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The epidemiology of HIV-1 varies in different areas of the world, and it is possible that this complexity may leave 

unique footprints in the viral genome. Thus, we attempted to find significant patterns in global HIV-1 genome 

sequences. By applying the rule inference algorithm RIPPER (Repeated Incremental Pruning to Produce Error 

Reduction) to multiple sequence alignments of Env sequences from four classes of compiled datasets, we generated four 

sets of signature patterns. We found that these patterns were able to distinguish southeastern Asian from non- 

southeastern Asian sequences with 97.5% accuracy, Chinese from non-Chinese sequences with 98.3% accuracy, African 

from non-African sequences with 88.4% accuracy, and southern African from non-southern African sequences with 

91.2% accuracy. These patterns showed different associations with subtypes and with amino acid positions. In addition, 

some signature patterns were characteristic of the geographic area from which the sample was taken. Amino acid 

features corresponding to the phylogenetic clustering of HIV-1 sequences were consistent with some of the deduced 

patterns. Using a combination of patterns inferred from subtypes B, C, and all subtypes chimeric with CRF01_AE 

worldwide, we found that signature patterns of subtype C were extremely common in some sampled countries (for 

example, Zambia in southern Africa), which may hint at the origin of this HIV-1 subtype and the need to pay special 

attention to this area of Africa. Signature patterns of subtype B sequences were associated with different countries. Even 

more, there are distinct patterns at single position 21 with glycine, leucine and isoleucine corresponding to subtype C, B 

and all possible recombination forms chimeric with CRF01_AE, which also indicate distinct geographic features. Our 

method widens the scope of inference of signature from geographic, genetic, and genomic viewpoints. These findings 

may provide a valuable reference for epidemiological research or vaccine design. 

 

Pattern inference, global HIV-1 sequence, Repeated Incremental Pruning to Produce Error Reduction (RIPPER) 

 
INTRODUCTION 

During the processes of independent cross-species 

transmission, different HIV lineages were formed, and 

these included HIV-1 M, N, O, and P, and HIV-2. The 

HIV-1 M group has been further subdivided into nine subtypes, 

A-D, F-H, J, and K, according to the variation in genetic 

distance of these amino acids. This variation is generally 

8-17% and up to 30% within subtypes, whereas between 

subtypes, it is generally 17-35% and up to 42%, depending 

on the genomic regions used for subtyping (Hemelaar J, 

2012; Sharp P M, et al., 2011). With the increasing 

sensitivity and range of sequencing techniques, increasing 

numbers of circulating recombinant forms (CRFs) have 

been reported. 

The globally uneven distribution of the different HIV-1 

subtypes and CRFs reflects the molecular epidemiology 

of the virus. In southern and eastern Africa, the predominant 

subtype is C, and this makes up 52% of HIV-1 infections 

worldwide. By contrast, in West and Central Africa, the 

vast majority of infections are caused by CRF02_AG, 

while in East Africa, subtypes A and D and their CRFs are 

the dominant subtypes (Delatorre E O, et al., 2012; 
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Hemelaar J, 2012; Kallings L O, 2008; Morris C N, et al., 

2006; Njai H F, et al., 2006; Pollakis G, et al., 2003; Shen 

C, et al., 2011; Tebit D M, et al., 2011; Worobey M, et al., 2008; 

Zhu T, et al., 1998). Within the homosexual populations 

in North and South America, Western and Central Europe, 

Australia, Asia (for example, Hong Kong, Japan, Korea, 

Taiwan etc.), North Africa, the Middle East, South Africa, 

and Russia, subtype B is the predominant subtype (Buonaguro 

L, et al., 2007; Delatorre E O, et al., 2012; Gilbert M T P, et al., 

2007; Junqueira D M, et al., 2011; Moran D, et al., 2007; 

Paraskevis D, et al., 2009). In South America, in addition to 

the B, C, F, and BF subtypes, recombinant virus subtypes 

also coexist, and infections caused by the BF recombinant 

viruses (including CRF12_BF, CRF17_BF, CRF29_BF, 

and CRF29_BF) accounted for 80% of the HIV-1 infections 

in Argentina. In Eastern Europe, A1 is the predominant 

subtype, but subtypes B and CRF03_AB are also common 

in this region (Bello G, et al., 2007; Masciotra S, et al., 

2000; Paraschiv S, et al., 2012; Pérez L, et al., 2006; 

Sierra M, et al., 2007; Silveira J, et al., 2012; Villanova F E, 

2010; Walker P R, et al., 2005). 

