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Abstract

Purpose: Reducing chemical pressure on human and environmental health is an integral part of 

the global sustainability agenda. Guidelines for deriving globally applicable, life cycle based 

indicators are required to consistently quantify toxicity impacts from chemical emissions as well 

as from chemicals in consumer products. In response, we elaborate the methodological framework 

and present recommendations for advancing near-field/far-field exposure and toxicity 

characterization, and for implementing these recommendations in the scientific consensus model 

USEtox.

Methods: An expert taskforce was convened by the Life Cycle Initiative hosted by UN 

Environment to expand existing guidance for evaluating human toxicity impacts from exposure to 

chemical substances. This taskforce evaluated advances since the original release of USEtox. 

Based on these advances, the taskforce identified two major aspects that required refinement, 

namely integrating near-field and far-field exposure and improving human dose-response 

modeling. Dedicated efforts have led to a set of recommendations to address these aspects in an 

*Corresponding author: Tel.: +45 45254452, fax: +45 45933435. pefan@dtu.dk. 

HHS Public Access
Author manuscript
Int J Life Cycle Assess. Author manuscript; available in PMC 2021 June 16.

Published in final edited form as:
Int J Life Cycle Assess. 2021 May ; 26(5): 899–915. doi:10.1007/s11367-021-01889-y.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



update of USEtox, while ensuring consistency with the boundary conditions for characterizing life 

cycle toxicity impacts and being aligned with recommendations from agencies that regulate 

chemical exposure. The proposed framework was finally tested in an illustrative rice production 

and consumption case study.

Results and discussion: On the exposure side, a matrix system is proposed and recommended 

to integrate far-field exposure from environmental emissions with near-field exposure from 

chemicals in various consumer product types. Consumer exposure is addressed via submodels for 

each product type to account for product characteristics and exposure settings. Case study results 

illustrate that product-use related exposure dominates overall life cycle exposure. On the effect 

side, a probabilistic dose-response approach combined with a decision tree for identifying reliable 

points of departure is proposed for non-cancer effects, following recent guidance from the World 

Health Organization. This approach allows for explicitly considering both uncertainty and human 

variability in effect factors. Factors reflecting disease severity are proposed to distinguish cancer 

from non-cancer effects, and within the latter discriminate reproductive/developmental and other 

non-cancer effects. All proposed aspects have been consistently implemented into the original 

USEtox framework.

Conclusions: The recommended methodological advancements address several key limitations 

in earlier approaches. Next steps are to test the new characterization framework in additional case 

studies and to close remaining research gaps. Our framework is applicable for evaluating chemical 

emissions and product-related exposure in life cycle assessment, chemical alternatives assessment 

and chemical substitution, consumer exposure and risk screening, and high-throughput chemical 

prioritization.
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1 Introduction

Reducing chemical pressure on human and ecological health is an integral part of the global 

sustainability agenda. This includes the reduction of chemical emissions into the natural 

environment along product life cycles as well as the reduction of human exposure to 

chemicals used in consumer goods, as laid out in the United Nations (UN) Sustainable 

Development Goals (UN 2020) and in the UN Environment Programme’s Strategic 

Approach to International Chemicals Management (UNEP 2015). Harmonized guidelines 

are required to consistently quantify life cycle toxicity impacts from chemical emissions as 

well as from exposure to chemicals in products or articles (hereafter referred to as 

‘products’). Such guidelines should focus especially on providing recommendations for 

globally applicable and life-cycle-based indicators and underlying methods that are most 

suitable for the quantitative characterization of human and ecological toxicity impacts 

associated with chemical emissions and exposure. Therefore, it is important that related 

recommendations are consistent with the boundary conditions of characterizing toxicity 

impacts in life cycle impact assessment (LCIA) (Fantke et al. 2018a), while being aligned 
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with chemicals-management recommendations from regulatory entities (Saouter et al. 

2017a,b).

