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The Concurrent Control of Motion
and Contact Force in the
Presence of Predictable
Disturbances
The simultaneous control of force and motion is important in everyday activities when
humans interact with objects. While many studies have analyzed the control of movement
within a perturbing force field, few have investigated its dual aspects of controlling a
contact force in nonisometric conditions. The mechanism by which the central nervous
system controls forces during movements is still unclear, and it can be elucidated by esti-
mating the mechanical properties of the arm during tasks with concurrent motion and
contact force goals. We investigate how arm mechanics change when a force control
task is accomplished during low-frequency positional perturbations of the arm. Contrary
to many force regulation algorithms implemented in robotics, where contact impedance
is decreased to reduce force fluctuations in response to position disturbances, we observed
a steady increase of arm endpoint stiffness as the task progressed. Based on this evidence,
we propose a theoretical framework suggesting that an internal model of the perturbing tra-
jectory is formed. We observed that force regulation in the presence of predictable posi-
tional disturbances is implemented using a position control strategy together with the
modulation of the endpoint stiffness magnitude, where the direction of the endpoint stiffness
ellipse’s major axis is oriented toward the desired force. [DOI: 10.1115/1.4044599]

Keywords: bio-inspired design, compliant mechanisms, control, dynamics, haptic devices,
medical robotics, multibody dynamics and exoskelotons

Introduction
Recent experiments on neural activity in primates’ motor and

parietal cortex have suggested that there exist two separate
modules for modulating motions and contact forces in the motor
control system [1–5]. Several studies on human motor control
have focused mainly on the control of movements, while little atten-
tion has been paid to the mechanisms underlying the control of
contact forces.
Within the robotics literature, the dualism between force and

position control has been the topic of several studies, producing a
variety of hybrid position/force control schemes [6–11].
Impedance describes the resistive force of a mechanical system

subject to a movement perturbation and characterizes the mechanics
of human limbs when interacting with the environment. Early
research on the modulation of impedance in humans [12] has pro-
gressed in the last 30 years, stressing the role of the central
nervous system (CNS) in the modulation of impedance when inter-
acting with unstable dynamics [13,14]. Furthermore, recent
research suggests the existence of separate neural control mecha-
nisms of hand movements and contact forces [3,15,16] and indi-
cates that the segmental reflex feedback contributes to the
regulation of position and force tasks [17].
Position control in humans is associated with an increase of

impedance [18]. This is a way for the control system to reject
random force perturbations that would deviate the hand movement.
On the other hand, if the goal is to regulate the contact force in the
presence of motion disturbances, an increase in compliance—i.e., a
decrease of stiffness—would be the most effective strategy. There

are neural and mechanical constraints—such as reflex delays, mus-
culoskeletal mass, and muscle strengths—that limit the range of
impedance that the motor system can attain. Experiments on reach-
ing movements in the presence of deterministic forces, e.g., force
fields, demonstrated that the CNS can compensate these type of per-
turbations by forming a predictive model of forces [19,20]. This is a
good alternative for using feedback mechanisms that are prone to
large time delays, but it is contingent upon the perturbation being
predictable.
The goal of this work is to investigate the ability of the human

CNS to control contact forces, while the arm is subject to a pre-
dictable external motion. This situation is dual to the compensation
of predictable forces when the goal is a movement trajectory. We
hypothesize that subjects would modulate their impedance as the
experiment proceeds by choosing among different strategies to
minimize the contact force errors. For this purpose, human sub-
jects were asked to exert a force in a chosen direction while
a planar sinusoidal motion of the hand was induced by a robotic
device. We estimated the impedance modulation by applying
small perturbations, and we observed that during force regulation
in predictable environments, mechanical impedance increases
while force production becomes more stable and the error in
applied force decreases. The results of this study provide new evi-
dence of the CNS’ ability to control the exertion of force at the
hand on a moving contact point, shedding some light on possi-
ble mechanisms adopted for the minimization of the interaction
force errors. This result is a useful contribution in the ongoing
debate regarding the controlled variables in human motor control
[21–25].

Methods
Theoretical Hypotheses for Force Regulation. Force control

regulates the exertion of a contact force in a specified direction.
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An ideal force controller produces the force:

F = Fref (x, ẋ, t) (1)

where F is the time-varying force produced by the controller and
Fref is the reference force signal. We describe vectors in bold and
scalars in italic.
A special case of force regulation sets

F(x, ẋ, t) = const (2)

Assuming X as the vector of generalized coordinates of the hand
at the point of contact with the environment (e.g., Cartesian), to
satisfy Eq. (2), one obvious condition is to ensure that

∂F
∂x

=
∂F
∂ẋ

= 0 (3)

Defining K = ∂F/∂x as the stiffness, experimental evidence
shows that stiffness in humans is a function of the generalized coor-
dinates, and in static conditions, it increases in magnitude with the
muscle activation u(t) [26–33]. In practice, limb stiffness can never
go below a basal threshold, which increases for high levels of the
applied force, where muscle activation is also high. It should be
noted that, during movement, activation and stiffness might not
co-vary. During movement, the length of the muscle and its
moment arm can change nonlinearly. If the moment arm decreases
along a trajectory, the muscle force needs to be increased to main-
tain a constant stiffness, thus requiring an increase in activation
[34]. Our objective is to clarify how the central nervous system
can cope with these physiological aspects to achieve the condition
in Eq. (2) when the contact point between the hand and the environ-
ment is moving (i.e., ẋ ≠ 0). To do that, we can analyze how a set of
predictable dynamics of the environment can change the mechanics
of the human.
A group of human subjects was asked to exert a constant force

F(x, ẋ, t) = const in predefined directions while holding the end
effector of a robotic device known as HapticMaster (HM) (FCS
Control Systems, the Netherlands) [35]. The admittance-controlled
robotic device was used to impose a movement to the hand of each
subject. To impose the movement of the physical contact point x(t)
between the HM and the human, the control of the robot reads the
contact force F(x, ẋ, t) and commands a virtual motion xe(t), which
is transformed in the movement x(t) via a virtual impedance with
mass Me, stiffness Ke, and damping Be. Thus, the equation that
describes the control of the robot is as follows:

Me · ẍe + Be · (ẋe − ẋ) +Ke(xe − x) = F(x, ẋ, t) (4)

Equally, the force at the contact point from the human side can be
calculated using a similar equation:

M · ẍ + B · (ẋ − ẋref ) +K · (x − xref ) + Fref (t) = F(x, ẋ, t) (5)

where for the human limb,M is the inertial matrix, B is the damping
matrix, K is the stiffness matrix, and F(x, ẋ, t) is the contact force.
Fref (t) and xref (t) are the reference force and trajectory, respectively,
imposed by the CNS to accomplish the task. In principle, these two
variables could be controlled independently along two independent
directions (e.g., imposing xref (t) along its y component and Fref (t)
along x). Notice that Eqs. (4) and (5) are linearized with respect
to the position of the hand and are only valid in a small neighborhood
of such position. This is important to guarantee that coefficients M,
Me, B, Be, K, and Ke are constant within the neighborhood. Equa-
tions (4) and (5) are obviously systems with two degrees of freedom
(2-DOF). A simplified example for a single degree of freedom can be
observed (Fig. 1(a)), where “x” is the common contact point between
the human and the robot, calculated with respect to a common
ground. Furthermore, to be in equilibrium, the contact force from
the robot side needs to be the same as the one of the human side.
The force F between the ground and x for the robot side can be cal-
culated using Eq. (4), where the inertial force caused byMe depends

on the second derivative of xe with respect to time. The viscoelastic
force depends on the difference between x and xe and its first deriv-
ative with respect to time. The same force, from the human side, can
be calculated with Eq. (5), where the inertial force caused by M
depends on the second derivative of x with respect to time. The vis-
coelastic force depends on the difference between x and xref and its
first derivative with respect to time. Fref is added in parallel.
To simplify our experiment, we analyzed a set of tasks in which

force generation and imposed movement are either parallel or
orthogonal. This can largely simplify Eqs. (4) and (5) that, as a
system, will reflect the dynamics of the coupled mechanical
system in Fig. 1(b).
The generation of force by the human in a specific direction can

be therefore represented by the following scalar equation:

F =
Ze

Ze + Z
· (Z · (ve − vref ) + Fref ) (6)

where Ze is the impedance of the environment in the direction of
force application, Z is the impedance of the human arm in the
same direction, and the transform of reference force and reference
velocity vref and Fref are parameters that can be modified by the
CNS. An explanation of how Eq. (6) is derived is included in
Appendix A.
Equation (6) can be used conveniently to test which different

force control strategies the human could utilize. The strategies are
summarized as follows:

(1) Classical force control: This control architecture decreases
the arm impedance Z so that if Z→ 0, Eq. (6) yields F→
Fref. Notice that the only objective of this architecture is to
control the contact force. Position is not controlled, and
any disturbance to the end effector would produce very
little variation of force but may create large variations of
the position [7]. Instability is not a problem in this experi-
ment since the subject is interacting with an imposed move-
ment of the robot. Therefore, subjects have the option to
decrease stiffness without being concerned with mechanical

Fig. 1 (a) Representation of the arm and the robot as mechani-
cal systems for the direction of applied motion (x) and (b) repre-
sentation of couples system
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instability of the end effector and use a mechanism that
simply modulates Fref.

(2) Hybrid position/force control: Assuming that both kinematic
and force references exist, the advantage of hybrid control is
that the position and force information are analyzed indepen-
dently to take advantage of well-known control techniques
for each case [36]. The torque at the joints can be compart-
mentalized by the two separate controllers and are combined
only at the final stage. The positional part of the controller
can generate a perfect match between vref and ve compensat-
ing for the kinematic. The perfect velocity match in Eq. (6)
will produce a contact force equal to F = Ze

Ze+Z
· (Fref ). This

implies that even with a perfect position control, the imped-
ance of the arm needs to be very low in order to have a good
match between the reference force Fref and the force exerted
on the environment F.

(3) Classical impedance control: As suggested by Hogan [7],
an impedance controller must specify two variables (i.e.,
position and impedance) in order to obtain the contact
force required by the task. The impedance must contain a
static component (i.e., stiffness) in order to maintain stability
if the impedance of the environment is negligible. By sett-
ing the motion plan to vref= ve− v0, where v0 is an arbitrary
velocity of the hand, we can completely compensate for
the motion of the environment and impose an additional
movement to the contact point to obtain the desired force
even if a direct control of force is not present (Fref= 0).
Here:

F =
Ze · Z
Ze + Z

· v0 (7)

The advantage of classical impedance control is in its
inherent stability; however, it requires a priori knowledge
of the movements of the contact point, and it is difficult to
use in nonstructured environments. In its simplest form,
impedance control is a position controller where stiffness
and damping of the arm can be regulated to obtain the
desired force. Unfortunately, if stiffness and damping are
kept constant at the joint level, the Cartesian impedance at
the hand will change with the arm configuration due to the
strong nonlinearity of the arm kinematics. This produces
the inability to follow a command force trajectory unless a
representation of the inverse kinematics is part of the
controller.

(4) Hybrid impedance/force control: In both force and hybrid
force/position architectures, the control strategy is specified
as a trajectory tracking problem (i.e., tracking a given
motion and/or force trajectory). Impedance control assumes
a tracking of motion and a desired impedance to match the
desired force [37]. Yet, as shown in Eq. (7), any variation
of the impedance of the environment will generate a
change in force. This requires the capability of the system
to estimate the physical properties of the environment and
a very precise control of position to compensate for any
rapid change. The possibility to use two controls in parallel,
such as impedance control and force control, allows for a
stable system (the principal features of impedance control)
and for the necessity of predicting only the position of the
hand. Indeed, the force controller could rapidly compensate
any force error without predicting the environmental imped-
ance and without an internal representation of the inverse
kinematics to change the arm impedance as a function of
the arm configuration.

Our experimental approach aims at determining which of the
aforementioned control strategies are most likely to be employed
by the human CNS to regulate contact forces or at least to
exclude those that are deemed unlikely. Based on the four architec-
tures, the direct measure of subjects’ arm impedance (evaluated in

the same arm configuration for each subject) provides an indicator
to assess which control strategy has likely been utilized. If the
impedance is low or decreases over time, we can expect either a
force control or a hybrid position/force control strategy. If the strat-
egy is to maintain high impedance, in the measured position, we
might be in the presence of an impedance control. It is impossible
to distinguish between impedance control and hybrid impedance/
force control unless a change in the impedance of the environment
occurs. In the latter case, since a prediction of the environment is not
necessary, the impedance could remain constant letting the force
control compensate for the variation of contact forces. On the
other hand, by using an impedance control, we should see a
change in impedance over time.

Participants. Ten right-handed subjects (seven males and three
females, aged 21–36 years) participated in the experiment. Every
participant reported a normal or corrected to normal vision, a
normal sense of touch, and no known history of neurological disor-
ders. The experiment was approved by the Institutional Review
Board of Northwestern University.