In contrast to Africa, all subtypes in Asia seem to have 

originated from different founder events, including the 

CRF01_AE, B, and C subtypes, as well as  the various 

CRFs derived from these three subtypes. It is worth 

mentioning that the B subtype in Asia can also be divided 

into two types; in evolutionary terms, one is closer to the 

subtype B found in Europe and America, while the other 

is genetically distant, forming a clear clustering branch in 

the phylogenetic tree called B or Thai B. The coexistence 

of HIV-1 subtypes in East Asia leads to various CRFs, 

which are dominant in particular regions such as the BC 

recombinant epidemic among drug users in Northwestern 

and Southeastern China, and the various Thai-B and 

CRF01_AE recombinants found in Thailand and Myanmar 

(Li Y, et al., 2010; Liao H, et al., 2009; Liu J, et al., 2011; 

Meng Z, et al., 2012). 

The central role that HIV diversity plays in HIV transmission 

suggests the necessity for global HIV epidemic monitoring 

and a reasonable sampling strategy. In addition, studies of 

the association of diversity with spread, viral load, and 

disease progression may also give crucial clues for the 

prevention and treatment of HIV (Butler I F, et al., 2007; 

Fryer H R, et al., 2011; Restif O, 2009; Spira S, 2003; 

Taylor B S, et al., 2008). 

Exploration of the signature patterns in the HIV 

genome could be the first step toward studying HIV diversity. 

Data mining of biological sequence requires identifying 

the rules, extracting features and inferring models from a 

large but specific biological dataset in order to classify, 

recognize or predict new data. This usually involves 

pattern mining and clustering of biological sequences, and 

these two techniques can usually be used interchangeably 

(Poonpiriya V, et al., 2008). The performance and effectiveness 

of the various biological sequence pattern mining and 

clustering methods differ, depending on the characteristics 

of the algorithms and the datasets used (Cai Y-D, et al., 

2010; Dybowski J N, et al., 2011; Zhao Y, 2011).  

Although traditional phylogenetic analysis of HIV 

sequences supports study of HIV origin, evolution, and 

dissemination, it is generally unsuitable for application to 

large samples because of the computational requirements 

(Blair C, et al., 2011). In the current study, we used an 

efficient method of data mining known as RIPPER (Repeated 

Incremental Pruning to Produce Error Reduction). This 

method is suitable for large-scale sample analysis (Avenue 

M, et al., 1994) to comprehensively analyze global HIV 

sequence patterns. We particularly focused on analyzing 

the Env regions, which cover most of the currently 

available datasets and include the maximum amount of 

information (Lynch R M, et al., 2009). 

In our study, we compiled four datasets from four 

HIV-1 pandemic hotspots with different epidemiological 

and evolutionary features: Southeast Asia, China, Africa, 

and Southern Africa, and focused in our analysis on 

answering the following three questions.  

1) For the four epidemiological hotspots with different 

epidemiological features, can we identify signature patterns 

that are characteristic of HIV-1 sequences from the four 

geographic classes?  

2) Is the performance of the signature pattern inference 

the same for all four datasets?  

3) Can we understand the scope of signature pattern 

analysis and the application of these patterns?  

 

MATERIALS AND METHODS 

 

The global HIV-1 sequences and associated information 

were retrieved from the Los Alamos HIV sequence 

database (http://www.hiv.lanl.gov/).  