In response to these needs, the Life Cycle Initiative, which is hosted at the UN Environment 

Programme, developed and endorsed the scientific consensus model USEtox (Rosenbaum et 

al. 2008, Westh et al. 2015, Fantke et al. 2020b). Current practice for characterizing human 

toxicity and freshwater ecotoxicity impacts in LCIA is implemented in this model. It 

includes inhalation and ingestion exposure, and related health effects from emissions into 

far-field compartments (air, water, soil) or into a generic indoor compartment. However, 

despite reflecting—as a scientific consensus model—mature science (Hauschild et al. 2008), 

the original toxicity characterization framework has limitations, calling for further 

improvement based on scientific progress. Such improvements are mainly related to 

increasing the spatiotemporal and population-level resolution of impact estimates and 

extending the coverage and quality of substance, exposure, and dose-response data and 

models (Fantke et al. 2018a,b, Kirchhübel & Fantke 2019, Crenna et al. 2020, Gentil et al. 

2020, Holmquist et al. 2020). Furthermore, a series of recent studies has demonstrated that 

environmentally-mediated exposures from chemical emissions are less important for overall 

exposure than consumer exposure to chemical constituents in products (Shin et al. 2015, 

Ernstoff et al. 2016, Fantke & Jolliet 2016, Csiszar et al. 2017, Ring et al. 2019, Fantke et al. 

2020b, Jolliet et al. 2021). Hence, including pathways related to chemicals in consumer 

products into the original LCIA framework is crucial for considering all relevant life cycle 

toxicity impacts. Another specific need is the improvement of dose-response assessment for 

non-cancer toxicity that would benefit from latest progress in stochastic dose-response 

modelling (WHO 2014, 2017, Chiu & Slob 2015, WHO 2017, Chiu et al. 2018). To address 

these issues, the Life Cycle Initiative has established taskforces for advancing the original 

consensus for human toxicity and ecotoxicity characterization, in the frame of a flagship 

project on global guidance on environmental LCIA indicators (Jolliet et al. 2014, 

Frischknecht et al. 2016, Verones et al. 2017, Jolliet et al. 2018). The work conducted by 

these taskforces has led to a set of recommendations for refining and expanding the original 

LCIA toxicity characterization framework, and for implementing these recommendations 

into USEtox. In the present paper, we detail the methodological aspects underlying these 

recommendations and their implementation into the original USEtox modeling framework. 

We present recommendations for environmental fate, human exposure and toxicity effects 

with focus on including exposure to chemicals in consumer products and non-cancer dose-

response modeling, while recommendations for ecotoxicity effects are presented elsewhere. 

The proposed updated USEtox near-field/far-field exposure and human toxicity modelling 

framework is finally evaluated in an illustrative rice production and consumption case study.

2 Consensus-building process

In 2016, the Life Cycle Initiative convened a Human Toxicity taskforce, consisting of 

leading experts from academia, industry, and government public-health institutions, to 

expand its guidance for evaluating human toxicity impacts from exposure to chemical 

substances. The taskforce followed the process of an earlier taskforce providing guidance on 

assessing impacts from exposure to fine particulate matter (Fantke et al. 2015, Hodas et al. 

2016, Fantke et al. 2017, Fantke et al. 2019b). An initial scoping phase identified the need 
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for advancing two major aspects, namely integrating near-field and far-field exposure and 

improving human dose-response modeling. To address these aspects, scientific advances 

were discussed and initial recommendations formulated through three expert workshops held 

in 2016 and 2017 (Fantke et al. 2018b). Further refinement of these initial recommendations, 

along with alignment with efforts to update ecotoxicity impact assessment (Fantke et al. 

2018a, Owsianiak et al. 2019), led to a set of final recommendations discussed and agreed 

upon in a scientific expert workshop held in Valencia (Spain) in 2018. While the general 

recommendations of advancing USEtox have been summarized in the related workshop 

report (Frischknecht & Jolliet 2019), the present paper details the underlying methodological 

framework for human near-field exposure and toxicity characterization.