Apparatus. Visual information was displayed on a Dell
1907FPc 19” LCD monitor (Dell Inc., Round Rock, TX) placed
approximately 110 cm from the user. Haptic guidance was pre-
sented via a HM robotic manipulator (FCS Control Systems, the
Netherlands) [35] placed in front of the subjects. Participants
were asked to hold the handle of the manipulator with their right
arm and to place their elbow on an armrest. The armrest compen-
sates gravity but allows free motion in the plane. The height of
the armrest was adjusted for each subject individually, so that the
shoulder, elbow, and wrist joints were situated in a horizontal
plane. Figure 2 depicts the experimental setup. The shoulder and
elbow position were 15 deg and 115 deg, respectively.

Fig. 2 Position of the subject during the experiment. Force reg-
ulation was constrained on the x-y plane. Subjects received a
visual feedback of the applied force on a display, representing
the force vector applied and the force target to be reached. The
FD is –x.
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The software used for this experiment was developed in C++
using the proprietary HapticMaster API (FCS Control Systems).
Visual feedback presented to the user was developed in OPENGL

API (Khronos Group, Beaverton, OR) and incorporated into the
experimental software. The endpoint was virtually connected to
the mass of 5 kg by way of spring and damper dynamics (stiffness:
10 kN/m with critical damping of 447.21 Ns/m). Position, velocity,
and force were recorded using the embedded instrumentation of the
robot.

Experimental Task. The axis convention used in this study
reflects the HM frame of reference where the x-axis runs toward
the participant, the y-axis runs medially to laterally, and the z-axis
runs from the bottom to the top. The experiment is carried out on
the plane z= 0.
The task chosen for this experiment was to produce an isometric

force of |F| = 10N at the handle of the HM in the four principal Car-
tesian directions in the horizontal plane. Three-dimensional graph-
ical feedback of the applied force was always provided to the
subject. A displacement applied to the hand will generally generate
a reaction force whose direction is a function of arm mechanics. The
position of the hand was not displayed on the monitor. The position
of the subject and the user’s view of the computer monitor are
shown in Fig. 2.
Each participant was first introduced to the device and verbally

instructed on the experimental task. We asked the subject to gener-
ate a force in the indicated direction regardless of the robot actions,
without giving any instruction on how to compensate for external
disturbances.
In the first part of the trial, the handle was stationary, and the

user simply had to match the produced force with the reference
force F = Fref represented by a circular target on the screen. The
target was located in the direction of force application at 10 cm

distance from the origin of a three-dimensional frame represented
in the dimetric projection (Fig. 2). As an example, assuming that
the direction of force application (FD) is the x-axis, the force refer-
ence vector is Fref = Fref 0 0

[ ]T
. Subjects were to maintain the

force in the direction of application within a threshold δ so that F⊂
(Fref − δ, Fref + δ). The force components along the other two
unloaded axes had to stay in the interval (−δ,+δ). The threshold
parameter was chosen as δ= 0.1 ·Fref. When forces in all three
directions were within their respective thresholds, the force cursor
changed its color to green.
When the subject was able to successfully maintain the target

force while satisfying these conditions for 5 s, the second part of
the trial commenced. In this part, the handle of the manipulator
moved sinusoidally about the center position along one specific
direction (either the x- or y-axis) with the semi-amplitude of
10 cm and frequency of 0.125 Hz for Nc= 25 cycles. Based on
these parameters, each trial lasted 200 s. The subject was asked to
maintain the same reference force while the movement was under
way. Each subject completed NT= 8 trials consisting of all possible
combinations of four planar principal directions of force production
and two axes of periodic motion. With reference to Fig. 3, we
defined the following labels for each experimental condition (i.e.,
task), where the first letter indicates the direction of the force, the
sign represents its orientation, and the second letter indicates the
axis of the movement (the sign for the movement is not included
as the oscillation occurs alternatively in the positive and negative
direction):

+XX, −XX, +YX, −YX, +XY , −XY , +YY , −YY

Impedance Estimation. To understand the strategy that the
CNS is using to accomplish the task, we estimated the arm mechan-
ics at the endpoint using a 2-DOF planar model of the arm [38,39].

Fig. 3 Force errors exerted during each experimental condition: (a) signed error for each direc-
tion in the Cartesian space. In the top part, the different line patterns adopted for each Cartesian
direction are shown. (b) Norm of signed errors. (c) Absolute error in the direction of force (FD) and
in the direction of movement (MD).
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Endpoint stiffness was estimated from position perturbations of
amplitude 8 mm and duration of 300 ms, applied twice per move-
ment cycle at the points of zero acceleration. The perturbation’s
profile encompassed a short transition phase of 100 ms at the start
and at the end, obtained using a sixth-order polynomial constrained
by zero velocity and zero acceleration at both boundaries and zero
end jerk (minimum snap trajectory) [40]. The direction of each per-
turbation was randomly chosen from the set kπ

4 | k = 1, 2, . . . , 8
{ }

,
with 0 aligned with the x-axis.
The total number of perturbations encountered by each partici-

pant during every trial was NP= 50, i.e., 25 cycles with 2 perturba-
tions per cycles, always when x= y= 0, but one when the hand was
moving from the positive to the negative coordinate, while the other
when moving from the negative to the positive coordinate. Most
participants were not aware of the existence of these perturbations
due to their low amplitude and extremely short duration. Others
who were aware of it tended to attribute their effect to “imperfec-
tions” of the equipment.
The inertia is a geometrical characteristic of the limb, and it is

invariant in the 2-DOF model since the estimations occur in the
same joint configuration. On the other hand, stiffness and
damping depend on passive joint properties [41,42], volitional
interventions [43], and the reflex pathways responsible for the alter-
ation of muscle activation [44,45]. As such, stiffness and damping
provide a complete characterization of the mechanical properties of
the limb that can be directly modulated by neural activities. To
reduce the number of parameters estimated at once, we evaluated
the endpoint stiffness and damping using a linear multivariate
regression, where the inertial properties of the arm were computed
separately [38,39,46]. The joint inertial parameters were calculated
for each subject by means of nine estimation methods (Hanavan
(HV) [47], Dempster (DE) [48], Chandler (CH) [49], Clauser
(CL) [50],McConville (MC) [51], Zatsiorsky and Seluyanov (Z1)
[52], Piovesan (PI) [53], Zatsiorsky and Seluyanov (Z2) [54], and
de Leva (DL) [55]).
Each model suggested a series of limb and anthropometric