 

Dataset compilation  

The dataset was downloaded from LANL HIV Sequence 

Alignments 

(http://www.hiv.lanl.gov/content/sequence/NEWALIG

N/align.html) by setting Alignment type as Filter alignment 

(all complete sequences), Year as 2011, Organism as 

HIV-1, DNA/Protein as PRO, Region as Env, and Subtype 

as ALL.  

The original downloaded dataset comprised 3,261 sequences. 
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After removing problematic sequences, especially those 

with ambiguous amino acids, 2,762 sequences were extracted. 

The HXB2 Env sequence was used as a reference of 

amino acid position (with number 1 corresponding to the 

first Met residue).The combined set was realigned using 

the software MUSCLE (version 3.5) (Edgar R C, 2004) 

with default parameters. 

The following four datasets were compiled based on 

the alignment of the aforementioned 2762 sequences. For 

inference of the signature patterns for Env sequences 

sampled in Southeast Asia, we obtained an aligned set of 

312 Southeast Asian and 2,450 non-Southeast Asian Env 

sequences by extracting sequences with labels of “TH,” 

“CN,” “MY,” or “VN” in the sequence headers. For 

inference of the signature patterns for Env sequences 

sampled in China, we obtained an aligned set of 162 

Chinese and 2,600 non-Chinese Env sequences from the 

above overall alignment by extracting the sequences with 

the label of “CN” in the sequence headers. For the 

inference of signature patterns for Env sequences sampled 

in Africa, we obtained an aligned set of African Env 

sequences by extracting the sequences with labels of African 

countries in the sequence headers. African samples were 

separated into five regions as follows: 

1. Southern (“AO”,“ZM”,“ZW”,“BW”,“ZA”,“NA”);  

2. Central (“CF”,“CM”,“CG”,“GA”,“AO”).  

3. Western 

(“ML”,“GH”,“NE”,“NG”,“SN”,“GM”,“BJ”). 

4. Eastern (“ET”,“UG”,“KE”,“SO”,“TZ”,“RW”). 

5. Northern (“EG”,“SD”,“LY”,“MA”,“TN”). 

For the inference of signature patterns of Env sequences 

sampled in Africa, we obtained an overall aligned set of 

1,103 African and 1,659 non-African Env sequences, 

whereas for the inference of signature patterns for Env 

sequences sampled in Southern Africa alone, we selected 

only the Southern African sequence described above 

(“AO”,”ZM”,”ZW”,”BW”,”ZA”,”NA”), which gave an 

aligned set of 599 Southern African and 2,163 non-Southern 

African Env sequences. 

Extraction of all labels and the manipulation of characters 

were performed using the R scripts (Supplementary material 

1). The supplementary materials and the four alignment 

files are available on the website of Virologica Sinica: 

http://www.virosin.org. 

 

Rule inference 

To deduce the signature patterns of the four datasets, 

we used JRip software (Witten I H, et al., 2011) in RWeka 

(Hornik K, et al., 2009), which can be used in the R 

environment (Gentleman R C, et al., 2004; Hornik K, 

et al., 2009) (http://cran.r-project.org). JRip implements 

RIPPER, which is an incremental machine learning 

method. In addition, the rule sets can be inferred directly 

from the training datasets, thus this method is suitable for 

the fast inference of rules from large datasets. Further 

association studies and plotting were performed in the R 

environment. 

 

Assessment of signature pattern inference  

To certify the inference of signature patterns, we tested 

the classification assessment of the signature patterns. We 

assessed in detail the performance of signature patterns in 

the classification of Env sequences of Southeast Asian or 

non-Southeast Asian samples. We performed a full ‘leave- 

one-out’ classification run with the same set of 2,762 Env 

sequences used above; each of the sequences was omitted 

once from the training data, and a set of signature patterns 

was learned by RIPPER from the remaining 2,761 sequences 

and their class labels as described above. This was followed 

by the classification of the remaining one sequence as either 

Southeast Asian or non-Southeast Asian, based on this set 

of signature patterns. Comparison of the 2,761 predicted 

and true class labels allowed for an assessment of the 

prediction performance. The same procedure was used for 

assessment of classification of the other three datasets.  

