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Abstract

The combination of multimodal imaging and genomics provides a more comprehensive way for 

the study of mental illnesses and brain functions. Deep network-based data fusion models have 

been developed to capture their complex associations, resulting in improved diagnosis of diseases. 

However, deep learning models are often difficult to interpret, bringing about challenges for 

uncovering biological mechanisms using these models. In this work, we develop an interpretable 
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multimodal fusion model to perform automated diagnosis and result interpretation simultaneously. 

We name it Grad-CAM guided convolutional collaborative learning (gCAM-CCL), which is 

achieved by combining intermediate feature maps with gradient-based weights. The gCAM-CCL 

model can generate interpretable activation maps to quantify pixel-level contributions of the input 

features. Moreover, the estimated activation maps are class-specific, which can therefore facilitate 

the identification of biomarkers underlying different groups. We validate the gCAM-CCL model 

on a brain imaging-genetic study, and demonstrate its applications to both the classification of 

cognitive function groups and the discovery of underlying biological mechanisms. Specifically, 

our analysis results suggest that during task-fMRI scans, several object recognition related regions 

of interests (ROIs) are activated followed by several downstream encoding ROIs. In addition, the 

high cognitive group may have stronger neurotransmission signaling while the low cognitive group 

may have problems in brain/neuron development due to genetic variations.
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I. INTRODUCTION

Recently, it is well recognized that multimodal imaging data fusion can exploit 

complementary information from multiple modalities, leading to more accurate diagnosis 

and discovery of underlying biological mechanisms [1]. Conventional multimodal fusion is 

often focused on matrix decomposition approaches. For example, canonical correlation 

analysis (CCA) [2] has been widely used to integrate multimodal data by detecting linear 

cross-modal correlations. To capture complex cross-modal associations, deep neural network 

(DNN) based models, e.g., deep CCA [3], were developed to extract high-level cross-modal 

associations. These methods can lead to improved performance in terms of prediction and 

diagnosis [3], [4].

Beyond diagnosis, it is also important to uncover biological mechanisms underlying mental 

disorders. This requires the data representation model to be interpretable. However, DNN is 

composed of a large number of layers and each layer consists of several nonlinear 

transforms/operations, e.g., nonlinear activation and convolution, causing difficulties in 

interpreting its representation. There have been many efforts to interpret DNN based models. 

Among these interpretation approaches, there typically exists a trade-off between “model 

performance”, “computational cost”, and “interpretability”. Simonyan et al. [5] proposed 

two methods: “class model visualization” to find the optimal image for the explanation of 

the trained model; and “class saliency visualization” to explain each image’s results. 

Perturbation-based methods [6] have also been proposed to evaluate each region/biomarker’s 

contribution by occluding it individually to see how much the classification accuracy is 

sacrificed as a result. Computational cost is however high because all voxels/biomarkers and 

their combinations are examined individually. Optimization-based methods obtain the 

occlusion by solving an optimization problem, i.e., minimizing the size of biomarkers and 

the loss of accuracy. For example, Fong et al. [7] proposed an optimization-based approach 

to only search for meaningful region candidates to reduce computational cost. In addition, 
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Dabkowski et al. [8] developed a real-time interpretation framework but it introduced an 

additional network block; consequently, computationally intensive model-training is needed. 

There also have been some other optimization- or perturbation-based interpretation models 

[9], [10], but all of them introduce additional network training or additional optimization 

problems for each image input. Therefore, these approaches perform well for single image 

interpretation, but are impractical for large scale data analysis due to high computational 

costs.

To address this issue, we herein develop an interpretable DNN based multimodal fusion 

model, Grad-CAM guided convolutional collaborative learning (gCAM-CCL), which can 

perform automated diagnosis and result interpretation simultaneously. The gCAM-CCL 

model can generate interpretable activation maps indicating pixel-wise contributions of the 

inputs, enabling automated result interpretation. In particular, the activation maps are class-

specific, which can reveal the underlying features or biomarkers specific to each class. In 

addition, gCAM-CCL can capture the cross-modal associations that are linked with 

phenotypical traits or disease conditions. This is achieved by feeding the network 

representations to a collaborative layer [11] which considers both cross-modal interactions 

and fitting to traits.

The contributions of our gCAM-CCL model are four-folds. First, it is a novel interpretable 

multimodal deep learning model, which can perform automated classification and 

interpretation simultaneously. Second, both cross-modal associations and the fitting to class-

labels are considered using a batch-independent loss function, leading to better classification 

and association identification. Third, the interpretation is based on guided Grad-CAM, 

which allows for instant interpretation with high resolution class-specific activation maps. 

Fourth, we proposed an improved way of computing the weights for Grad-CAM, which 

focused on only the pixels with positive effects on class probabilities.

The rest of the paper is organized as follows. Section II introduces several related works and 

the limitations of existing multimodal fusion methods. Section III proposes our new model, 

gCAM-CCL, and describes how it overcomes the limitations. Section IV presents 

experimental results of applying gCAM-CCL to imaging genetic study. Section V concludes 

the work with a brief discussion.