3 Proposed methodological framework

In USEtox, human toxicity impacts are characterized in terms of population-level lifetime 

loss associated with cumulative health risk for different health effects (aggregated into 

cancer and non-cancer effects, each having different average effect severity). Such health 

effects are associated with exposure to chemicals that distribute among far-field 

compartments (e.g. outdoor air), finally reaching humans via different exposure pathways 

(e.g. ingestion of food) (Rosenbaum et al. 2011). Combining these aspects for environmental 

emissions in a matrix-based framework yields characterization factors expressed in 

disability-adjusted life years (DALY) lost per unit mass emitted into the environment.

To facilitate the integration of near-field (consumer) exposure environments into the existing 

framework of far-field (emission-related outdoor) exposure environments, we reviewed 

available approaches that model near-field fate and exposure pathways for chemicals in 

consumer products (Huang et al. 2017). The integrated framework needed to address human 

exposure pathways during and after product use on a consistent mass-balance basis. 

Following recent recommendations for human toxicity characterization, we build on the 

original rate-constant-based USEtox framework to determine transfer fractions. We extend 

these recommendations to the near-field environment to obtain by matrix inversion 

cumulative transfer fractions and human-exposure-related product intake fractions (PiF). 

The latter combine near-field consumer household environments with far-field environments 

into a metric that incorporates the interactions of humans with both types of environments 

via dermal, inhalation, and oral exposure pathways, and potential feedback via e.g. 

exhalation (Jolliet et al. 2015, Fantke et al. 2016). This allows linking human intake via all 

exposure routes directly to chemical mass in products. The overall structure of the new 

recommended integrated near-field/far-field human exposure and toxicity characterization 

framework is illustrated in Figure 1.

In line with the original USEtox matrix framework, we arrange in a single matrix 

TFcum ∈ ℝc × c all cumulative chemical mass transfer fractions. We start from products and 

emissions in the different environments along with intake fractions (relating intake to 

emissions) and product intake fractions (relating intake to mass in products) (Fantke et al. 

2016). We obtain a matrix CF ∈ ℝe × c of characterization factors per kg inventory mass 

[DALY/kginventory mass], relating impacts on humans due to health effects e per unit mass of 

a chemical in emission or product compartment of entry c:
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CF = SF DRF TFcum = EF TFcum (1)

where the diagonal matrix SF ∈ ℝe × e of severity factors [DALY/incidence] multiplies 

matrix DRF ∈ ℝe × r of dose-response factors [incidence risk/kgintake] associated with 

exposure routes r (i.e. inhalation, ingestion and dermal exposure, aggregated over all 

contributing exposure pathways x ∈ r, such as ingestion of drinking water and ingestion of 

food). Matrices SF and DRF are combined into matrix EF of toxicity-related health effect 

factors [DALY/kgintake], multiplying matrix TFcum. The dimensions of the matrix of dose-

response factors is thereby matched to TFcum, i.e. DRF ∈ ℝe × c, with zeroes for all non-

human compartments. From this set of matrices, we derive the following recommendations 

for characterizing human toxicity and ecotoxicity impacts for chemical emissions and for 

chemicals used in products.

Impact scores ISH [DALY/functional unit] representing toxicity-related damages on human 

health are derived from the chemical inventory mass per functional unit, mc [kginventory/

functional unit]. Chemicals are either emitted to an environmental or available in a product 

compartment c, multiplied by the sum of corresponding characterization factors for human 

toxicity (H) impacts, CFc, r, e
H  [DALY/kginventory], across considered exposure routes r and 

effect types e, aggregating over all compartments c:

ISH = ∑c mc × ∑r, e CFc, r, e
H

(2)

where the chemical inventory mass corresponds directly to the emitted mass for 

environmental emissions, and to the mass of chemical in a given product application for 

chemicals in consumer products. This chemical mass in products is derived from the 

chemical weight fraction in a product application [kg/kgproduct] and the related product mass 

Mc [kgproduct]:

mc = wfc × Mc (3)