dimensions to input in the regressive equations required to obtain
the inertial parameters at the joint level. Method HV is based on
the approximation of the geometry of the limb with 3D basic geo-
metric shapes. Methods DE, CH, and CL are commonly used and
derived the estimation of arm parameters from cadaver dissections.
Method MC determined the geometric properties of the arm from in
vivo photographic images. Methods Z1 and Z2 are based on in vivo
scans performed using gamma rays to determine the distribution of
density. Method DL is an adjustment of methods Z1 and Z2,

considering a slightly different segmentation of the arm. A detailed
comparison between the aforementioned methods and a description
of the water immersion method PI can be found in Ref. [53].
Inertial joint parameters were then transformed to the Cartesian

endpoint space by means of the Jacobian matrix calculated for
each subject.
We calculated the regression between the kinematic variables of

the net perturbation and the force generated by it after subtracting
the inertial force. The inertial force is obtained by multiplying the
endpoint inertial matrix M̂ (estimated as the average of the nine
methods described above) by the net perturbation acceleration.
Referring to Fig. 4, we can observe an example inwhich themove-

ment of the hand is along the y-axis (the x-axis is set to x= 0), and the
ith perturbation in both x and y directions is applied. To estimate the
baseline of both the position and the force, we used a linear interpo-
lation of the signal (straight line in Fig. 4) connecting the signal at
time ti0 = 0s (first vertical line crossing time zero in Fig. 4) when
the perturbation is applied to the time tif = ti0 + 0.7s (vertical
dashed line in Fig. 4). The error between x and xref (where both var-
iables represent a vector of the trajectories in x and y) and its deriv-
ativeswith respect to time is here identifiedwith the vector “e” and its
derivatives with respect to time. The difference in force between the
baseline force and the actual force is defined as ΔFi.
To obtain a stable estimate of stiffness and damping, movement

cycles are divided into blocks of size Nw= 10 cycles. Each block of
10 consecutive cycles is called a “window,” and it is used for a
single stiffness and damping estimate where the number of
random perturbations for each estimate is NPw= 2 ·Nw= 20. Each
ith perturbation (i= 1..NPw) encompassed 300 ms worth of data
from ti0 = 0s to tip = 0.30s (second red line in Fig. 4), so that the fol-
lowing regression equation can be used to estimate stiffness and
damping within the jth block of 10 consecutive cycles:

ΔF1

..

.

ΔFi

..

.

ΔFNPw

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

j

−M̂

ë1
..
.

ëi
..
.

ëNPw

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

j

= K B
[ ]

j

e
ė

[ ]
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.

e
ė

[ ]
i

..

.

e
ė
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⎡
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j

Fig. 4 Force errors exerted during each experimental condition. Signed error for each
direction in the Cartesian space.
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Note that the symbol # represents the Moore–Penrose pseudoin-
verse of the kinematic errors in the jth window. To obtain the sub-
sequent estimate for the ( j+ 1)th window, we consider the next 10
consecutive cycles after the first (i.e., j= (2..11)). Given the number
of movement cycles in the experiment (Nc= 25), the maximum
number of block estimates per trial is NWT=Nc− (Nw− 1)= 16.
Starting from the initial block estimate, we observed the evolution
of stiffness and damping throughout the trial to identify the strategy
adopted by each subject.
We used the canonical correlation to quantify the overall measure

of linear association between kinematics and kinetics variables [56]:

r2I =max (eig(S−1FFSFXS
−1
XXSXF)) (8)

where SFF is the covariance matrix of the force generated by the
perturbation, and SXX is the covariance matrix of the perturbation
kinematics (position and velocity).
Hand acceleration was obtained as the first derivative of the veloc-

ity signal. Signals were filtered using a sixth-order Savitzky–Golay
polynomial filter with a cutoff frequency of 23.4 Hz [57]. Since
the movement of the hand is servo-commanded, there is no need
to compute the intended trajectory of the hand as given in Ref.
[13,58]. Within each perturbation, we subtracted the mean force to
avoid bias.

Data Collection. Force and motion data were collected at a rate
of 250 Hz. Each task performance trial was analyzed individually
offline, and the average force and force errors were calculated
using the following procedures.
The average force and absolute average errors for each cycle

were calculated as follows:

ϕk
s =

1
N

∑N
n = 1
n ∉ P

Fs(n) (9a)

eks =
1
N

∑N
n = 1
n ∉ P

|Fs(n) − Frefs (n)| (9b)

where Fs(n) is the force exerted along an arbitrary direction s among
(x, y, z), N is the number of data points n collected during the kth
cycle, not including the set of data points P collected when random
perturbations were applied, and depends on the sampling frequency
at which the force signal was acquired by the HapticMaster Robot.
Given the difference between the force Fs(n) and the reference

force Frefs (n) in the same direction, the average absolute error eks is
calculated as the average of the absolute of such difference during
the kth movement cycle. The value of the absolute error within a
cycle always satisfies eks ≥ 0 with equality if and only if the actual
and desired force trajectories coincide, i.e., F(n) = Fref (n) ∀n ∈ N.
The force error measures Ei

s and Ξi
s on the ith window are com-

puted as follows:

Ξi
s =

1
Nw

∑Nw

j=1

ϕi+j−1
s

( )
− Frefs | i = 1, 2, . . . , NWT (10a)

Ei
s =

1
Nw

∑Nw

j=1

ei+j−1s (10b)

The signed force error Ξi
s for the direction s is the difference

between the average force within the estimation window i and the
reference force. Notice that since the average force ϕk

s can change
sign from cycle to cycle, the error Ξi

s has a sign. Thus, we can
observe whether subjects employ a continuous correction strategy
to obtain the desired force or if there is a bias where the desired
force is systematically undershot or overshot. On the other hand,
the average force error Ei

s for the direction s in the window i is a
measure of absolute force mismatch, which is useful to compare
if the force error is independent from the direction of the movement.
Effectiveness of training is assessed by computing the skill gain

G for each trial as a difference between the absolute force error
measures of the last and first window:

Gs = E1
s − ENWT

s (11)

Positive skill gain indicates improvement in the subject’s perfor-
mance during the trial, whereas negative skill gain indicates decline
in performance. Larger reductions in the force error measures from
the first window to the last window correspond to larger skill gains
and greater effectiveness of the training for that particular subject.
Two kinds of force error are considered based on the characteris-

tics of the direction s: the force error in the direction of motion (MD)
and the force error in the direction of applied force (FD). For some
trials, these two directions coincide. We denote the two kinds of
skill gain values by GMD and GFD.
Of four components of the endpoint stiffness matrix K =
Kxx Kxy