 

Entropy calculation for pattern positions 

In an attempt to explain the positions captured in the 

pattern inferences from the information theory, R-package 

bio3d (Grant B J, et al., 2006) was used to manipulate and 

analyze sequences. Using the “entropy” function, we 

could compute Shannon entropies Sj for alignment position j 

based on a 22-letter alphabet, including the conventional 

amino acid, the gap symbol “-,” and “X” (this letter was 

last not used here), according to the following formula: 
22

2 22
1

log 22 logj ij ij
i

S p p


    

with the relative frequency Pij of letter i at alignment 

position j. 

 

Phylogenetic analysis for pattern positions  

Owing to the limitations of phylogenetic analysis, such 

as computational requirements, we considered in this 

study only one specific pattern corresponding to subtype 

B and Thai-B (B) in Southeast Asian sequences, as this 

analysis might provide important clues to specific geographic 

origin corresponding to the Chinese HIV-1 B pandemic 

and help to interpret identified patterns from a phylogenetic 

viewpoint, which might exclude founder effects. 

Making use of the maximum likelihood (ML) method 
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to reconstruct phylogenetic trees, we analyzed a set of 

954 global HIV-1 subtype B (B) Env sequences, with 10 

HIV-1 subtype D sequences added as an outgroup. The 

substitution model we chose was HIVb + I + Gamma, and 

the heuristic tree searches used Nearest-neighbor interchange 

(NNI), and branch support estimation used approximate 

likelihood ratio (aLTR). After obtaining the phylogenetic 

tree, the association of amino acid pattern with the 

phylogenetic clustering branches was plotted with the 

R-package ape (Paradis E, et al., 2004).  

 

RESULTS 

 

Rule inference for Southeast Asian HIV-1 Env sequences  

Inspired by our previous findings of Chinese HIV-1 

genome signature patterns (Wang Y, et al., 2013), and 

based on a large body of epidemiological evzidence that 

Chinese HIV-1 sequences have a close phylogenetic 

relationship with Southeast Asian sequences, we tested 

the signature patterns for Southeast Asian Env sequences. 

After compiling the first aligned dataset, which comprised 

312 Southeast Asian and 2,450 non-Southeast Asian Env 

sequences (label strategy and methods are shown in Materials 

and methods) and applying rule inference, we obtained 

the following 7 rules and “x” reprents the amino acid 

position.  

1. (x219 = T) and (x722 = H) => SE=TRUE (185.0/28.0) 

2. (x108 = V) and (x725 = G) and (x63 = T) => SE 

=TRUE (64.0/8.0) 

3. (x553 = R) and (x190 = S) => SE=TRUE (44.0/4.0) 

4. (x375 = H) and (x148 = G) and (x820 = I) => SE 

=TRUE (20.0/0.0) 

5. (x219 = T) and (x108 = V) and (x742 = K) => SE 

=TRUE (12.0/4.0) 

6. (x746 = T) and (x317 = L) and (x698 = I) => SE 

=TRUE (6.0/0.0) 

7. => SE=FALSE (2431.0/25.0) 

The first rule translates as: “Env sequences that have 

both a T at amino acid position 219 and a H at position 

722 could be considered as Southeast Asian sequences.” 

Sites 219 and 722 were numbered according to the HXB2 

reference sequence. This first rule covered 185 sequences, 

with 28 false positives (that is, sequences not from Southeast 

Asia). The other rules can be interpreted analogously. The 

seventh rule “= > Southeast Asian = FALSE” means that 

if none of the previous six rules has been found in a 

sequence, it is a non-Southeast Asian sequence. The false- 

negative rate with this rule is about 1%. The total prediction 

accuracy for the combination of all 7 rules in distinguishing 

Southeast Asian from non-Southeast Asian sequences 

was 97.5%.  