Characterization factors CFc, r, e
H  are derived from human-intake-related cumulative chemical 

mass transfer fractions, TFc, u, x ∈ r
cum  [kgintake/kginventory], summed over population groups u, 

and over exposure pathways x belonging to the same route r. These cumulative transfer 

fractions are multiplied by toxicity-related health effect factors, EFx, e
H  [DALY/kgintake], 

calculated as the product of the dose-response factor, DRFr, e
H  [incidence risk/kgintake], for 

exposure route r and effect type e, and the effect-type-specific severity factor, SFe
H [DALY/

incidence]:

CFc, r, e
H = ∑u, xTFc, u, x ∈ r

cum × DRFr, e
H × SFe

H
EFx, eH

(4)
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Human toxicity indicators are most commonly extrapolated from animals to humans (as 

human data are often unavailable). They express dose-response factors for carcinogenic and 

noncarcinogenic toxicity effect endpoints that represent a change in human population 

response per unit change of chemical exposure. To allow for considering the various health 

endpoints obtained from (human and animal) toxicity studies, results are generally 

aggregated into cancer and non-cancer effects in LCIA toxicity characterization. Based on 

the latest work in dose-response modelling (WHO 2014, Chiu & Slob 2015, Chiu et al. 

2018), we refine the approaches for the selection of toxicity input data and their 

extrapolation to derive effect factors for non-cancer effects, as described further below. 

Severity factors translate an estimated human response into potential lifetime loss due to 

death or disease, expressed in DALY. Statistically-averaged severity factors for cancer and 

non-cancer health endpoints were originally based on incidence-weighted DALY from the 

Global Burden of Disease (GBD) study series for 1990 (Huijbregts et al. 2005), which we 

update specifically associated with non-cancer responses as detailed further below.

Chemicals emitted into a given environmental compartment or used in a given product 

application can also reach ecosystems (e.g. via landfilling the product after use or via 

product use-related emissions into indoor air and subsequent transfer to the outdoor 

environment). Hence, we also characterize ecotoxicity impacts associated with either the 

chemical mass emitted to a compartment or the chemical mass in a product. Impact scores 

ISs
E [PDF m3 d/functional unit] for a given ecosystem type s (e.g. freshwater ecosystems) 

represent ecotoxicity-related damages on ecosystem quality. They are derived as chemical 

inventory mass, mc [kginventory/functional unit] multiplied by the corresponding 

characterization factors for ecotoxicity (E) impacts, CFs, c
E  [PDF m3 d/kginventory], 

aggregated over all compartments c:

ISs
E = ∑c (mc × CFs, c

E ) (5)

Characterization factors CFs, c
E  are derived from the cumulative chemical mass transfer 

fractions from emission compartment c to the receiving exposure compartment associated 

with ecosystem type s, TFc, s
cum [kgto compartment/kginventory]. TFc, s

cum are multiplied by the first-

order residence time in the receiving compartment, which is the inverse of the direct overall 

removal rate constant of chemical mass from that compartment, ks
loss [(kg/d)/kg]. These are 

further multiplied by the ecosystem exposure factor, XFS [kgbioavailable/kgto compartment], 

representing the bioavailable mass fraction in the compartment of exposed ecosystem type s, 

and by the ecosystem-type-specific, ecotoxicological effect factor, EFs
E [PDF m3/

kgbioavailable]. EFs
E are calculated as the product of the concentration-response factor, CRFS 

[PAF m3/kgbioavailable], and the severity factor, SFs
E [PDF/PAF]:

CFs, c
E = TFc, s

cum × 1
ks

loss × XFs × CRFs × SFs
E

EFsE

(6)
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Since further multimedia transfers are already considered in TFc, s
cum, we do not use the 

diagonal of the fate factor matrix as in earlier versions of USEtox, but the first-order 

chemical residence time (inverse of ks
loss), to avoid double counting of feedback into the 

original emission or product compartment (Margni et al. 2004).

