x(t), a) = Ey [C(x, a, y)]. We also define the Q-function for π (as in (Kearns et al., 2002)) 

by

Qπ(x, a) = C(x(t), a) + γEy V π(y)
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The goal is to find the optimal policy π* = π0*, π1*, … , where πt*:S A, t = 1, 2, …, that 

minimizes the function cost for all states. The cost function associated with π* is V*(x) = 

minπ Vπ (x) for all x ∈ S. Similarly, for the optimal policy, Q*(x, a) = minπ Qπ (x, a). It has 

been shown (Yousefi et al., 2012) that the optimal cost function V* satisfies the Bellman’s 

principle:

V *(x) = min
a ∈ A

C(x, a) + γEy V *(y) = min
a ∈ A

Q*(x, a),  for all x ∈ S

The optimal policy for the MDP defined for SDDS is a stationary policy in which every state 

is associated with an action. We can determine π* with the help of an iterative algorithm 

called value iteration (Bertsekas, 2005).

2.5 Approximating an optimal control policy for efficiency

The value iteration algorithm for computing the optimal control policy might become 

prohibitive for networks of 20 or more nodes. Therefore, for large networks we will use 

approximation techniques to estimate the control policy. For details on approximation 

methods see (Bertsekas, 2005; Kearns et al., 2002; Sutton and Barto, 1998). The 

approximation technique reduces the control problem into estimating the best action for 

a given state s0 using only local information about the state space obtained by sampling from 

the state s0. We developed and approximation algorithm for GRN modeled with SDDS. We 

note that, it can be shown that the approximation method that we use here provides a good 

estimate function (or near optimal function) to the optimal cost function as was shown for 

general generative models in (Kearns et al., 2002).

Now we describe the approximation algorithms. Instead of computing an infinite horizon 

cost value function Vπ (s) under a policy π, the approximation creates a sub-MDP of finite 

horizon h by sampling the neighborhood of initial state s0. The total expected cost function 

of the sub-MDP under a policy π is

V b
π s0 = E ∑

t = 0

b − 1
γtC(x(t), a)
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The optimal cost over the sub-MDP is V b*(s) = minπV b
π(S). The approximation algorithm 

computes an estimate V b* s0  of the optimal V b* s0  by performing a sampling of the 

sub-MDP in the neighborhood of s0. In Algorithm 1 we provide a pseudo-code of the 

approximation algorithm that was adapted for SDDS. The algorithm requires the SDDS, 

the set of actions A, the state s0, and the parameters that determine the accuracy and 

computational efficiency, h and c. The parameter h is the finite horizon of the sub-MDP. The 

parameter c is the number of samples per action. Importantly, the time complexity does not 

depend on the size of the state space of system. Finally, the Algorithm 1 also requires a noise 

parameter g. The role of the noise is to make the system ergodic.

The approximation algorithm can be adapted to cyclic interventions in which actions have 

a duration period of L steps, and are followed by a recovery period (without intervention) 

of W-L steps (Yousefi and Dougherty, 2014; Shmulevich and Dougherty, 2010). These type 

of interventions not only simulate more realistic therapeutic scenarios but result in methods 

that are computationally less expensive, as the number of considered policies are smaller 

than the number of policies in which actions can change every time step. For the cyclic 

intervention, every decision epoch consists of W steps. The approximation algorithm then 

creates a sub-MDP of h decision epochs by sampling the neighborhood of s0. The total 

expected cost for this sub-MDP under a policy π is

V W , ℎ
π s0 = E ∑

k = 0

b − 1
γkW CW sk, a

where CW sk, a = Es′ CW sk, a, s′  is the expected cost over a period W starting at state sk 

under action a, and CW sk, a, s′ = LCa + Cs′. Similar to the general case, the approximation 

computes an estimate of the optimal policy that generate the minimum possible V W , b
π s0 . 

In Algorithm 3 we provide a pseudo-code of the approximation algorithm adapted to cyclic 

policies.

3 Results and Applications

To test the efficiency and accuracy of our methods we applied them in published models 

of different sizes. The size of the test models are 6, 16, and 60 nodes. For the small 

network (with 6 nodes) we computed the exact control policy for the system. Then we used 

the approximation algorithm to compute an approximated policy for states of interest to 
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compare it with the exact optimal policy obtained by value iteration. For the larger networks, 

only the approximated policy was computed and then we performed simulations to validate 

the effectiveness of the approximated policies.