 

Statistical errors for the classification of signature patterns  

To address the statistical errors for the classification of 

signature patterns, we tested the classification performance 

of signature pattern inference. We performed a full ‘leave- 

one-out’ classification as described above, run with the 

same set of 2,762 Env sequences; each of the sequences 

was omitted once from the training data, and a set of signature 

patterns was learned by RIPPER from the remaining 

2,761 sequences and their class labels. This was followed 

by the classification of the omitted sequence in this set of 

signature patterns as being Southeast Asian or non-Southeast 

Asian. Comparison of the 2,761 predicted and true class 

labels allowed assessment of the prediction performance. 

The receiver operating characteristic (ROC) curve and 

area under the curve (AUC) indicated good performance 

of the signature patterns mentioned above (Supplementary 

material 2). 

 

Analysis of signature patterns found in Southeast 

Asian HIV-1 sequences  

In general, each individual rule covered two or three 

non-adjacent positions in the above set of patterns. Of the 

1,157 alignment sites, only 14 sites were found to occur 

within the whole rule set made up of the 7 rules. In addition, 

some of the 14 sites occurred frequently within the whole 

rule set. 

In an attempt to investigate this phenomenon further, 

we computed the sequence entropy for all alignment sites 

and plotted it against the frequency of occurrence in the 

above 6 rules rather than rule 7 (Fig. 1). The figure showed 

that the most frequently occurring sites within these rules  
 

 

Fig. 1 Sequence entropy and frequency of alignment sites occurring 
in Southeast Asia signature patterns. The 14 different aligned 
positions (according to the HXB2 numbering) deduced by the 
rule set from Southeast Asian HIV-1 Env sequences are listed on 
the X-axis. Shannon entropy readings are shown as circles and 
position frequency in patterns is shown as crosses.  
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tended to be those with higher entropy. However, there were 

some striking outliers, such as alignment sites 108, 219, 

and 820, which occurred more frequently but had lower 

entropy, suggesting that these sites are less variable but 

more informative in Southeast Asian sequences. 

 

Inferred rules are associated with HIV-1 subtypes 

Generally, the classification of HIV into groups and 

subtypes is based on the variation in genetic distance in 

HIV sequences. Thus, the HIV-1 subtype itself can be 

considered as being composed of HIV-1 strains with 

distinct signature patterns. As for the sequences from 

Southeast Asia, we would also anticipate that the inferred 

rules might at least suggest subtype features. We therefore 

investigated whether such rules existed for the Southeast 

Asia isolates. 

As shown in Fig. 2, some deduced rules were subtype- 

specific. For example, we found that patterns 1 and 4 

were almost exclusively associated with CRF01_AE, 

whereas pattern 2 reflected features of subtypes C, 

CRF07_BC, CRF08_BC, and BC recombinants (the  

 

 

Fig. 2 Signature patterns of Southeast Asian HIV-1 Env sequences 
and subtypes. The frequency of subtypes is shown for the first 
four patterns inferred from Southeast Asian HIV-1 Env sequences. 

latter three recmbinants are chimeric with subtype C in 

Env), and pattern 3 was characteristic of subtypes B and 

01B. 

 

Inferred rules are characteristic of geographic sampling 

After investigating associations between rules and 

subtypes, we next considered the associations between 

rules and geographical variations. The specific sites 108 

and 219, which occurred frequently in all the aforementioned 

7 patterns (Fig. 3), are not characteristic of subtype but 

rather of their origin, that is, Southeast Asia. 

 

Support by phylogenetic analysis for the position combination 

(x553 = R) and (x190 = S) 

To explain these patterns from a phylogenetic viewpoint, 

we compared the position combination that frequently 

occurred in patterns, (x553 = R) and (x190 = S), with the 

evolutionary relationship of this amino acid combination. 

Again, because the phylogenetic analysis was limited by 

computational capacity, we only considered the global 

subtype B/B linkage, which is the major pandemic subtype  

 

 

Fig. 3. Relationship of signature patterns of positions 108 and 
219 from Southeast Asian HIV-1 sequences with subtypes. The 
frequency of subtypes is shown for positions 108 and 219 
inferred from Southeast Asian HIV-1 Env sequences. These two 
specific positions, which occur frequently in the whole rule set, 
are characteristic of having Southeast Asian origin, rather than 
being subtype-specific.  