II. RELATED WORKS

A. Multimodal data fusion: analyzing cross-modal association

Classical multimodal data fusion methods are often focused on cross-modal matrix 

factorization. Among them, canonical correlation analysis (CCA) [2] has been widely used 

for multi-view/omics studies including our work [12]–[14]. CCA aims to find the most 

correlated variable pairs, i.e., canonical variables, and further association analysis can be 

performed accordingly.

Specifically, given two data matrices X1 ∈ ℝn×r, X2 ∈ ℝn×s (n represents sample/subject 

size, and r, s represents the feature/variable sizes in two data sets), CCA seeks two optimal 
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loading vectors u1 ∈ ℝr×1 and u2 ∈ ℝs×1 which maximize the Pearson correlation 

corr(X1u1, X2u2), as in Eq. 1.

u1
∗, u2

∗ = argmax
u1, u2

u1′Σ12u2

subject to u1′Σ11u1 = 1, u2′Σ22u2 = 1
(1)

where u1 ∈ ℝr × 1, u2 ∈ ℝs × 1, Σij: = Xi′Xj/(n − 1), i, j = 1, 2.

Solving the optimization in Eq. 1 yields the most correlated canonical variable pair, i.e., 

X1u1 and X2u2. More correlated canonical variable pairs (with lower correlations) can be 

obtained subsequently by solving the following extended optimization problem in Eq. 2.

U1
∗, U2

∗ = argmax
U1, U2

Trace U1′Σ12U2

subject to U1′Σ11U1 = U2′Σ22U2 = Ik
(2)

where U1 ∈ ℝr×k, U2 ∈ ℝs×k, k = min(rank(X1), rank(X2)).

CCA captures only linear associations and therefore it requires that different data/views 

follow the same distribution. However, different modality data, e.g., fMRI imaging and 

genetic data, may follow different distributions and have different structures. As a result, 

CCA fails to detect the association between heterogeneous data sets. To address this 

problem, Deep CCA (DCCA) was proposed by Andrew et al. [3] to detect more complicated 

correlations. DCCA introduces a deep network representation before applying CCA 

framework. Unlike linear CCA, which finds the optimal canonical vectors u1, u2, DCCA 

seeks the optimal network representation f1(X1), f2(X2), as shown in Eq. 3.

f1
∗, f2

∗ = argmax
f1, f2

max
u1, u2

u1′f1′ X1 f2 X2 u2
‖f1 X1 u1‖2‖f2 X2 u2‖2

(3)

where f1, f2 are two deep networks.

The introduction of deep network representation leads to a more flexible way to detect both 

linear and nonlinear correlations. According to the application to both speech and 

handwritten digits data analyses [3], DCCA was more effective in finding correlations 

compared to other methods, e.g., linear CCA, and kernel CCA. Despite DCCA’s superior 

performance, the detected associations may not be relevant to the phenotype of interest, e.g., 

disease. Instead, they may be caused by irrelevant signals, e.g., background and noise. As a 

result, they have limited value for identifying disease-related biomarkers.

B. Deep collaborative learning (DCL): phenotype-related cross-data association

To address the limitations of DCCA, we proposed a multimodal fusion model, deep 

collaborative learning (DCL) [11]. DCL can capture phenotype-related cross-modal 

associations by enforcing additional fitting to phenotype label, as formulated in Eq. 4.
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Z1
∗, Z2

∗ = argmax
Z1, Z2

max
U1, U2

a1 Trace U1′Z1′Z2U2 −

a2min
β1

y − Z1β1 2
2 − a3min

β2
y − Z2β2 2

2

= argmax
Z1, Z2

a1 Σ11
− 1

2Σ12Σ22
− 1

2
tr

−a2 y − Z1 Z1′Z1
+Z1′y 2

2

−a3 y − Z2 Z2′Z2
+Z2′y 2

2

(4)

where U1, U2 are subject to U1′ Σ11U1 = U2′ Σ22U2 = Ik; ∥ A ∥tr : = Trace A′A = ΣΣi; Z1 = 

f1(X1) ∈ ℝn×p, Z2 = f2(X2) ∈ ℝn×q; f1, f2 represent two deep networks, respectively; y ∈ 
ℝn×1 represents phenotype or label data; and a1, a2, a3 are the weight coefficients.

As shown in Eq. 4, DCL seeks the optimal network representation Z1 = f1(X1), Z2 = f2(X2) 

to maximize cross-modal correlations. Compared to DCCA, DCL’s representation retains 

label related information to guarantee that the identified associations are linked with label/

phenotype. As a result, better classification of different cognitive groups can be achieved, 

according to the work described in [11]. Moreover, DCL relaxes the requirement that the 

projections u1 and u2 have to be in the same direction. This leads to an effective fitting to 

phenotypical information while incorporating cross-modal correlation.