3.1 T-LGL model

Cytotoxic T-cells are part of the immune system that fight against antigens by killing cancer 

cells and then going through controlled cell death (apoptosis) themselves. The T-cell large 

granular lymphocyte (T-LGL) leukemia is a disease where cytotoxic T-cells escape apoptosis 

and keep proliferating. A Boolean network model for this system has been built in (Zhang 

et al., 2008), and subsequently, steady state analysis for control targets identification has 

been performed in (Saadatpour et al., 2011; Zañudo and Albert, 2015). This network has 60 

nodes; the update functions can be found in the following GitHub site: https://github.com/

boaguilar/SDDScontrol.

In order to exhibit an exact control policy we first use a reduced version of the 60-node 

model (see Figure 1) that was given in (Saadatpour et al., 2011). The reduced network 

considers the following nodes:

x1 = S1P , x2 = FLIP ,   x3 = Fas ,
x4 =  Ceramide, x5 = DISC, x6 =  Apoptosis .

f1 = x4 ∧ x6, f2 = x5 ∧ x6, f3 = x1 ∧ x6,
f4 = x3 ∧ x1 ∧ x6, f5 = x4 ∨ x3 ∧ x2 ∨ x6, f6 = x5 ∨ x6 .

This reduced T-LGL system has two steady states, one that represents the normal state, 

000001, where Apoptosis is ON and the other, 110000, that represents the disease state, 

where Apoptosis is OFF.

We used the method given in (Murrugarra et al., 2016) to identify control targets in this 

network that can stabilize the system in a desirable steady state. Here, we consider the 

controls that represent the deletion of FLIP (FLIP = OFF or x2 = 0) and the constant 

expression of Fas (Fas = ON or x3 = 1). Simultaneous application of these controls will 

result in the fixed point 001001 that is globally reachable. Note that this new fixed point has 

x6 = 1 which means that Apoptosis is ON and thus we can use this fixed point as a desirable 

state. Using these controls we computed an optimal control policy for the system. Since 

we have two controls, there are four possible actions: 00 (no intervention), 01 (deletion of 

FLIP), 10 (constant expression of Fas), and 11 where both controllers are needed (x2 = 

0 and x3 = 1). Figure 2 shows the control policy where transitions are marked by colors, 

arrows in green mean no control, arrows in blue represent the control of the node FLIP (x2 

= 0), arrows in orange represent the control of the node Fas (x3 = 1), and the arrows in 

red represent the control of both controls. Notice that in Figure 2 only few states require 

intervention. Especially, the disease state 110000 and the states that were in the synchronous 

basin of attraction. Also in Figure 2 notice that the controls are only needed transiently, for 

one step, and then no control is required to direct the system into the desired fixed point.
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To test the effectiveness of our method, we applied the approximation algorithm for the 

disease state, 110000, of the reduced network. Figure 3 shows that we our method recovers 

the exact policy with high probability. Notice that as the parameter h increases the accuracy 

of the prediction improves.

For the model with 60 nodes, we can no longer calculate the exact optimal control policy. 

The state space of this system has a size of 260 = 1.1529 × 1018. Thus, we only use the 

approximation method for this case. By simulation we identified a (synchronous) limit cycle 

of length 4 and a fixed point, see Table 1. The limit cycle represents the disease state (where 

Apoptosis is OFF) while the fixed point the normal state (where Apoptosis in ON).

For the model with 60 nodes, we also used the same control actions that we used for the 

reduced model. That is, we considered the controls that represent the deletion of FLIP (FLIP 
= OFF or x44 = 0) and the constant expression of Fas (Fas = ON or x39 = 1). Simultaneous 

application of these controls will result in a new fixed point (given in the last row of Table 

2) that has x50 = 1 which means that Apoptosis is ON and thus we can use this fixed point 

as a desirable state. We applied the approximated algorithm (Algorithm 3) for each state (see 

Table 1) in the limit cycle with the goal of driving the system away from this cycle. Figure 4 

shows the statistics after 100 runs of the approximation algorithm for one of states (the third 

cycle state in Table 1) of the limit cycle, namely, the following state,

001111011101111110110010110101001110110100011010101111110100 (3)

Figure 4 shows that we get the policy 11 with high probability. That is, we need both 

controls. We also get the same control policy with high probability for the other cycle states 

(data not shown). To test the effectiveness of the high probability policy in Figure 4 we 

simulated the system from the cycle states in Table 1.