Global HIV-1 sequence patterns  

Virologica Sinica|www.virosin.org 

233

both in Southeast Asia (B) and worldwide (B). To this 

end, we constructed an ML phylogenetic tree for a set of 

954 subtype B/B amino acid sequences of HIV-1 Env, 

with 10 subtype D sequences as an outgroup (Fig. 4). Most 

of the Southeast Asian subtype B sequences were found to 

lie in a separate cluster distinct from the pandemic global 

subtype B sequences (Fig. 4, top left: green cluster). 

Sequences with R553 or S190 only (not the combination 

of both) were distributed throughout the whole tree (Fig. 4, 

bottom left and top right: blue and red branches), whereas 

sequences with both R553 and S190 together were found 

to lie in similar branches with the Southeast Asian cluster 

(Fig. 4, bottom right: yellow cluster). In general, this first 

rule of (x553 = R) and (x190 = S) is consistent with 

phylogenetic clustering of the Southeast Asian or subtype 

B/B clusters.  

 

Rule inference for Chinese HIV-1 Env sequences 

Although we previously completed the rule inference 

of Chinese HIV-1 genome signature patterns in a combined 

dataset of 1,047 Chinese and 1,288 non-Chinese sequences 

(Wang Y, et al., 2013), here we compiled a second aligned 

dataset, which comprised 162 Chinese and 2,600 Non-Chinese 

Env sequences (the whole alignment was the same as that 

for the other three datasets). From this, we obtained 11 

rules (Supplementary material 3). 

In general, two to five sequence sites were included in 

each separate rule, and almost all of them were not close 

to each other. In addition, some sites appeared many times 

in the whole pattern, such as sites 108 and 219. The most 

interesting site was site 108, which occurred in five patterns, 

 

 
Fig. 4. Maximum likelihood phylogenetic tree of global HIV-1 
subtype B/B Env sequences. The graph is colored for geographic 
and amino acid features. Top left: green indicates sequences 
from Southeast Asia; bottom left: red indicates with sequences 
with x553 = R; top right: blue indicates sequences with x190 = S; 
bottom right: yellow indicates sequences carrying the signature 
pattern (x553 = R) and (x190 = S). 

suggesting a key role for this site in all the Chinese 

sequences. Although the false-positive rate of the separate 

pattern was relatively high, the overall false- negative rate 

was only 0.78%. The whole rule set can be used to 

distinguish Chinese-specific sequences, with an overall 

classification accuracy of 98.3%. 

 

Rule inference for African HIV-1 Env sequences  

There are multiple hints of HIV in Africa. Firstly, West 

and Central Africa were the sites of origin of HIV, which 

evolved through cross-species transmission of simian 

immunodeficiency virus in other primates to humans. 

Secondly, sub-Saharan Africa is the most severely affected 

region for HIV infection, with a rate of 4.9% in the population, 

and it accounts for 69% of HIV infections worldwide. 

Moreover, as outlined in the introduction, the geographical 

distribution of subtypes and CRF is complex. 

Thus, we expected that extending our analysis to the 

whole African sequences would reveal different patterns 

specific to these sequences. After compiling the third 

aligned dataset, which comprised 1,103 African and 1,659 

non-African Env sequences and applying rule inference, 

we obtained 13 rules (Supplementary material 4). We 

calculated that the combination of all 13 rules would give 

a total prediction accuracy of 88.4% in distinguishing 

African from non-African sequences, with a predicted 

false-negative rate of 7%. 

 

Analysis of signature patterns found in African HIV-1 

sequences  

Compared to the relatively homologous HIV-1 diversity 

in Southeast Asia, the highest diversity of whole African 

HIV-1 sequences may be one of the reseans of less 

prediction efficiency. 

Nevertheless, taking into consideration of 1,167 alignment 

sites, these rules were still relatively effective at classification. 