Kyx Kyy

[ ]
, two are of particular interest for our analysis. The

first component of the stiffness we are interested in relates the dis-
placement in the MD to the force in the MD. We call this compo-
nent stiffness in the MD (KMD). The second component of
interest is the stiffness component relating the displacement in the
MD to the force in the FD. We call this component stiffness in
the FD (KFD). If the two directions coincide, then KFD=KMD.
Stiffness modulation is assessed by calculating for each trial

the difference between the stiffness estimates of the last and first
blocks cycles:

ΔK = KNWT − K1 (12)

This computation is performed for stiffness estimates in both the
MD and the FD yielding the values of ΔKMD and ΔKFD.
To determine the relationship between each skill gain value and

the corresponding change in stiffness, a simple correlation metric
was used, which took into account only the sign of each variable:

R =
1
NT

∑NT

i=1

sgn(Gi)sgn(ΔKi) (13)

where Gi and ΔKi denote the skill gain and stiffness modulation
during the ith trial. Note that − 1≤R≤ 1 in all cases. The choice
of this particular correlation metric instead of a linear correlation
or other popular correlation metrics is motivated by an unknown
and possibly nonlinear nature of the relationship between the two
variables.

Statistical Analysis. Each coefficient of stiffness Kij and
damping Bij is obtained as the regression slope between the
kinetic variables i and the kinematic variables j. Since two depen-
dent variables (i.e., total force minus inertial force in x and y) and
four covariates (position and velocity for x and y) are present, a mul-
tivariate analysis needs to be performed. We test if each coefficient
is statistically different from the beginning to the end of each force/
movement condition.
Each regression coefficient represents the most probable value of

a slope between dependent variables and covariates where a
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variance is also associated with it. We need to establish if
the regressions slopes representing each component of the imped-
ance are different between the first and the last window estimate.
Given two regression coefficients, obtained using the same variables
and covariates although in two different period of the exercise
(i.e., beginning and end), we can compare their statistical differences
by means of a multivariate analysis of covariance (MANCOVA),
which establishes if the regression slope is statistically different
between the two groups. Thus, we need to estimate if the interaction
effect between two groups (i.e., the first and the last window esti-
mate) and the respective kinematic variables is significant.
Following the aforementioned procedure, we can also ascertain if

the curl of each stiffness and damping matrix is statistically signifi-
cant by determining if the slopes defining the terms outside of the
diagonal are statistically different with respect to each other.
We analyzed the average stiffness and damping estimated among

all inertial models for the human subjects in each experimental con-
dition. The significant difference of the matrices’ coefficients
between the first and last window estimate of each experimental
condition was tested using MANCOVA, where group (first versus
last window estimate) was a fixed factor and “subjects” was a
random factor. This analysis identified if the change in stiffness
and damping along the MD and FD was significant between the
beginning and end of each exercise.
We tested the effect of training on thematrix determinant and rota-

tion angle metrics within each experimental condition. The effect of
the inertial models was evaluated using a three-way repeated mea-
sures analysis of variance (ANOVA) with inertial models and
window estimate as fixed factors and subjects as a random factor.
To analyze the curl within each experimental condition, we per-

formed a four-factor ANOVA (subjects as random factor and
window estimate, inertial method, and position outside the diagonal
as fixed factors) between the terms xy and yx of both K and Z. A sig-
nificant difference of the factor “position outside the diagonal”
implies a statistically significant curl.
A similar analysis was performed among all experimental condi-

tions to test if the subjects reoriented the stiffness in either MD or
FD (four-factor ANOVA: subjects as random factor and window
estimate, inertial method, and experimental condition as fixed
factors).
The statistical significance of skill gain was tested for each exper-

imental condition using a two-way ANOVAwith window estimates
as a fixed factor and subject as a random factor. The significance of
the correlation between the skill gain and the change in impedance
was evaluated using a sign test.
To test the influence of the method on the measurement, we rep-

licated the experiment on a mechanical rig. The results obtained
with the calibrated physical prototype are reported in Appendix B
and indicated that the method can influence the estimation with
an error up to 2.7%. Since the stiffness variation monitored in the
human subjects was larger than that, it is quite unlikely that such
variation would be an artifact of the technique or the result of
noisy estimates.

Results
With Practice Subjects Learn to Produce More Accurate

Contact Force. To confirm that subjects are able to control

forces, it is important to establish that learning occurs and a reduc-
tion of force errors is taking place during the exercise.
Figure 3(a) shows the average among subjects of the signed error

Ξ in the three cardinal directions. We can notice that by observing
the signed error for each cardinal direction separately calculated as
in Eq. (10a), there is not a preferential tendency to overshoot or
undershoot the required force. On the other hand, by analyzing
the norm of the signed error in Fig. 3(b), we can notice a general
tendency for the error to decrease from the beginning to the end
of training, as evidence that learning is taking place.
We can see in Fig. 3(c) that the absolute force error decreased

both in the direction of movement (MD) and in the direction of
force (FD) as each exercise progressed. While subjects were able
to maintain a 10 N force magnitude accurately, when the MD was
orthogonal to the FD, the absolute force errors in the MD were
higher than the absolute force errors in the FD (EMD>EFD). As an
example, for condition “1” (MD= y, FD=−x) in Fig. 3(c), the abso-
lute average force error among subjects in the direction of movement
is almost one third of the desired target force in the direction of force.
A nonmonotonic behavior was observed in condition 2 (MD= x, FD
=−x), where the force error decreased considerably within the first
eight window estimates, but then increased to a value similar to the
initial. A separate analysis was conducted for each experimental con-
dition (two-way repeated measures ANOVA: window estimates as
fixed factor and subject as a random factor) to evaluate the effect
of force learningwithin each condition. In themajority of conditions,
the skill gainsGMD andGFD increased (i.e., a reduction in force errors
between the first and last window estimate as defined in Eq. (11)) as
the training progressed, showing evidence of learning. Increases in
skill gains were significant (p< 0.01) or marginally significant
(threshold 0.01 < p< 0.08), as given in Table 1.

Stiffness and Impedance Magnitude and Orientation. The
determinant of the stiffness and the determinant of the impedance
at the frequency of the movement were almost identical (Fig. 5).
This is an indication that the system is dominated by the stiffness.
This condition is desirable for the study of force control as the
impedance could be decreased to low values voluntarily just by
modulating the stiffness. We can notice that the determinant of
the damping component is negligible.
Our analysis shows that the stiffness orientation is statistically

different across experimental conditions (p< 0.0001). Figure 5
shows that the orientation of impedance (and therefore stiffness
since it is its predominant component) changes with respect to the
direction of the force. The major axis of the impedance ellipse is
on average 30 deg when the force is directed along the x-axis
(0 deg being the direction of x). When the force requirement is
along the y-axis, the average angle is significantly bigger (45 deg)
showing a marked shift toward the direction of the force indepen-
dent of the direction of the movement. We used a single-way
ANOVA with the direction of force as a factor. The change in ori-
entation, even though not dramatic, was statistically significant (p<
0.0001) and compatible with the voluntary change in stiffness ori-
entation described by Perreault et al. [32].