3.1.1 P53-mdm2 network—The tumor suppressor protein p53 can induce cycle arrest 

or apoptosis in the presence of DNA damage (Geva-Zatorsky et al., 2006; Alon, 2019). A 

Boolean network model that reproduces the known biology for this system has been built in 

(Choi et al., 2012). This network considers the following nodes:

x1 = ATM, x2 = p53, x3 = Mdm2, x4 = MdmX,
x5 = W ip1, x6 = cyclinG, x7 = PTEN, x8 = p21,
x9 = AKT , x10 = cyclinE, x11 = Rb, x12 = E2F1,
x13 = p14ARf, x14 = Bcl2, x15 =  Bax , x16 =  caspase .

The update functions for this model are provided at Github site https://github.com/boaguilar/

SDDScontrol. We note that the state space for this system has 216 = 65536 states.

In the presence of DNA damage the system has a unique (synchronous) limit cycle of 

length 7. The states of this limit cycle are given in the first row of Table 3. Using the 

algebraic methods in (Murrugarra et al., 2016), we identified control edges for this network 

that stabilize the system in a (desired) fixed point. That is, deleting all these edges from 

the wiring diagram will result in a system that has a single fixed point y0 that is globally 
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reachable (Murrugarra et al., 2016). The new fixed point y0 is given in Equation 4. The 

control targets consist of 9 control edges that are given in the first column of Table 3.

y0 = (1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1), (4)

We note that the state in Equation 4 represents cell death, where x2 = p53 and x16 = caspase 
are ON. Thus, we used this fixed point as a desired state for our control objective.

We applied the approximation algorithm (Algorithm 3) using a cyclic policy with L = W 
= 5, and h = 2 and c = 3 for each state in the limit cycle. After 100 runs of Algorithm 3, 

we obtained (with high probability) the control policies given in Table 3. In columns 2–4 of 

Table 3 we group the states that have the same control policy.

To validate the effectiveness of the control policies given in Table 3, we performed 

simulations starting from each state of the limit cycle using the control policies given in 

columns 2–4 of Table 3. The results of these simulations are given in Figure 5. Figure 5 

shows that the estimated policies are effective as it is possible to get to the desired fixed 

point y0 given in Equation 4 from each state of the limit cycle. The simulations were 

performed using the parameters specified in the caption of Figure 5.

4 Discussion and Conclusions

Finding optimal intervention strategies for GRN is an important problem in computational 

biology. Intervention strategies consisting of combinations of control targets such as the 

knockout of a gene and the disruption of an interaction are becoming more and more 

relevant (Lee et al., 2012; Choi et al., 2012; Erler and Linding, 2012; Zañudo et al., 2017). 

The problem of computing a control policy that dictates what intervention to apply at each 

state of a system becomes computational prohibitive for large networks (e.g., networks with 

more than 20 nodes). This paper focuses on approximation techniques based on Monte Carlo 

sampling of the transition probabilities of generative models. More specifically, in this paper 

we provide approximation algorithms to estimate the optimal control policy for a discrete 

stochastic system. The complexity of the proposed algorithms does not depend on the size 

of the state space of the system, it only depends on the sampling size and the depth of the 

iterations. This feature makes the proposed algorithms efficient and they can be applied to 

a large GRN. Importantly, it can be shown that the approximation method that we used in 

this paper provides a good estimate function (or near optimal function) to the optimal cost 

function as was shown for general generative models in (Kearns et al., 2002).

Approximation techniques are useful when trying to compute a control policy for a large 

system. There are algorithms to calculate optimal control policies (Abul et al., 2004; Datta 

et al., 2004; Pal et al., 2006; Yousefi et al., 2012; Chen et al., 2012) but the computational 

complexity of these algorithms, which is at least exponential in the size of the state space, is 

very high. For instance, for the 60 nodes model that was discussed in the results section, the 

state space has 260 = 1.1529 × 1018 states. Thus, it becomes unfeasible to calculate an exact 

control policy for this system. The approximation technique that was used in this paper was 

very efficient for this model.
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The methods presented in this paper were validated using a T-LGL network of 60 nodes 

and a network for the p53-mdm2 system of 16 nodes. The T-LGL system has two attractors, 

a limit cycle that represents a disease state and a fixed point representing a normal state 

(apoptosis). The approximation algorithm was applied to calculate a control policy that 

allows the system to escape from the disease state and directs the system towards the 

desired fixed with high probability. Likewise, for the p53-mdm2 system, the approximation 

algorithm successfully generates a control policy that drives the system towards a desired 

fixed point.