With the ability to capture both cross-modal associations and trait-related features, DCL can 

combine complementary information from multimodal data, as demonstrated in our brain 

imaging study [11]. However, DCL uses deep networks to extract high-level features, which 

are difficult to interpret. As a result, DCL is limited by its ability for revealing disease 

mechanisms.

C. Deep Network Interpretation: CAM-based methods

Both DCCA and DCL use deep neural networks (DNN) for feature extraction. DNN 

employs a sequence of intermediate layers to extract high-level features. Each layer is 

composed of a number of complex operations, e.g., nonlinear activation, kernel convolution, 

batch normalization. DNN based models have found successful applications in both 

computer vision and medical imaging, due to their superior ability to extract high-level 

features. However, the large number of layers and the complex/nonlinear operations in each 

layer bring about a difficulty in network explanation and feature identification. Users may 

cast doubt on the reliability of the deep networks: whether deep networks make decisions 

based on the object of interest, or based on irrelevant/background information.

Optimization-based methods and perturbation-based methods have been proposed to 

partially interpret deep neural networks. However, both of them introduce additional 

optimization problems or network training for each image input, and consequently are 

computationally intensive and not appropriate for large scale applications.
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1) Class Activation Mapping (CAM): To make DNN explainable, Class Activation 

Mapping (CAM) method [15] was proposed. CAM generates an activation map for each 

sample/image indicating pixel-wise contributions to the decision, e.g., class label. Moreover, 

the activation maps are class-specific, providing more discriminative information for class-

specific analysis. This dramatically helps build trust in deep networks: for correctly 

classified images/samples, CAM explains how the classification decision is made by 

highlighting the object of interest; for incorrectly classified images/samples, CAM illustrates 

the misleading regions.

The activation maps in CAM are obtained by computing an optimal combination of 

intermediate feature maps. A weight coefficient is needed for each feature map to evaluate 

its importance to the decision of interest. However, for most CNN-based models, this weight 

is not provided. To solve this problem, a re-training procedure is introduced, in which the 

feature maps are used directly by a newly introduced layer to re-conduct classification. The 

corresponding weights are then calculated using the parameters in the introduced layer. The 

detailed CAM method is described as follows.

For a pre-trained CNN-based model, assume that a target feature map layer consists of K 
channels/feature-maps Fk ∈ ℝh×w(k = 1, 2, · · ·, K), where h, w represent the height and 

width of each feature map, respectively. CAM discards all the subsequent layers and 

introduces a new layer (with softmax activation) to re-conduct classification using these 

feature maps Fk. Then a prediction score Sc is calculated by the newly introduced layer for 

each class c (c = 1, 2, · · ·, C), as formulated in Eq. 5.

Sc = ∑
k = 1

K
wk

c global_avg_pooling  Fk
(5)

where wk
c represents the weight coefficient of feature map Fk for class c.

After that, class-specific activation maps can be generated by first combining the feature 

maps with the trained weights wk
c followed by upsampling to project onto the input images, 

as in Eq. 6.

mapcam =  upsampling  ∑
k = 1

K
wk

cFk
(6)

The re-training procedure, however, is time consuming, which limits CAM’s application. 

Moreover, classification accuracy sacrifices due to the modification of the model’s 

architecture.

2) Gradient-weighted CAM (Grad-CAM): To address the limitation of the CAM 

method, Gradient-weighted CAM (Grad-CAM), was proposed [16] to compute activation 

maps without modifying the model’s architecture. Similar to CAM, Grad-CAM also needs a 

set of weight coefficients to combine feature maps. This can be achieved by first calculating 

the gradient of decision of interest w.r.t each feature map and then performing global 
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average pooling on the gradients to get scalar weights. As a result, Grad-CAM avoids adding 

extra layers so both model-retraining and performance-decrease problems can be solved. 

The following is the description about how Grad-CAM calculates weights gk
c for the 

generation of activation map mapgradcam.

gk
c = global_avg_pooling ∂yc

∂Fk (7)

where yc represents the prediction score for class c, and

mapgradcam = upsampling ReLU ∑
k = 1

K
gk

cFk
(8)

3) Guided Grad-CAM: high resolution class-specific activation maps: Both 

CAM’s and Grad-CAM’s activation maps are coarse due to the upsampling procedure, as 

feature maps normally are of smaller size compared to input images. This brings about 

difficulties in identifying small but important features. Fine-grained visualization methods, 

e.g., guided back-propagation (BP) [17] and deconvolution [6], can generate high resolution 

activation maps. These methods use backward projections which operate on layer-to-layer 

gradients. Upsampling procedure is not involved in these back projection methods, and 

therefore high resolution activation maps can be obtained. Nevertheless, the activation maps 

are not class-specific, causing obstacles in interpreting the activation maps, especially for 

multiple classes. To obtain both high resolution and class-specific activation maps, guided 

Grad-CAM was proposed in the work [16] by incorporating guided BP into Grad-CAM. 