Stiffness and Impedance Increase as Force Error Decreases.
Figure 6 shows the ellipses of stiffness, the ellipses of damping, and

Table 1 Analysis of variance with subject as a random factor for force error in the direction of motion (MD) and in the direction of
force (FD)

1 2 3 4 5 6 7 8

F p F p F p F p F p F p F p F p

GM 3.33 0.00 0.59 0.88 3.13 0.00 3.65 0.00 1.74 0.05 3.35 0.00 4.78 0.00 1.59 0.08
GF 3.10 0.00 0.59 0.88 3.13 0.00 1.94 0.01 0.43 0.97 3.35 0.00 4.78 0.00 1.40 0.15

p< 0.01 is indicated in bold.
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the ellipses of impedance at the frequency of the movement
(0.125 Hz) for all the experimental conditions as an average of all
ten participants. The canonical correlation indicates how well the
system is approximated by a linear relationship between input and
output. The canonical correlation across subjects and conditions is
r2I = 0.80, indicating a modest nonlinearity between kinetic and
kinematic variables.
The variation of stiffness matrix rotation during the adaptation is

insignificant or marginally significant for cases 3 (MD= y, FD=
+y) and 4 (MD= y, FD=+x). In the latter case, the change in rota-
tion is less than 6 deg. The significance of each parameter variation
for both stiffness and impedance is reported in Table 2. Figure 6
also highlights the monotonic increase in stiffness, damping, and
impedance magnitude as the experiment progresses. This can be
observed by the general increase in area of the ellipses. There is a
statistically significant increase in the stiffness and impedance
determinant between the beginning and the end of each experimen-
tal condition as represented in Table 2.
Evolution of the overall stiffness magnitude expressed by det(K)

[12], curl, and orientation variation within each experimental condi-
tion is also presented in Fig. 7(d ). As reported in Table 3, the terms
outside of the matrices diagonal are never statistically different from
each other for both stiffness and impedance, showing that the curl is
not statistically different from zero.
We calculated both the impedance and stiffness matrices for

each subject using nine different inertial models. Table 4 shows
MANCOVA for the average of each stiffness/impedance coeffi-
cient across inertial models calculated on the whole subject popu-
lation between the first and the last estimating window of each
experimental condition. We can observe the significant change
of the terms on the diagonal for both the stiffness matrix and the
impedance matrix. Moreover, the off-diagonal terms did not statis-
tically change in the majority of the cases. Since both Kxx and Kyy

were statistically different between the first and the last window
estimate, so were the values of ΔKMD (difference in stiffness
along MD) and ΔKFD (difference in stiffness along FD), which
are depicted in Fig. 7(b).

Skill gains averaged for each condition across subjects are
depicted in Fig. 7(a). “#” indicates elements that were marginally
significant (0.01 < p< 0.08), and “@”indicates nonsignificant cases.
Correlation coefficients for every subject computed according to

Eq. (13) (see “Methods section”) are presented in Fig. 7(c). The
majority of subjects exhibited positive correlation between their
skill gains and changes in stiffness during training trials. Mean
values of correlation coefficients over the entire subject population
were found to be positive (0.59 and 0.46 for the MD and the FD,
respectively). Sign tests were used to confirm the statistical signifi-
cance of the result (p< 0.00001).
The results presented points to a control strategy that increases

the stiffness overtime while improving the precision in in the modu-
lation of force. These strongly suggest that an internal model of the
movement is created and that force is modulated via impedance
control.

Discussion
This paper focused on the upper limb modulation of force and its

regulation in case of externally imposed arm motions. The results
indicate that during force regulation in predictable environments,
mechanical impedance increases while force production becomes
more stable and the error in applied force decreases.
It was demonstrated in the literature that increasing the contact

force in isometric conditions increases the level of muscle activation
and consequently increases the magnitude of stiffness [32].
However, the increase in stiffness shown in the “Results section”
of this work is independent of the contact force, which is maintained
constant throughout the experiment.
Muscle fatigue is another factor that can influence the modulation

of muscle force inducing a decrease of both isometric and isotonic
maximal exertable forces. Such reduction of force is usually associ-
ated with a simultaneous decrease in muscle stiffness [59,60].
Given the significant increase in stiffness recorded in the present
experiment, we can conclude that muscle fatigue is not a factor in
the phenomenon we observed.

Fig. 5 Determinant and orientation of total impedance (Z ), stiffness (K ), and damping
(B) ellipses at the frequency of the movement ( f=0.125 Hz). The orientation of the ellip-
ses is calculated considering the major axis at 0 deg when aligned in the x direction as
illustrated in Fig. 1.
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The observations in this work are valid only for predictable per-
turbations at the frequency of 0.125 Hz. Different strategies might
arise for lower frequencies or nonpredictable environments.
However, to render a nonpredictable environment at low frequency
appears to be quite challenging as it is easy for the subject to track
slowly changing environments [61]. A factor that can influence
the stiffness modulations is the predictability of the environment,
which depends on the frequency content of the perturbation.
When the environment is not predictable, the formation of an inter-
nal model is impossible and other strategies need to be employed.

Nonetheless, it is difficult to refute that perturbations embedding
very low-frequency components are predictable since they are
well within the bandwidth of voluntary movements. We used the
impedance as a figure of merit for the control schema since it is a
variable that can encompass both the intrinsic biomechanics and
the neuromuscular control of the arm. Stiffness and damping can
be regulated via muscle activations (including co-contraction) and
segmental reflexes. On the other hand, the inertial component of
the impedance is dictated simply by the geometry of the arm. As
the frequency of the movement increases, and with it the unpredict-
ability/entropy of the disturbance [62], the effect of the inertial
forces becomes predominant and cannot be modulated by the
subject. Therefore, the subject has “no choice” as the impedance
will be dominated by the inertial component.
A further question for discussion is to clarify what the influence of