For our applications, we used Algorithm 1 and 3 and these can be modified to incorporate 

more realistic control strategies considering a number of steps for recovery such as the 

cyclic and acyclic interventions that was considered in (Yousefietal., 2012). We can also 

adapt our approximation algorithms for sequential interventions such as the interventions 

strategies described in (Lee et al., 2012), where the order of the control actions to be 

applied matters. Algorithm 2 provides a pseudocode for sequential interventions for SDDS. 

Moreover, the methods developed in this paper can be applied to multistate discrete models 

of GRN (Sordo Vieira et al., 2019; Veliz-Cuba et al., 2010) and Probabilistic Boolean 

Networks PBN (Shmulevich et al., 2002). Finally, the approximation method is suitable for 

a planning strategy, in which simulations are performed under control; the method is applied 

to every state attained.

We remark that the efficiency of the method depends on the topology of the network, 

particularly on the maximum in-degree. For instance, the T-LGL model of 60 nodes has a 

maximum in-degree of 7 while the p53 network of 16 nodes has a maximum in-degree of 

10. Although the T-LGL network is larger than the p53 network, it has a smaller maximum 

in-degree. As a result, the approximation algorithm was more efficient for the 60-node 

model than for the 16-node model. Also, the noise added to the system (see Section 2.5) can 

affect the efficiency of the algorithm. In large systems such as the T-TLG network, the noise 

can make the system to jump into a random state and it might take a large number of steps to 

get to the desired target state. The noise is not required for controllable systems, where every 

state is reachable under the control.

Finally, we implemented the proposed control algorithms in C++ and our code is freely 

available through the following GitHub website: https://github.com/boaguilar/SDDScontrol. 

This website also contains the associated files of the examples discussed in this paper.

References

Abou-Jaoudé W, Traynard P, Monteiro PT, Saez-Rodriguez J, Helikar T, Thieffry D, and Chaouiya 
C (2016). Logical modeling and dynamical analysis of cellular networks. Front Genet 7, 94. 67 
[PubMed: 27303434] 

Abul O, Alhaj R, and Polat F (2004). Markov decision processes based optimal control policies 
for probabilistic boolean networks. In Bioinformatics and Bioengineering, 2004. BIBE 2004. 
Proceedings. Fourth IEEE Symposium on, pp. 337–344. IEEE. 68, 78

Alon U (2019). An Introduction to Systems Biology: Design Principles of Biological Circuits (Second 
ed.). Chapman and Hall/CRC Computational Biology Series. 67, 75

Bertsekas DP (2005). Dynamic Programming and Optimal Control. Athena Scientifik. 68, 71

Bertsekas DP (2019). Reinforcement Learning and Optimal Control. Athena Scientific. 68

Aguilar et al. Page 12

Lett Biomath. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/boaguilar/SDDScontrol


Chang H, Hu J, Fu M, and Marcus S (2013). Simulation-Based Algorithms for Markov Decision 
Processes (Second ed.). Springer. 68

Chen X, Jiang H, Qiu Y, and Ching W-K (2012). On optimal control policy for probabilistic boolean 
network: a state reduction approach. BMC Systems Biology 6(Suppl 1), S8. 68, 78

Choi M, Shi J, Jung SH, Chen X, and Cho K-H (2012). Attractor landscape analysis reveals feedback 
loops in the p53 network that control the cellular response to dna damage. Sci. Signal 5(251), ra83. 
70, 75, 78 [PubMed: 23169817] 

Datta A, Choudhary A, Bittner ML, and Dougherty ER (2004). External control in markovian 
genetic regulatory networks: the imperfect information case. Bioinformatics 20(6), 924–930. 68, 
78 [PubMed: 14751971] 

Erler JT and Linding R (2012, May). Network medicine strikes a blow against breast cancer. Cell 
149(4), 731–3. 78 [PubMed: 22579276] 