Guided Grad-CAM computes activation maps by performing a Hadamard product between 

the Grad-CAM map and the Guided BP map, as formulated in Eq. 9.

mapguided_gradcam = mapguidedBP ⊙ mapgradcam (9)

where mapguidedBP represents the map computed using guided BP algorithm [17], and ⊙ 
represents the Hadamard product operation. Given two arbitrary matrices A, B ∈ ℝm×n, their 

Hadamard product is defined as (A ⊙ B)ij := AijBij.

III. GRAD-CAM GUIDED CONVOLUTIONAL COLLABORATIVE LEARNING (GCAM-CCL)

To this regard, we propose a new model, Grad-CAM guided convolutional collaborative 

learning (gCAM-CCL), which can perform automated multimodal fusion and result 

interpretation. As shown in Fig. 1, gCAM-CCL first integrates two modality data using the 

collaborative networks, and then computes class-specific activation maps using both Guided 

BP and Grad-CAM. As a result, gCAM-CCL can perform both classification and biomarker 

identification (i.e., result interpretation) simultaneously. Moreover, we propose an improved 

way to compute the weights for Grad-CAM, which can focus on only the pixels with 

positive effects on class probabilities.
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A. Proposed learning method

Compared to the DCL model [11], gCAM-CCL employs both a new architecture and a new 

loss function to incorporate Grad-CAM. Since computing activation maps needs a layer of 

feature-maps, gCAM-CCL replaces a multilayer perceptron (MLP) network with two 

ConvNets so that multi-channel feature maps can be obtained. This also benefits model-

training because ConvNet dramatically reduces the number of parameters by enforcing 

shared kernel weights.

Moreover, as pointed out in Wang’s work [4], both DCCA [3] and DCL [11] include the 

parameter of sample size in their loss functions, giving rise to a problem of batch size 

tuning. In other words, the loss functions are dependent on batch size due to the correlation 

term U1′Z1′Z2U2 at population-level. As a result, a large batch size is required [4] for network 

training. In this work, we propose a new loss function to relieve the issue of batch-size 

dependence, as formulated in Eq. 10. As shown in Eq. 10, the population-level correlation 

term is replaced with a summation of sample-level loss. Moreover, the correlation term is 

replaced with a regression loss, i.e., cross-entropy loss, since it has been shown that the 

optimization of correlation term is equivalent to the optimization of regression loss [4].

Loss = − ∑
i = 1

2
(1 − y)log ℎ1

(i) + ylog 1 − ℎ2
(i)

− ∑
i = 1

2
ℎi

(1)log ℎi
(2) + ℎi

(2)log ℎi
(1)

(10)

where ℎi
(1), ℎi

(2) are the outputs of two ConvNets, as illustrated in Fig. 1.

This batch-independent loss function is easier to extend to multi-class and multi-view 

scenarios, where the extended loss function is given as follows.

 Loss  = − 1
m ∑

i = 1

m
∑

c = 1

C
yclog ℎc

(i)

− 1
m(m − 1) ∑

i, j(i ≠ j)

m
∑

c = 1

C
ℎc

(i)log ℎc
(j)

(11)

where m represents the number of views, and C represents the number of classes.

B. Proposed interpretation method

The gCAM-CCL uses a 1D ConvNet to learn features from SNP data and uses a 2D 

ConvNet to learn features from brain imaging data, respectively. The output of two 

ConvNets are flattened and then fused in the collaborative layer with the loss function in Eq. 

10, which considers both cross-modal associations and their fittings to phenotype/label y. 

After that, two intermediate layers are selected, from which the feature maps can be 

combined using the gradient-based weights (Eqs. 7–8) and class-specific Grad-CAM 

activation maps can be generated accordingly. Meanwhile, fine-grained activation maps are 

computed by projecting the gradients back from the collaborative layer to the input layer 
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using Guided BP. The obtained activation maps indicate pixel-wise contributions to the 

decision of interest, e.g., prediction, and significant biomarkers, e.g., brain FCs and genes, 

can be identified accordingly.

Moreover, ideal class-specific activation maps should highlight only the features relevant to 

the corresponding class, e.g., ‘dog’ class. However, features related to other classes, e.g., 

fish-related features, may have negative contributions to predicting ‘dog’ class, resulting in 

noisy features in the activation maps. To remove the noisy or irrelevant features, we apply a 

ReLU function to the gradients, as shown in Eq. 12. The ReLU function ensures positive 

effects so that pixels with negative contributions can be filtered out.

gk
c =  global_avg_pooling  ReLU ∂yc

∂Fk (12)

where yc represents the prediction score for class c.

IV. APPLICATION TO BRAIN IMAGING GENETIC STUDY

We apply the gCAM-CCL model to an imaging genetic study, in which brain FC data is 

integrated with single nucleotide polymorphism (SNPs) data to classify low/high cognitive 

groups. Multiple brain regions of interests (ROIs) function as a group when performing a 

specific task, e.g., reading. Brain FC depicts the functional associations between different 

brain ROIs [18]. On the other hand, genetic factors may also have influences on brain 

functions, as brain dysfunctionality is genetically inheritable. Imaging-genetic integration 

can probe brain function from a more comprehensive view, with the potential for revealing 

brain mechanisms. The proposed gCAM-CCL model will be used to extract and analyze 

complex interactions both within and between brain FC and genetics.