visual feedback for force control is. The way in which the task is pre-
sented might condition the type of control that the subject chose
to utilize. Subjects could try to “remember” the force to be applied,
but this is likely prone to the long-term drift. A bias toward a direct
control of the position might occur if subjects are responding to
visual errors and are trying to drive a cursor to a desired posi-
tion. We believe that our representation obviates these problems as
the origin and target for the force representation vector was indepen-
dent from the position of the hand. Furthermore, the direction of force
application is different than the direction of displacement subjects
would have to apply to generate the force. Independent of the
control, the direction of contact force and “pushing” direction would
coincide only if such direction is also an axis of the endpoint stiff-
ness/compliance ellipse. This might explain a tendency to align the
major axis of the stiffness ellipse with the direction of the force.
The findings in this work contradict the intuitive solution

described by Eq. (2) (see “Methods section”), which suggests that
the impedance of the human arm decreases isotropically as the
force production improves. Furthermore, we can discard the
hybrid position/force control architecture. The four conditions
where force and motion are orthogonal are significant in the
context of classical “hybrid position/force control,”where the direc-
tions of space are separated in mutually orthogonal motion free-
doms and force freedoms. This allows the independent
specification of which variable is being controlled by the subject
and what variables are dictated by the environment (rigid constraint
or free space). By using this reasoning, we would expect a decrease
in stiffness in the direction of force, which instead did not happen.
Conversely, we observed an increase in stiffness/impedance in the
general direction of force. Thus, the results are compatible with
the idea that the force regulation process employed by the central
nervous system involves not only the pure force controller
described by Eq. (2) but also a coupled controller mediated via
the impedance of the arm. As an adaptation to the environment pro-
gresses, an internal model [19] of the environment develops. This
model provides the estimates of the kinematic parameters of the
environment that drives the coupled motion controller to provide
increasingly more accurate feed-forward compensation.
Our results show that stiffness reorientation is toward the direc-

tion of the force for each experimental condition, consistent with

Fig. 6 Ellipses representation for the different components of
arm mechanics. M represents the average ellipse of inertia
(dashed). The dotted ellipses represent those obtained with the
two methods that tend to overestimate (HV) or underestimate
(PI) the bulk of inertial properties [53]. Inertial properties are inde-
pendent of the experimental conditions. For each experimental
condition, black segments start from the origin, pointing in the
FD. Gray segments lay along the MD and cross the origin. Each
component of the ellipse Z(w), is in the form of Eq. (5). Magnitude
is calculated for the specific angular frequency of the perturba-
tion ω=2 · π · 0.125[rad/s]. The magnitude of both stiffness and
damping are represented for every four estimation windows,
according to the color code on the top-left corner.

Table 2 Influence of window estimates for impedance metrics: three-way (ANOVA) with subject as a random factor and window
estimates and inertial models as fixed factors

1 2 3 4 5 6 7 8

F p F p F p F p F p F p F p F p

K det(K ) 13.73 0.00 125.3 0.00 29.75 0.00 126.8 0.00 86.91 0.00 201.6 0.00 97.24 0.00 156.4 0.00
ang(K ) 0.02 0.90 0.01 0.91 4.43 0.06 7.38 0.02 3.49 0.09 0.16 0.70 1.30 0.28 3.21 0.11

Z det(Z ) 13.85 0.00 125.2 0.00 29.78 0.00 126.8 0.00 86.79 0.00 201.7 0.00 97.21 0.00 156.5 0.00
ang(Z ) 0.02 0.88 0.01 0.91 4.43 0.06 7.38 0.02 3.50 0.09 0.16 0.70 1.30 0.28 3.21 0.11

p< 0.01 is indicated in bold.
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the previous results for isometric conditions [29,62–65]. Note that
the initial orientation of stiffness is different for each experimental
condition, such as leaning toward the force direction (FD) and not
changing during training. This is consistent with the predictive
properties of the motor plan [66,67]. This observation points out
that subjects already start with the preplanned strategy of position
control where force is generated, by modulating the stiffness. A
general increase in stiffness might be necessary to increase the
tracking capabilities of the external disturbance. If subjects can
predict what the robot trajectory will be, a higher stiffness about
that trajectory will stabilize the motion against unpredictable pertur-
bations and improve the tracking. Hence, when the movement is

well tracked, a bias of the predicted trajectory can generate the
desired target force with increased stiffness. Applying a bias displa-
cement in the direction of the force will result in a force generated in
the same direction only if one of the stiffness ellipse’s axes is ori-
ented in the same direction. Thus, if the behavior is preplanned, a
convenient strategy is to re-orient, from the beginning of the exer-
cise, the major axis of the stiffness ellipse in the direction of the
applied force. This strategy achieves smaller amplitude bias point-
ing in the desired direction. Even though the alignment of the stiff-
ness ellipse is not perfect, the rotation of the stiffness seems to be
preselected at the beginning of each trial and does not statistically
change during it as a consequence of adaptation.

Fig. 7 Average of all subjects and all inertial models. (a) Skill gain in the direction of motion GM and in the direc-
tion of force GF. Nonmarked bars are significant (p<0.01), “#” indicates elements that are marginally significant
(0.01<p<0.08), and “@” indicates the nonsignificant cases. (b) Difference in stiffness between the first and the
last window estimate. All variations are statistically significant. (c) Correlation between skill gains and changes
in stiffness during training trials for each subject. Mean values of correlation coefficients over the entire
subject population were positive (0.59 and 0.46 for the MD and the FD, respectively). (d ) Change in metrics of
the stiffness matrix for each condition. Changes in determinant are all significant (p<0.01). Changes in curl
and orientation are not significant; “#” indicates marginally significant change in orientation (0.01<p<0.08).

Table 3 Statistical difference between xy and yx terms

1 2 3 4 5 6 7 8

F p F p F p F p F p F p F p F p

K 0.80 0.39 0.16 0.70 0.41 0.54 0.81 0.39 0.60 0.45 1.12 0.32 0.39 0.55 0.41 0.54
Z 0.77 0.40 0.15 0.70 0.39 0.54 0.80 0.39 0.59 0.46 1.11 0.32 0.39 0.55 0.41 0.54

Note: Analysis of variance with subject and session as random factors and method as a fixed factor for impedance CURL (p< 0.01).

Table 4 p values for repeated measure MANCOVA among subjects and methods between first and last session of each exercise

K Z

Trials► Trials►

xx 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
xy 0.04 0.03 0.05 0.03 0.87 0.01 0.04 0.24 0.07 0.04 0.00 0.00 0.05 0.00 0.11 0.34
yx 0.01 0.62 0.09 0.05 0.64 0.25 0.23 0.35 0.02 0.11 0.00 0.12 0.89 0.36 0.38 0.59
yy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.65 0.00 0.00 0.00 0.00 0.00

p< 0.01 is indicated in bold.
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Since the applied force diminishes, while the stiffness increases,
this behavior is compatible with a decrease in bias displacement to
generate the desired force. If the displacement is progressively
smaller, subjects can concentrate on compensating the external
movement, while letting the stiffness modulation satisfy the
required output of force. Furthermore, the increase of stiffness
without a rotation of the ellipses during each condition suggests
that its modulation occurs by co-contraction [68]. This is also sup-
ported by the absence of statistically significant curl.