As before, we found that some sites appeared many times 

in the whole patterns, such as sites 219 (5 times), 315 

(4 times), and 720 (3 times). Fig. 5 shows the analysis of 

the first two patterns specifically. Some deduced rules 

seemed to be subtype-specific, whereas others were not. 

For example, rule 1 was found to be associated almost 

exclusively with subtype C, whereas rule 2 captured 

features of subtypes C, D, A1D, and CRF02_AG. 

 

Rule inference for Southern Africa HIV-1 Env sequences  

The main focus of HIV research is Southern Africa, 

which has the highest HIV infection rates and most severe 

HIV pandemics. However, the genetic diversity of HIV in 

Southern Africa is the lowest. 
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Fig. 5. Signature patterns of African HIV-1 sequences and subtypes. 
The X-axis shows all the subtypes in the compiling dataset of 
African origin. The first two patterns were the most representative, 
and thus subtype frequencies were compared with these patterns. 

 

After compiling the fourth aligned dataset which comprised 

599 Southern African and 2163 Non-Southern African 

Env sequences and applying rule inference, we obtained 6 

rules (Supplementary material 5). 

The whole signature patterns were extremely succinct, 

covering 10 different and adjacent sequence sites and a 

total of 1,167 alignment sites. Although the false-positive 

rate for separate patterns was relatively high, the overall 

false-negative rate for rule 6 was 0.35%, and the combination 

of the six rules (rule set) was able to separate Southern 

African from non-Southern African sequences with a 

prediction accuracy of 91.2%. The whole deduced five 

signature patterns of Southern African HIV-1 sequences 

were exclusively specific with subtype C. Besides, the 

informative site 21 was dominant in the whole rule set, 

suggesting its key role in all the sequences from Southern 

African. When linking the specific site with the subtypes 

in Southern African, we also find an extremely dominant 

pattern with subtype C. 

 
Extensive study on signature patterns for Env sequences 

of different subtypes sampled worldwide 

Since many of the signature patterns inferred above 

were associated exclusively with specific subtypes and 

CRFs, we further investigated geographical and evolutionary 

associations for different subtypes worldwide.  

To this end, three sets of patterns were inferred from 

global subtype C, B and all possible recombination forms 

chimeric with CRF01_AE Env sequences, including the 

rules obtained from inference of subtype C Env sequences 

worldwide, the rules obtained from inference for subtype 

B Env sequences worldwide and the rules obtained from 

inference for all possible recombination forms chimeric 

with CRF01_AE Env sequences worldwide (Supplementary 

material 6-8). 

Comparative analysis of the above three sets of patterns 

gave an indication of subtypes. As Fig. 6 shows, the 

signature patterns of HIV-1 global subtype C sequences 

were extremely common in Zambia (southern Africa), 

which may also hint at the origin of HIV-1 subtypes and 

the necessity for paying special attention to this area. 

Somewhat differently, Fig. 7 shows that signature patterns 

of HIV-1 global subtype B sequences were associated 

with some pandemic countries, such as United States, 

Brazil, Great Britain, Cyprus, and Japan. We also found 

that site 21 is present in all three rule sets implying some 

fundamental importance for this site. In detail, there are 

distinct patterns at single position 21 with glycine, leucine 

and isoleucine corresponding to subtype C, B and all 

possible recombination forms chimeric with CRF01_AE, 

also dominating the above regions separately. 

 

 
Fig. 6. Signature patterns of HIV-1 global subtype C sequences 
and countries. The X-axis shows all the countries from which 
HIV-1 subtype C sequences were sampled. All six patterns 
are shown, with their frequency distribution in the sampled 
countries. 

 
DISCUSSION 

 

Scopes of signature pattern analysis  

Normally, to infer sequence patterns linked with specific 

classifications (such as a host group) correctly, it is 

necessary that the sequences or sequence sites are variable, 

and that a sufficient number of sequences are available for  
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Fig. 7. Signature patterns of HIV-1 global subtype B sequences 
and countries. The X-axis shows all the countries from which 
HIV-1 subtype B sequences were sampled. All five patterns 
are shown, with their frequency distribution in the sampled 
countries. 