A. Brain imaging data

Several brain fMRI modalities from the Philadelphia Neurodevelopmental Cohort (PNC) 

[19] were used in the experiments. PNC cohort is a large-scale collaborative study between 

the Brain Behavior Laboratory at the University of Pennsylvania and the Children’s Hospital 

of Philadelphia. It has a collection of multiple neuroimaging data, e.g., fMRI, and genomic 

data, e.g., SNPs, collected from 854 adolescents aged from 8 to 21 years. Three types of 

fMRI data are available in PNC cohort: resting-state fMRI, emotion task fMRI, and nback 

task fMRI (nback-fMRI). As our work was focused on analyzing cognitive ability, only 

nback-fMRI, which was related to working memory and lexical processing, was used in the 

experiments. The duration of nback-fMRI scan was 11.6 minutes (231 TR), during which 

subjects were asked to conduct standard nback tasks.

SPM121 was used to conduct motion correction, spatial normalization, and spatial 

smoothing. Movement artifact (head motion effect) was removed via a regression procedure 

using a rigid body (6 parameters: 3 translation and 3 rotation parameters) [20], and the 

functional time series were band-pass filtered using a 0.01Hz to 0.1Hz frequency range as 

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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significant signals mainly focus on low frequency. For quality control, we excluded high 

motion subjects with translation > 2mm or with SFNR < 275 (Signal-to-fluctuation-noise 

ratio) following the work in [21]. 264 regions of interest (ROIs) (containing 21,384 voxels) 

were extracted based on the Power coordinates [22] with a sphere radius parameter of 5mm. 

For each subject, a 264 × 264 image was then obtained based on the 264 × 264 ROI-ROI 

connections, which was used next as image inputs for the gCAM-CCL model. The ROIs are 

arranged according to their spatial coordinates and their brain sub-networks information. 

The spatial information is based on the coordinates in the Montreal Neurological Institute 

space, and ROIs in the same brain sub-network are similar in terms of brain function. In this 

way, neighbor ROIs are both spatially and functionally close to each other.

B. SNP data

The genomic data were collected from 3 platforms, including the Illumina HumanHap 610 

array, the Illumina HumanHap 500 array, and the Illumina Human Omni Express array. The 

three platforms generated 620k, 561k, 731k SNPs, respectively [19]. A common set of SNPs 

(313k) were extracted, and then PLINK [23] was used to perform standard quality controls, 

including the Hardy-Weinberg equilibrium test for genotyping errors with p-value < 1e−5, 

extraction of common SNPs (MAF > 5%), and linkage disequilibrium (LD) pruning with a 

threshold of 0.9. After that, SNPs with missing call rates > 10% and samples with missing 

SNPs > 5% were removed. The remaining missing values were imputed by Minimac 3 [24] 

using the reference genome from 1000 Genome Project. In addition, only the SNPs within 

gene bodies were kept for further analysis, resulting in 98,804 SNPs in 14,131 genes.

As the study aimed to investigate the brain, we further narrowed down to brain-expression-

related SNPs. This was achieved using the expression quantitative trait loci (eQTL) data 

from Genotype-Tissue Expression (GTEx) 2 V7 database [25], a large scale consortium 

studying tissue-specific gene regulations and expressions. The GTEx data were collected 

from 53 different tissue sites from around 1000 subjects. Among the 53 tissue sites, 13 

tissues were brain-related and they were listed in Table I. A set of 108 SNP loci were 

selected, which showed significant tissue regulation level (eQTL < 5×10e-8) in all 13 brain 

relevant tissues. In addition, SNPs in the top 100 brain-expressed genes were also selected 

based on the GTEx database. These procedures resulted in 750 SNP loci, which were used 

next as the genetic input to the gCAM-CCL model.

C. Integrating brain imaging and genetic data: classification

The gCAM-CCL was then applied to integrate brain imaging data with SNPs data to classify 

subjects with low/high cognitive functions. The wide range achievement test (WRAT) [26] 

score, a measure of comprehensive cognitive ability, including reading, comprehension, and 

math skills, was used to evaluate the cognitive level of each subject. The 854 subjects were 

divided into three classes: high cognitive/WRAT group (top 20% WRAT score), low 

cognitive/WRAT group (bottom 20% WRAT score), and middle group (the rest), following 

the procedures in the work [11].

2https://gtexportal.org/
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The gCAM-CCL model adopted a 1D convolutional neural network (CNN) to learn the 

interactions between alleles at different SNP loci. ConvNet has been widely used for 

sequencing and gene expression data [27], [28] to learn local genetic structures. According 

to these studies, 1D kernels with relatively larger sizes are preferred. As a result, a 31×1 

kernel and a 15 × 1 kernel were used. The detailed architecture of gCAM-CCL is listed in 

Table IV. The data is partitioned into training set (70%), validation set (15%), and test set 

(15%). The proposed gCAM-CCL model was trained on training set; hyper-parameters were 

selected based on the validation set; and the classification performance was reported based 

on the test set.