4 Integrated near-field and far-field fate and exposure assessment

4.1 Extended matrix framework

For consistency with the original USEtox far-field model, we structure the product 

compartment as an entry point for chemicals directly emitted to this compartment or for 

chemicals in products. We then link near-field and far-field emission compartments and 

human receptor compartments in a single matrix of cumulative chemical mass transfer 

fractions, TFcum (see eq. 1), as illustrated in Figure 2. Matrix TFcum is derived from 

inverting the matrix TF ∈ ℝc × c of direct transfer fractions, where each entry represents a 

direct chemical mass transfer fraction that is defined between two adjacent or nested 

emission sources and receiving compartments (Fantke et al. 2016). Matrix columns 

representing human receptor compartments are only relevant for feedback of chemical mass 

fractions taken in by humans that are released back to the environment, such as from 

exhaling a fraction of an inhaled chemical back into indoor air. Blue highlighted cumulative 

transfer fractions in Figure 2 divided by feedback factors are used for obtaining the matrix of 

fate factors as input for modeling ecotoxicity impacts, consistent with the original USEtox 

approach. Exposure-related matrix elements in Figure 2 are highlighted in orange. For all 

rows referring to human receptor compartments i, the first (i.e. product or direct emission 

source-related) column j of TFcum represents the vector PiF = TFcum[αi, βj = 1] of product 

intake fractions [kgintake/kginventory mass]. PiF elements represent cumulative transfer from a 

given product or direct emission compartment to humans, and all other (i.e. emission source-

related) columns represent the sub-matrix iF = TFcum[αi, βj≠1] of intake fractions 

[kgintake/kgemitted] representing cumulative transfer from different emission compartments to 

humans. Each PiF element is the sum of direct and indirect transfer fractions contributing to 

an exposure pathway from a compartment of entry to a specific human receptor 

compartment. Different scenarios can be compared across exposure pathways for different 

compartments of entry (i.e. for chemicals in different product types), since all other TFcum 

columns are product-independent. The compartment of entry can refer to any near- or far-

field emission compartment (for direct emissions) or to any product representing a semi-

permeable boundary between product and near-field environment, which chemicals enter 

when installing products or bringing them into the near-field environment.

4.2 Direct chemical mass transfer fractions

The first column in direct transfer fractions matrix TF is specified to be a product-type-

specific compartment of entry, whose entries vary as function of transfer pathways relevant 

for different product types or emission scenarios. To calculate transfer fractions for 

chemicals in an initial emission or product compartment of entry for a variety of exposure 

pathways, we incorporated five main underlying models for ‘direct emission’, and for 
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‘article interior’, ‘skin surface layer’, ‘object surface’, and ‘food contact material’ products. 

Table 1 summarizes the direct transfer fractions that are determined by each underlying 

model.

The ‘direct emission’ model contains a set of fixed direct transfer fractions to environmental 

compartments. For emissions, direct transfer fractions are derived from original USEtox rate 

constants describing chemical transfers or losses from compartments describing outdoor 

environments (Rosenbaum et al. 2008), indoor environments (Rosenbaum et al. 2015), and 

waste treatment (e.g. Kjeldsen & Christensen 2001). Related direct human exposure 

fractions include inhalation of indoor air, ingestion of drinking water and dermal uptake. The 

‘article interior’ model considers direct transfer fractions from articles (e.g. building 

materials, furniture, toys) to indoor air, to skin via dermal contact, and to the gastrointestinal 

tract via dust ingestion. Depending on chemical-material properties, different models are 

used for transfer to indoor air, namely diffusion-limited models (accounting for chemical 

diffusion within articles via Fick’s 2nd Law) (Huang & Jolliet 2016) and partition-limited 

models (assuming that chemicals are evenly distributed inside articles and accounting for 

indoor sorption) (see Electronic Supplementary Material, ESM, Section S-2a). Direct 

transfers for dermal contact and dust ingestion assume that chemical concentrations on 

article surfaces are in equilibrium with those in skin surface lipids and in dust, respectively. 