Conclusions
We believe that in order to properly plan a robotic control strat-

egy, it is necessary to understand how the “mechanical load”
applied to the robot’s end effector changes. In this case, the
“mechanical load” is the human acting as an actively controlled
physical system and adapting to the interaction force and move-
ments of the robot’s end effector. The present paper provides the
useful insight that humans use a predictive internal model construct-
ing a trajectory and modulating their impedance, increasing it over
time. Thus, to guarantee the safety of the physical human–robot
interaction, changes in the trajectory of the robot’s end effector
need to be carefully controlled when humans are applying a load
to it over time. In fact, since the stiffness of the individual increases
over time, a sudden change in trajectory in the direction of the major
axis of the subject’s stiffness ellipse will generate peak forces that
are much higher over time when compared with sudden movements
in the direction orthogonal to it.
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Appendix A
Restricting our example to a one-dimensional case, the mechan-

ical impedance of the arm and environment, defined in the complex
plane as the ratio between the Laplace transform of force and veloc-
ity [7,69] is as follows:

Z(s) = B +
K

s
+ sM (A1)

Ze(s) = Be +
Ke

s
+ sMe (A2)

where s= α+ jω represents a complex number that includes the
angular frequency of the motion ω. Assuming for simplicity, the
scalar form of Eqs. (3) and (4) in the frequency domain, and substi-
tuting for Eqs. (A1) and (A2), we obtain

sMev + Ze · (ve − v) = F (A3)

sMvref + Z · (v − vref ) + Fref = F (A4)

where the dependency of Z and Ze on s is omitted to streamline the
notation. The impedance Ze is imposed as a control variable of the
robot, and therefore, it is invariant within a given environment. On
the other hand, the impedance of the arm Z and the transform of ref-
erence force and reference velocity vref and Fref, respectively, are
parameters that can be modified by the CNS.
We will demonstrate in “Results section” that the inertial compo-

nents of both the environment and the arm impedance are negligible
with respect to the total impedance (i.e., sMe≪Ze, sM≪ Z). This
allows us to omit such term from Eqs. (A3) and (A4). Thus, after

such approximation, by equating Eqs. (A3) and (A4) and isolating
for (ve− v), we have

(ve − v) =
Z · (v − vref ) + Fref

Ze
(A5)

It easy to see that

(ve − vref ) = (ve − v) + (v − vref ) (A6)

Therefore, substituting Eq. (A6) into Eq. (A5), we have

(ve − vref ) =
Z · (v − vref ) + Fref

Ze
+ (v − vref ) (A7)

Isolating (v − vref ), we obtain

(v − vref ) =
Ze

Ze + Z
· (ve − vref ) −

Fref

Ze + Z
(A8)

Thus, substituting Eq. (A8) in Eq. (A5) gives

F =
Ze

Ze + Z
· (Z · (ve − vref ) + Fref ) (A9)

By using Eq. (A9), we can analyze different force regulation
strategies to obtain F=Fref.

Appendix B
Measure Validation on a Mechanical Prototype. While the

canonical correlation assesses the assumption of a system’s linear-
ity, it does not convey a measure of how precise the estimation is.
To assess the validity of the aforementioned procedure with respect
to our experimental apparatus, we estimated the stiffness of a
custom-made mechanical rig. Anisotropic stiffness and isotropic
endpoint inertia were replicated with a set of calibrated springs
and masses. The rig’s stiffness was first measured at a steady
state using a single DOF load cell and a noncontact optical
system to check the load cell alignment and spring displacements.

Stiffness was observed to be Kbasic =
615 0
0 507

[ ]
N/m. Test

mass was set at Mbasic= 1.87 kg. We employed a passive damper
to attenuate the vibration of the springs outside the plane of pertur-
bation, thus suppressing the modes that could not be accounted for
by our planar model. The damper consisted of a series of thin rubber
sheets, positioned on top of the springs to dissipate the out-of-plane
vibrational energy (see Fig. 8).
The mechanical rig was subject to the same perturbations as

the subject. The inertial properties of the rig were evaluated

Fig. 8 Graphical representation of the mechanical rig used for
validating the regressive technique. Rubber sheets were placed
on top of the springs to limit their out-of-plane oscillations. The
vibrational energy dissipated by the rubber oscillation produced
a slight damping effect.
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separately, and a full regression was used to estimate stiffness and
damping.

Statistical Testing. By using MANCOVA on both stiffness and
damping, we monitored for each of the five repetitions of the task if
the estimated coefficients outside of the diagonal were statistically
different to each other for each window estimate. Moreover, we
tested the statistical difference of each coefficient between the
first and the last window estimate. Subsequently, we used an
ANOVA to evaluate the influence of each window estimate on
the mean determinant and matrix rotation among the five repetitions
of the task.

Reliability of the Impedance Estimate. Results for stiffness
and impedance estimations are presented in Figs 9 and 10. Stiffness

estimates obtained with the implemented regression technique gave

results consistent within ±2.7% of Kbasic =
615 0
0 507

[ ]
N/m (see

“Methods section”). The canonical correlation for the regression on
the mechanical apparatus was quite high, giving an r2I = 0.96.
Hence, the linear component of elastic force in the analyzed
system is predominant.
Table 5 shows no stiffness and impedance curl for all the 16

window estimates as expected for a passive mechanical rig.
Table 6 shows no statistical difference of the stiffness matrix coef-
ficients between the first and the last window estimate for all five
repetitions of the measure cycle. ANOVAs on determinant and ori-
entation of the rig’s stiffness matrix did not show any significant
change between the averages of the first and the last window esti-
mates (F= 0.05, p> 0.99).

Fig. 9 Stiffness features of the experimental apparatus. Each coefficient estimation presents a small drift,
which is never bigger than ±2.7%. Estimations of the stiffness metrics also present some drift, but do not
have a preferential direction.

Fig. 10 Estimated impedance of the mechanical rig
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Given the results obtained with the calibrated mechanical rig, we
can infer that since the stiffness variations monitored in the human
subjects were larger than 2.7%, it is quite unlikely that these would
be generated as an artifact of the technique itself or by noisy
estimates.
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