Hyper-parameters, including momentum, activation function, learning rate, decay rate, batch 

size, maximum epochs, were selected using the validation set and their values are listed in 

Table II. Mini-batch SGD was used to solve the optimization problem. Over-fitting problem 

occurred due to small sample size. To solve overfitting issue, a dropout was used and the 

dropout probability of the middle layers was set to be 0.2. Moreover, early stopping was 

used during network training to further overcome overfitting problem. In addition, batch 

normalization was implemented after each layer to relieve the gradient vanishing/exploding 

problem resulting from ReLU activation. Computational experiments were conducted on a 

Desktop with an Intel(R) Core(TM) i7–8700K CPU (@ 3.70GHz), a 16G RAM, and a 

NVIDIA GeForce GTX 1080 Ti GPU (11G).

To evaluate and compare the performance, several classical classifiers, e.g., SVM, random 

forest (RF), decision tree, were implemented for classifying low/high WRAT groups. In 

addition, several deep network based classifiers were implemented, including CCL with 

external classifiers (SVM/RF), and multilayer perceptron (MLP). Three multimodal-data-

integration-based classifiers, i.e., gCAM-CCL, CCL+SVM, CCL+RF, take two omics data 

separately as the input, as shown in Fig. 1. In contrast, the other models take the 

concatenated data as the input. Specifically, to generate “concatenated data”, brain FCs were 

first flattened into vectors and then principal component analysis (PCA) was used for 

dimension reduction. After that, the brain FC vectors and SNPs vectors were concatenated 

as the “concatenated data”. We used radial basis function (RBF) kernel for SVM; and the RF 

classifier consists of 50 trees. The result of classifying high/low cognitive groups is shown in 

Table III. From Table III, the three data-integration-based classifiers outperform the 

concatenating classifiers. This is consistent with the result in our previous work [11], which 

also shows that the collaborative network with multimodal data can improve classification 

performance. Moreover, gCAM-CCL with intrinsic softmax classifiers achieves better 

classification compared with ‘CCL+SVM’ and ‘CCL+RF’. This may be due to the 

incorporation of cross-entropy loss in the model, i.e., Eq. 10, which facilitates the learning of 

loss-gradient during back-propagation process at each iteration.

D. Integrating brain imaging and genetic data: result interpretation

The class-specific activation maps for low WRAT group and high WRAT group were plotted 

in Figs. 2–3, respectively. From Fig. 2, the low WRAT group shows a relatively larger 

number of activated FCs, which contributed to the ‘low WRAT group’ class. In comparison, 

the high WRAT group (Fig. 3) has a relatively smaller number of significant FCs, which 
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determined the ‘high WRAT group’ class. This is further validated in the average histogram 

of the activation maps, i.e., Fig. 4. For the low WRAT group (Fig. 4-left), a large portion of 

FCs were activated (high grey-scale value), while for the high WRAT group (Fig. 4-right), 

only a small portion of them were activated.

To identify significant brain FCs and SNPs, pixels with gray-value > 0.05×maximum gray-

value were selected, following the instructions in the work [16]. After that, FCs and SNPs 

with > 0.7 occurring frequency across all subjects were further selected as significant FCs 

(see Figs. 5–6) and SNPs (listed in Tables V-VI).

The identified brain FCs (ROI-ROI connections) and their corresponding ROIs were 

visualized in Fig. 5 and Fig. 6, respectively. For the high WRAT group (Fig. 5.b), three hub-

ROIs (lingual gyrus, middle occipital gyrus, and inferior occipital gyrus) exhibited dominant 

ROI-ROI connections over the others. All of the three hub-ROIs are occipital-related. 

Lingual gyrus, also known as medial occipitotemporal gyrus, plays an important role in 

visual processing [29], [30], object recognition, and word processing [29]. The other two 

hubs, i.e., middle and inferior occipital gyrus, also play a role in object recognition [31]. As 

shown in Fig. 5.b, the hub-ROIs also connect to several other ROIs, e.g., cuneus, and 

parahippocampal gyrus. Among them, the cuneus receives visual signals and is involved in 

basic visual processing. The parahippocampal gyrus is related to encoding and recognition 

[32]. These suggest that the three occipital gyri are first activated when processing visual 

and word signals during the WRAT test, and then several downstream processing ROIs, e.g., 

para hippocampal gyrus, are activated for further complex encoding. As a result, strong FCs 

exist in these ROI-ROI connections, which may lead the gCAM-CCL to select the high 

WRAT group.