Fall CP, Marland AS, Wagner JM, and Tyson JJ (2010). Computational Cell Biology (Interdisciplinary 
Applied Mathematics). Springer. 67

Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak 
P, Lahav G, and Alon U (2006). Oscillations and variability in the p53 system. Mol Syst Biol 2, 
2006.0033. 75

Gillespie DT (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of 
Physical Chemistry 81(25), 2340–2361. 67

Helikar T, Kochi N, Kowal B, Dimri M, Naramura M, Raja SM, Band V, Band H, and Rogers JA 
(2013). A comprehensive, multi-scale dynamical model of erbb receptor signal transduction in 
human mammary epithelial cells. PLoS One 8(4), e61757. 68 [PubMed: 23637902] 

Helikar T, Konvalina J, Heidel J, and Rogers JA (2008, Feb). Emergent decision-making in biological 
signal transduction networks. Proc Natl Acad Sci U S A 105(6), 1913–8. 68 [PubMed: 18250321] 

Huang S (1999, Jun). Gene expression profiling, genetic networks, and cellular states: an integrating 
concept for tumorigenesis and drug discovery. J Mol Med (Berl) 77(6), 469–80. 67 [PubMed: 
10475062] 

Huang S, Ernberg I, and Kauffman S (2009, Sep). Cancer attractors: a systems view of tumors from 
a gene network dynamics and developmental perspective. Semin Cell Dev Biol 20(7), 869–76. 67 
[PubMed: 19595782] 

Kauffman S, Peterson C, Samuelsson B, and Troein C (2003). Random Boolean network models 
and they east transcriptional network. Proceedings of the National Academy of Sciences 100(25), 
14796–14799. 67

Kauffman SA (1969, Mar). Metabolic stability and epigenesis in randomly constructed genetic nets. J 
Theor Biol 22(3), 437–67. 67 [PubMed: 5803332] 

Kazemzadeh L, Cvijovic M, and Petranovic D (2012). Boolean model of yeast apoptosis as a tool to 
study yeast and human apoptotic regulations. Front Physiol 3, 446. 68 [PubMed: 23233838] 

Kearns MJ, Mansour Y, and Ng AY (2002). A sparse sampling algorithm for near-optimal planning in 
large markov decision processes. Machine Learning 49(2–3), 193–208. 68, 71, 78

Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, MacBeath G, and Yaffe MB (2012, May). 
Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling 
networks. Cell 149(4), 780–94. 78 [PubMed: 22579283] 

Madrahimov A, Helikar T, Kowal B, Lu G, and Rogers J (2013, Jun). Dynamics of influenza virus and 
human host interactions during infection and replication cycle. Bull Math Biol 75(6), 988–1011. 
68 [PubMed: 23081726] 

Murrugarra D and Dimitrova ES (2015, Dec). Molecular network control through boolean 
canalization. EURASIP J Bioinform Syst Biol 2015(1), 9. 69, 70

Murrugarra D, Miller J, and Mueller AN (2016). Estimating propensity parameters using google 
pagerank and genetic algorithms. Front Neurosci 10, 513. 68 [PubMed: 27891072] 

Murrugarra D, Veliz-Cuba A, Aguilar B, Arat S, and Laubenbacher R (2012). Modeling stochasticity 
and variability in gene regulatory networks. EURASIP Journal on Bioinformatics and Systems 
Biology 2012(1), 5. 67, 68

Aguilar et al. Page 13

Lett Biomath. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Murrugarra D, Veliz-Cuba A, Aguilar B, and Laubenbacher R (2016, Sep). Identification of control 
targets in boolean molecular network models via computational algebra. BMC Syst Biol 10(1), 94. 
68, 69, 70, 74, 77 [PubMed: 27662842] 

Naseem M, Philippi N, Hussain A, Wangorsch G, Ahmed N, and Dandekar T (2012, May). Integrated 
systems view on networking by hormones in arabidopsis immunity reveals multiple crosstalk for 
cytokinin. Plant Cell 24(5), 1793–814. 68 [PubMed: 22643121] 

Pal R, Datta A, and Dougherty ER (2006). Optimal infinite-horizon control for probabilistic boolean 
networks. IEEE Transactions on Signal Processing 54(6–2), 2375–2387. 68, 78

Raza S, Robertson KA, Lacaze PA, Page D, Enright AJ, Ghazal P, and Freeman TC (2008). A 
logic-based diagram of signalling pathways central to macrophage activation. BMC Syst Biol 2, 
36. 68 [PubMed: 18433497] 