 

statistical analysis. The simple method of rule inference 

can be used to deduce the patterns of global HIV-1 

lineages. However, the effectiveness of this approach 

varies somewhat among lineages. 

Geographically, Southern African HIV-1 sequences, 

which have the lowest diversity performed best in signature 

pattern inference, whereas for the whole African sequences, 

the accuracy of prediction was lower. Compared with the 

results for rule inference in Chinese and Southeast Asian 

sequences, these two geographic samplings had no distinct 

effect on the overall prediction accuracy of signature 

pattern inference.  

We observed that signature patterns of subtype C had 

extremely high representation in certain of the sampled 

countries, which may hint at the importance of this region 

in the early stages of the epidemic. However, it is possible 

that the sampling bias may have influenced this result. By 

contrast, the signature patterns of subtype B sequences 

were associated with different countries. We found that 

site 21 had clearly distinct patterns among all three subtypes 

of the global HIV-1 sequence.  

When we analyzed the effect of other genome regions 

(Gag, Pol) on pattern inference, we also found qualitatively 

similar results (unpublished data). 

 

Mechanisms of these signature patterns 

Because there are no specially designed knowledge-mining 

algorithms, the results are difficult to explain and are 

unable to meet the requirements of biological research. 

Thus, appropriate analytical methods are needed to further 

explain the results of data mining. For example, we can 

refer to particular features of aligned sequences (WebLogo) 

(Crooks G E, et al., 2004), immune epitope prediction 

methods (NetMHC) (Lundegaard C, et al., 2008), mutational 

modeling methods (pyMOL) (Delano W L, et al., 2004), 

information theory, and related methods (direct coupling 

analysis) (Morcos F, et al.) to explain the significance of 

global HIV-1 sequence patterns from the viewpoints of 

evolutionary conservation, immune escape, structural stability, 

and physical contact separately. The preliminary analyses 

are shown in Fig. 8 and 9. 

 

Application of these signature patterns 

The ideal solution for controlling the HIV infection 

situation is to develop vaccines; however, the diversity of 

HIV challenges the development of such vaccines. 

 

 

Fig. 8. The deduced physical contacts of the sites found in the 
Chinese sequence patterns. The background structure shown is 
gp120, with the V3 region marked in red. The two residues of 
signature pattern 1 are marked by a green sphere (residue 309) 
and a yellow sphere (residue 317). The lines connecting these 
indicate high-DI pairs. Those high-DI amino acid pairs that 
include residue 309 or residue 317 are shown as blue spheres, 
and are located in the V2, C2, and V4 regions. 

 

 
Fig. 9 Results from two datasets: (a) dataset of Southeast Asian 
sequences and (b) dataset of global sequences covering only the 
pattern positions inferred from the previous six patterns. 
Program used was WebLogo version 3.3 (accessed June 3, 2013). 
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Normally, vaccine strains can be designed either using 

sequences from contemporary strains (strains within the 

region), ancestral sequences, artificial consensus sequences, 

or central sequences in the phylogenetic tree. So far, all 

Phase III vaccines have been based on the original strain 

sequence, and as it is considered similar to the contemporary 

epidemic strain, cross-linking reaction might be induced 

increasingly. In addition, vaccine design has also focused 

on the HIV conserved genome region because on the one 

hand, these regions are more easily recognized by cross- 

reacting T-cells, while on the other hand, mutations in 

conserved regions will influence virus fitness. Another 

development of vaccines is to increase coverage of the 

epitope so as to increase T-cell response (Fauci A S, et al., 

2008; Karlsson Hedestam G B, et al., 2008; Tebit D M, 

et al., 2011; Walker B D, et al., 2008; Yang O O, 2009). 

Therefore, our findings should be considered further in 

the context of vaccine development. For example, patterns 

characteristic of geographic areas may show a cross- reactivity 

effect, in contrast to patterns associated with subtype. Sites 

108 and 219, which are conserved but informative in the 

patterns, in the detection of entropy, and in the evolutionary 

relationship, should also be considered during vaccine design. 
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