The ‘skin surface layer’ model applies to chemicals in personal care and other products (e.g. 

hand sanitizers) applied directly on human skin. This model uses a three-compartment mass-

balance model that includes skin, indoor air, and product applied, and assumes that 

volatilization and skin permeation are competing loss processes (Ernstoff et al. 2016). The 

‘object surface’ model is used for chemicals applied on object surfaces (e.g. surface 

cleaners). This model uses a four-compartment mass-balance approach that includes near-

person, far-person (in the same indoor environment), surfaces, and air (Wang et al. 2016), 

with transfers between near-person and far-person surfaces to simulate the movement of a 

person when cleaning surfaces. The ‘food contact material’ model estimates the fraction of 

organic chemicals migrating from polymeric packaging materials into food matrices as a 

function of diffusion coefficients within packaging materials and packaging-food partition 

coefficients (Ernstoff et al. 2017). Indoor sorption is considered across product-specific 

models and detailed in ESM, Section S-2d.

5 Human toxicity dose-response framework

We updated the approach for deriving human toxicity dose-response factors (see eq. 1) for 

non-cancer endpoints. The updated approach is illustrated in Figure 3 and consists of two 

main steps for each chemical: (1) identifying a point of departure (POD) using a decision-

tree based on data availability and reliability, and (2) deriving human lifetime equivalent 

dose-response factors from the selected PODs using a probabilistic framework. This 

framework addresses a number of key limitations of the original approach. First, it 

significantly broadens the coverage of chemicals for which dose-response factors can be 

derived by utilizing a wider range of toxicity data sources beyond regulatory human-health-

hazard assessments. Second, it incorporates recent guidance from the WHO (2014, 2017) on 

more explicitly considering both uncertainty and human variability. Although dose-response 

factors are currently still fixed slopes based on point estimates, the values themselves are 
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derived from a statistical distribution, rather than being the result of deterministic 

calculations. Finally, the value of the dose-response factor was chosen to better represent the 

marginal slope of the dose-response relationship in a dose range that is environmentally 

relevant.

5.1 Identifying points of departure (POD)

As shown in Figure 3 (top panel), our updated framework substantially expands the 

acceptable data sources for PODs. Animal or human toxicity values (e.g. benchmark dose 

lower confidence limit (BMDL), no-observed adverse effect level (NOAEL), or lowest 

observed adverse effect level (LOAEL)) used in regulatory human health hazard assessments 

are the preferred source. If such data are not available, other experimental animal data, New 

Approach Methods (NAMs), such as in vitro and in silico models, or Thresholds of 

Toxicological Concern (TTC) are used to derive an individual animal or human POD, as 

detailed in ESM, Section S-3a. However, even with regulatory assessments, it is often the 

case that different countries or organizations come to different conclusions and select 

different PODs, rendering it necessary to have an explicit hierarchy of sources. As an 

example, for U.S.-based regulatory values, we apply the hierarchy developed by Wignall et 

al. (2014), (2018) (see ESM, Section S-3b).

5.2 Deriving human lifetime equivalent dose-response factors

Once PODs are identified along with accompanying meta-data, we use the automated 

workflow developed by Chiu et al. (2018) to implement the WHO (2014, 2017) probabilistic 

framework and derive population-level dose-response functions. This workflow involves the 

following steps for each POD. First, we assign a ‘conceptual model’ based on the type of 

effect (continuous or dichotomous, reflecting a stochastic process or not) to each animal or 

human POD, using criteria listed in ESM, Table S6. Next, uncertainty distributions are 

generated for each POD using the default distributions derived by WHO (2014, 2017) and 

informed by the POD meta-data, as outlined in ESM, Table S7. With that, a median 

individual benchmark dose (BMD) is obtained from POD-specific extrapolations:

BMD = POD
efBMD

(24)

where efBMD is a probabilistic factor for NOAEL, LOAEL or BMDL to BMD extrapolation 

(for POD = BMD, the central estimate of efBMD = 1). From the BMD, we derive a human-

equivalent individual dose-response factor for a given effect magnitude (e.g. % change in 

blood pressure) expressed in mg/kgBW/d for oral exposure and mg/m3 for inhalation 

exposure, which we define as ED50, which is the effect dose for the median (i.e. 50th %-ile) 

individual of the human population, thus inducing a 50% human population response:

ED50 = BMD
efBW × efTKTD × eft

(25)

where efBW, efTKTD and eft are probabilistic factors for, respectively, interspecies body 

weight (BW) scaling, interspecies toxicokinetic (TK)/toxicodynamic (TD) differences, and 

exposure duration extrapolation (ESM, Table S7). In case of human-based POD, central 
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estimates for efBW = efTKTD = 1, but their uncertainty remains. These distributions are 

applied using the approach illustrated in Figure 3 (bottom panel), based on the WHO model. 

In this model, the human-population incidence-response level I (e.g. 10%) can be expressed 

as a cumulative lognormal distribution reflecting intra-species variability around the 

exposure dose level X, namely I(X) = Φ[z(X)],z(X) = (ln X – In ED50)/σH. In this notation, 

the ED50 is defined as in eq. 25, σH is the log-scale standard deviation that reflects human 

variability in sensitivity, and the dose level X = ED10 corresponds to the population 

incidence response level I = 10%, which is then used to derive a human-equivalent 

population lifetime dose by following the steps described below. This model is implemented, 

using the approach proposed by Chiu and Slob (2015), by dividing the ED50 by a 

probabilistic factor efH,I, calculated for a incidence level of I = 10%:

ED10 = ED50
efH, I = 0.1

(26)

Specifically, efH,I=0.1 = exp(1.282 × σH), where 1.282 corresponds to the absolute value of 

the z-score for a 10% human population response level. Not only the POD but also all 

extrapolation factors in eqs. 24 to 26 are assigned distributions, from which ED10 is then 

derived probabilistically.

Next, to derive an effect metric compatible with the USEtox framework, the central tendency 

(median estimate) of the ED10 is converted into a human-equivalent lifetime dose, DLT10 

(kg/lifetime):

DLT10 = ED10 × F{BW , BR} × LT × cfd ∕ yr
cfmg/kg

(27)

where for oral exposure F{BW,BR} = 70 kg is the average human body weight and for 

inhalation exposure F{BW,BR} = 16 m3/d is the average human individual breathing rate, LT 
= 70 years is the average human lifetime, and cfd/yr = 365.25 d/yr and cfmg/kg = 106 mg/kg 

are conversion factors for, respectively, days per year and mg per kg. Finally, the human-

equivalent lifetime dose-response factor, DRF (incidence risk/kg), is determined as linear 

slope to DLT10:

DRF = 0.1
DLT10 (28)

This central-tendency linearly-extrapolated slope from ED10 is also approximately equal to 

that of the marginal slope at 1% human population response level as illustrated in Figure 3, 

bottom panel (Fantke et al. 2019a), a response level that corresponds to a dose range that is 

environmentally relevant, especially when considering near-field exposure to chemicals in 

products.

In LCIA, the derived DRF is meant to represent the incremental (or marginal) increase in 

cumulative population risk for each unit of additional exposure, which is the slope of the 

dose-response relationship. The original LCIA approach uses the line between the point at 

Fantke et al. Page 10

Int J Life Cycle Assess. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



50% response and zero to represent this slope—using the above notation, this slope is 

simply 0.5/ED50. A key limitation of this previous approach is that it does not incorporate 

any information about population variability, which can be substantial, and can vary widely 

across chemicals (Zeise et al. 2013, Chiu et al. 2018). Indeed, the true slope of the dose-

response relationship is non-linear, with a value that varies continuously depending on dose.