Saadatpour A, Wang R-S, Liao A, Liu X, Loughran TP, Albert I, and Albert R (2011, Nov). Dynamical 
and structural analysis of at cell survival network identifies novel candidate therapeutic targets for 
large granular lymphocyte leukemia. PLoS Comput Biol 7(11), e1002267. 68, 73, 74 [PubMed: 
22102804] 

Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, Haus U, 
Weismantel R, Gilles ED, Klamt S, and Schraven B (2007). A logical model provides insights 
into T cell receptor signaling. PLoS Computational Biology 3(8). 68

Samaga R, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, and Klamt S (2009, Aug). The logic of 
egfr/erbb signaling: theoretical properties and analysis of high-throughput data. PLoS Comput Biol 
5(8), e1000438. 68 [PubMed: 19662154] 

Shmulevich I and Dougherty ER (2010). Probabilistic Boolean Networks - The Modeling and Control 
of Gene Regulatory Networks. SIAM. 72

Shmulevich I, Dougherty ER, Kim S, and Zhang W (2002). Probabilistic boolean networks: a rule-
based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274. 67, 78 
[PubMed: 11847074] 

Singh A, Nascimento JM, Kowar S, Busch H, and Boerries M (2012, Sep). Boolean approach to 
signalling pathway modelling in hgf-induced keratinocyte migration. Bioinformatics 28(18), i495–
i501. 68 [PubMed: 22962472] 

Sordo Vieira L, Laubenbacher RC, and Murrugarra D (2019, Dec). Control of intracellular molecular 
networks using algebraic methods. Bull Math Biol 82(1), 2. 68, 78

Sutton RS and Barto AG (1998). Reinforcement learning: An introduction, Volume 1. MIT press 
Cambridge. 68, 71

Thomas R and D’Ari R (1990). Biological feedback. Boca Raton: CRC Press. 67

Tomas H and et al. The cell collective. 68

Veliz-Cuba A, Jarrah AS, and Laubenbacher R (2010, Jul). Polynomial algebra of discrete models in 
systems biology. Bioinformatics 26(13), 1637–43. 78 [PubMed: 20448137] 

Yousefi MR, Datta A, and Dougherty ER (2012). Optimal intervention strategies for therapeutic 
methods with fixed-length duration of drug effectiveness. Signal Processing, IEEE Transactions on 
60(9), 4930–4944. 68, 70, 71, 78

Yousefi MR and Dougherty ER (2014). A comparison study of optimal and suboptimal intervention 
policies for gene regulatory networks in the presence of uncertainty. EURASIP Journal on 
Bioinformatics and Systems Biology 2014(1), 6–6. 72 [PubMed: 24708650] 

Zañudo JGT and Albert R (2015, Apr). Cell fate reprogramming by control of intracellular network 
dynamics. PLoS Comput Biol 11(4), e1004193. 68, 74 [PubMed: 25849586] 

Zañudo JGT, Yang G, and Albert R (2017, 07). Structure-based control of complex networks with 
nonlinear dynamics. Proc Natl Acad Sci U S A 114(28), 7234–7239. 68, 78 [PubMed: 28655847] 

Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK, Albert R, and Loughran TP Jr (2008, Oct). 
Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci U 
S A 105(42), 16308–13. 68, 74 [PubMed: 18852469] 

Aguilar et al. Page 14

Lett Biomath. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Reduced T-LGL network adapted from (Saadatpour et al., 2011). Control nodes (in gray) 

represent the deletion of FLIP (FLIP = OFF or x2 = 0) and the constant expression of Fas 
(Fas = ON or x3 = 1).
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Figure 2: 
Optimal control policy for the reduced T-LGL network obtained by value iteration. Two 

controls have been considered, FLIP = OFF (x2 = 0) and Fas = ON (x3 = 1). Arrows in green 

represent no control, arrows in blue represent the control of the node FLIP (x2 = 0), arrows 

in orange represent the control of the node Fas (x3 = 1), and the arrows in red represent the 

control of both nodes. The colored thick arrows show the most likely transition while arrows 

in gray represent other possible transitions.
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Figure 3: 
Statistics from using the approximation algorithm for the 6 nodes T-LGL network for the 

state 110000. Algorithm 1 was used 100 times. The vertical axis shows the frequency of 

control actions predicted by the approximation algorithm. The horizontal axis shows all 

possible control actions.
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Figure 4: 
Statistics from using the approximation algorithm for the 60 nodes T-LGL network for the 

state in Equation 3. Algorithm 3 was used 100 times. The vertical axis shows the frequency 

of control actions predicted by the approximation algorithm. The horizontal axis show all 

possible control actions. The simulations contain noise of p=0.05.
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Figure 5: 
Simulations using the control policies given in Table 3 for the states of the limit cycle of 

the p53-mdm2 network. For each cycle state, we applied the control edges given in columns 