For the low WRAT group (Fig. 5.a), there were no significant hub ROIs identified. Instead, 

several previously reported task-negative regions, e.g., temporal-parietal and cingulate gyrus 

[33], were identified. This indicates that the low WRAT group may be weaker in activating 

cognition-processing ROIs and therefore task-negative are relatively more active, which may 

lead the gCAM-CCL to make the ‘low WRAT group’ decision.

As seen in Fig. 5a-b, a relatively larger number of FCs contributed to the low WRAT group, 

compared to that of the high WRAT group. Despite this, as shown in Table III, the sensitivity 

is lower than the specificity, which means that the accuracy of classifying low WRAT group 

is lower. This suggests that the identified FCs for the high WRAT group are relatively more 

discriminative and the low WRAT group may contain more noisy FCs.

Gene enrichment analysis is conducted on the identified SNPs (Tables V-VI) using 

ConsensusPathDB-human (CPDB) database3, and the enriched pathways are listed in Tables 

VII-VIII. Several neurotransmission related pathways, e.g., regulation of neurotransmitter 

levels and synaptic signaling, are enriched from the identified high WRAT group genes. This 

suggests that the high WRAT group may have stronger neuron signaling ability. The stronger 

neuron-signalling may benefit the daily training and development of ROI-ROI connections, 

3http://epdb.molgen.mpg.de/
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which may therefore contribute to stronger cognitive ability. For the low WRAT group, 

several brain development and neuron growth related pathways, e.g., midbrain development 

and growth cone, are enriched, suggesting that the low WRAT group may have problems in 

brain/neuron development. This may further affect the ROI-ROI connections, leading to 

weaker cognitive ability. Therefore, the genetic differences may lead to differences in ROI-

ROI connection, and especially the visual processing and information encoding ROIs; and 

may further contribute to the differences in the brain FC patterns between the two cognition 

groups. As a result, subjects with both neuro-transmission-related genetic biomarkers and 

the image-processing-related brain FCs may lead classifiers to more likely make the ‘high 

cognition’ decision. In contrast, subjects with both neuron-underdevelopment-related 

biomarkers and weaker image-processing-related FC patterns may lead to a higher score on 

the “low cognition” class.

V. CONCLUSION

In this work, we proposed an interpretable multimodal deep learning based fusion model, 

namely gCAM-CCL, which can perform both classification and result interpretation. The 

gCAM-CCL model generates activation maps to display pixel-wise contribution of input 

images and genetic vectors. Specifically, it calculates each feature map’s gradients and then 

merges the gradients with global average pooling to combine the feature maps. Moreover, 

the activation maps are class-specific, which further promotes class-difference analysis with 

potential discovery of biological mechanisms.

The proposed model was applied to an imaging-genetic study to classify low/high WRAT 

groups. Experimental results demonstrate gCAM-CCL’s superior performance in both 

classification and biological mechanism analysis. Based on the generated activation maps, a 

number of significant brain FCs and SNPs were identified. Among the significant FCs (ROI-

ROI connections), three visual processing ROIs exhibited dominant ROI-ROI connections 

over the others. In addition, several signal encoding ROIs, e.g., the parahippocampa gyrus, 

showed connections to the three hub-ROIs. These suggest that during task-fMRI scans, 

object recognition related ROIs are first activated and then downstream ROIs get involved 

with signal encoding. Results also suggest that high cognitive group may have higher 

neuron-transmitter signalling levels while low cognitive group may have problems in brain/

neuron development, due to genetic-level differences. In summary, gCAM-CCL has 

demonstrated superior classification accuracy than several competitive models, in addition to 

being able to identify significant biomarkers. Besides the proposed imaging-genetic study, 

the model is generic, which can find widespread applications in multimodal data integration.
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Fig. 1: 
The work-flow of grad-CAM guided convolutional collaborative learning (gCAM-CCL), an 

end-to-end model for automated classification and interpretation for multimodal data fusion. 

Genetic data is fed into a ConvNet and then flattened to a fully connected layer. Brain 

functional connectivity (FC) data is fed into a deep network. A collaborative learning layer 

fuses the two deep networks and passes two composite gradients mutually during the back-

propagation process.
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Fig. 2: 
The brain FC activation maps for the Low WRAT group: Grad-CAM (top 4 subfigures) and 

Gradient-Guided Grad-CAM (bottom 4 subfigures).
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Fig. 3: 
The brain FC activation maps for the high WRAT group: Grad-CAM (top 4 subfigures) and 

Gradient-Guided Grad-CAM (bottom 4 subfigures).
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Fig. 4: 
The histogram of the Grad-CAM activation maps of brain FCs (see Figs. 2–3).
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Fig. 5: 
The identified class-discriminative brain FCs by gCAM-CCL. The full names of ROIs can 

be found in Table IX. Each circle arc represents an ROI (based on Power parcellation [22]). 