2–4 of Table 3. The smaller intermediate nodes indicate that the controls have been applied 

twice, for 5 steps each time. The colors indicate the different policies indicated in Table 3. 

Nodes with the same color have the same control policy as specified in Table 3.
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Table 1:

States of the synchronous 4-cycle and the fixed point for the 60 nodes T-LGL network. The bits in bold 

correspond to the expression level of the node Apoptosis. Thus, the periodic cycle corresponds to the disease 

state (where Apoptosis is OFF) and the fixed point corresponds to the normal cell state where apoptosis is ON.

States Binary Expression

Cycle state 111111011101111110110010110101001110110100011010101111110100

Cycle state 101111011101111110110010110101001110110100011010101111110100

Cycle state 001111011101111110110010110101001110110100011010101111110100

Cycle state 011111011101111110110010110101001110110100011010101111110100

Fixed point 000000000000000000000000000000000000001000000000010000110100
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Table 2:

Simulations from the states of the limit cycle for the 60 nodes T-LGL network. The first column indicates an 

achieved path under control. The control policy is the same as in the small example. That is, in all cases the 

system escapes the disease attractor (see Table 1) and converges to a new fixed point given by the controls.

States Binary Expression

Cycle state 111111011101111110110010110101001110110100011010101111110100

Next state 101111011101111110110010110101001110111101001010101111110100

Next state 001111011101111110110010110101001110111101101010001111110100

Next state 011111011101111110110010110101001110111101101110011111110100

Fixed point 000000000000000000000000000000000000001000000000010000110100

Cycle state 101111011101111110110010110101001110110100011010101111110100

Next state 001111011101111110110010110101001110111101001010101111110100

Next state 011111011101111110110010110101001110111101101010001111110100

Next state 111111011101111110110010110101001110111101101110011111110100

Fixed point 000000000000000000000000000000000000001000000000010000110100

Cycle state 001111011101111110110010110101001110110100011010101111110100

Next state 011111011101111110110010110101001110111101001010101111110100

Next state 111111011101111110110010110101001110111101101010001111110100

Next state 101111011101111110110010110101001110111101101110011111110100

Fixed point 000000000000000000000000000000000000001000000000010000110100

Cycle state 001111011101111110110010110101001110110100011010101111110100

Next state 011111011101111110110010110101001110111101001010101111110100

Next state 111111011101111110110010110101001110111101101010001111110100

Next state 101111011101111110110010110101001110111101101110011111110100

Fixed point 000000000000000000000000000000000000001000000000010000110100
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Table 3:

Control policy for the 7 states of the limit cycle in the p53-mdm2 network. The first column has the 9 control 

edges that allow to redirect the whole system towards the desired fixed point y0 given in Eq. 4. Columns 2–4 

give the control edges identified by the approximation algorithm (Algorithm 3) for the states of the limit cycle. 

Edges in red indicate common controls for the states in limit cycle. Figure 5 shows simulation results using 

these control policies.

All States States of Limit Cycle

0111110110110100

216 = 65536 1101010011110100 1010010011010100 0011010010010100

possible states. 1101110111110100 1000010011010100 0011110110010100

Edge controls Edge controls Edge controls Edge controls

mdm2 → p53 p53 → Wip1 mdm2 → p53 p53 → Wip1 

p53 → Wip1 p21 → Caspase p53 → Wip1 mdm2 → p21

mdm2 → p21 mdmx → p53 p21 → Caspase p21 → Caspase 

p21 → Caspase Bcl2 → Bax Bcl2 → Bax mdmx → p53

ATM → Rb Bcl2 → Bax 

mdm2 → Rb

mdmx → p53

Rb → E2F1

Bcl2 → Bax
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