The length of a circle arc indicates the number of ROI-ROI connections for this ROI.
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Fig. 6: 
The identified brain functional connectivity. The top 3 subfigures: Low WRAT group (axial 

view, coronal view, sagittal view, respectively); the bottom 3 subfigures: High WRAT group 

(axial view, coronal view, sagittal view, respectively).
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TABLE I:

13 Brain-related tissues from GTEx V7 database

Tissue name Sample size

Brain nucleus accumbens 93

Brain caudate 100

Brain cerebellar hemisphere 89

Brain cerebellum 103

Brain frontal cortex 92

Brain cortex 96

Brain amygdala 76

Brain spinal cord 80

Brain substantia nigra 72

Brain putamen 82

Brain anterior cingulate cortex 72

Brain hypothalamus 81

Brain hippocampus 81
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TABLE III:

The comparison of classification performances (Low/High WRAT classification).

Classifier ACC SEN SPF F1

gCAM-CCL 0.7501 0.7762 0.7157 0.7610

CCL+SVM 0.7387 0.7637 0.7083 0.7504

CCL+RF 0.7419 0.7666 0.7014 0.7523

DCL+SVM 0.7315 0.7578 0.6981 0.7354

MLP 0.7231 0.7555 0.6915 0.7215

SVM 0.7082 0.7562 0.6785 0.7093

DT 0.6626 0.6778 0.6430 0.6605

RF 0.7119 0.7559 0.6714 0.7138

Logist 0.6745 0.7386 0.6285 0.6900
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TABLE V:

Identified SNP loci (Low WRAT group)

SNP rs # Gene SNP rs # Gene

rs1642763 ATP1B2 rs997349 MTURN

rs9508 ATPIF1 rs17547430 MTURN

rs2242415 BASP1 rs7780166 MTURN

rs11133892 BASP1 rs10488088 MTURN

rs10113 CALM3 rs3750089 MTURN

rs11136000 CLU rs2275007 OSGEP

rs4963126 DEAF1 rs4849179 PAX8

rs11755449 EEF1A1 rs11539202 PDHX

rs2073465 EEF1A1 rs1045288 PSMD13

rs1809148 EEF1D rs7563960 RNASEH1

rs4984683 FBXL16 rs145290 RP1

rs7026635 FBXW2 rs446227 RP1

rs734138 FLYWCH1 rs414352 RP1

rs2289681 GFAP rs6507920 RPL17

rs7258864 GNG7 rs12484030 RPL3

rs4807291 GNG7 rs10902222 RPLP2

rs887030 GNG7 rs8079544 TP53

rs7254861 GNG7 rs6726169 TTL

rs12985186 GNG7 rs415430 WNT3

rs2070937 HP rs8078073 YWHAE

rs622082 IGHMBP2 rs12452627 YWHAE

rs12460 LINS rs324126 ZNF880

rs10044354 LNPEP
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TABLE VI:

Identified SNP loci (High WRAT group)

SNP rs # Gene SNP rs # Gene

rs3787620 APP rs1056680 MB

rs373521 APP rs9257936 MOG

rs2829973 APP rs7660424 MRFAP1

rs1783016 APP rs3802577 PHYH

rs440666 APP rs1414396 PHYH

rs2753267 ATP1A2 rs1414395 PHYH

rs10494336 ATP1A2 rs1037680 PKM

rs1642763 ATP1B2 rs2329884 PPM1F

rs10113 CALM3 rs1045288 PSMD13

rs2053053 CAMK2A rs2271882 RAB3A

rs4958456 CAMK2A rs12294045 SLC1A2

rs4958445 CAMK2A rs3794089 SLC1A2

rs3756577 CAMK2A rs7102331 SLC1A2

rs874083 CAMK2A rs3798174 SLC22A1

rs3011928 CAMTA1 rs9457843 SLC22A1

rs890736 CPLX2 rs1443844 SLC22A1

rs17065524 CPLX2 rs6077693 SNAP25

rs12325282 FAHD1 rs363043 SNAP25

rs104664 FAM118A rs362569 SNAP25

rs6874 FAM69B rs10514299 TMEM161B-AS1

rs7026635 FBXW2 rs4717678 TYW1B

rs12735664 GLUL rs8078073 YWHAE

rs7155973 HSP90AA1 rs10521111 YWHAE

rs2251110 LOC101928134 rs4790082 YWHAE

rs2900856 LOC441242 rs10401135 ZNF559

rs8136867 MAPK1
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TABLE IX:

Abbreviations of the ROIs

Inferior Parietal Lobule (Inf_Pari) Angular Gyrus (Angular)

Inferior Occipital Gyrus (Inf_Occi) Fusiform Gyrus (fusiform)

Inferior Frontal Gyrus (Inf_Fron) Cingulate Gyrus (Cingu)

Middle Occipital Gyrus (Mid_Occi) Sub-Gyral (SubGyral)

Middle Frontal Gyrus (Mid_Fron) Paracentral Lobule (ParaCetr)

Parahippocampa Gyrus (Parahippo) Postcentral Gyrus (PostCetr)

Middle Temporal Gyrus (Mid_Temp) Precuneus (Precun)

Superior Parietal Lobule (Sup_Pari) Lingual gyrus (Lingual)
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