Ideally, each LCIA-related study would establish a ‘working point’ exposure at which this 

slope is evaluated, and the distribution to calculate the DRF in each case. However, there are 

several difficulties with implementing such a case-specific DRF. First, due to lack of 

exposure data, it is very difficult to establish the current ‘background’ exposure level for any 

given compound and spatially-varying emission, even at the population level, let alone its 

population distribution. Second, as pointed out by Zeise et al. (2013), chemicals are additive 

to background disease, rather than background exposure to a specific compound. Indeed, 

Huijbregts et al. (2005) and Fantke et al. (2018b) have suggested that the ‘background 

exposure’ could be set as an ‘effective’ exposure at the equivalent background incidence 

rate. In sum, there is substantial uncertainty in the appropriate exposure dose at which to 

evaluate the slope of the dose-response relationship. Given these uncertainties, the linear 

slope from the 10% response level was found to be adequately representative of a reasonable 

range of possible marginal slopes at 1% response as further detailed in ESM, Section S-3d.

6 Human health effect severity

To allow comparisons of human toxicity impacts with other impacts contributing to damages 

on human health, levels of severity are assigned to the predicted population response levels, 

yielding DALY estimates associated with incremental exposure. Huijbregts et al. (2005) 

provided estimates of the incidence-weighted-average DALY associated with a range of both 

cancer and non-cancer health endpoints. They proposed that impacts could be assessed using 

these average DALY values (albeit with high uncertainty, particularly for non-cancer 

endpoints), even though responses estimated from animal toxicity data can rarely be mapped 

to specific human diseases.

We propose that the previous approach be refined to address at least one additional subset of 

non-cancer responses separately from other non-cancer responses. Substances that cause 

birth defects may be of special interest, because of the clear dichotomous nature of the 

response, the presence of directly analogous disease states in humans, and the severity and 

duration of the outcome (US-EPA 1991). This includes a group of disease categories 

designated in the Global Burden of Disease (GBD) databases as congenital anomalies (birth 

defects). However, inclusion of these endpoints in the broader non-cancer category can 

severely underestimate such outcomes. Separation of this category of effects is potentially 

justifiable from both a mechanistic and a statistical point of view, given the heterogeneity in 

DALY between this category and other non-cancer effect categories (Hay et al. 2017). The 

term congenital anomalies as used in the GBD refers, in the context of toxicity data, to 

“reproductive/developmental toxicity” effects. Developmental outcomes are effects that 

manifest in the offspring, while reproductive effects are those that affect the fertility or 

function of a parent for reproduction. This entire category of reproductive/developmental 

toxicity draws special attention in the regulatory world (along with cancer and mutagenesis). 
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An example is the CMR (carcinogenicity, mutagenicity, reproductive/developmental 

toxicity) designation used in Europe (EC 2008). Developmental outcomes thereby range in 

their severity from mild to extreme. However, the important point for all reproductive or 

developmental effects is that they have the potential to adversely affect humans for their 

entire lifetime, either because they were never born (effects on reproduction) or because they 

were born with either functional or morphological deficits (effects on development).

We recommend using incidence-weighted DALY values for all cancer endpoints from 

Huijbregts et al. (2005), as well as separate values for the reproductive or developmental 

effects and other non-cancer diseases as presented in ESM, Table S8. Separation of the 

reproductive/developmental category from other non-cancer responses results in a 

substantial decrease in the uncertainty associated with the average non-cancer (other than 

reproductive or developmental effects) DALY values. The reproductive/developmental 

DALY should be applied for any substance for which the effect factor is derived from 

reproductive or developmental outcomes. In addition to this separation, we recommend that 

DALY values per incidence for both non-cancer categories be updated with the most recent 

GBD statistics (Salomon et al. 2015, Stanaway et al. 2018).

7 Case study on rice production and consumption

The proposed updated USEtox near-field/far-field exposure and human toxicity modelling 

framework was demonstrated in an illustrative rice production and consumption case study 

based on three scenarios, using 1 kg of cooked, white rice as functional unit (FU). In the first 

scenario, rice is produced/processed in rural areas and distributed/cooked in urban China 

(CN); in the second scenario, rice production-to-cooking takes place in rural India (IN); and 

in the third scenario, rice is produced/processed in rural U.S. and distributed/cooked in urban 

Switzerland (US/CH). Further case study details are provided in Frischknecht et al. (2016). 

For human toxicity impacts, we considered 115 organic chemicals for which we could 

determine non-zero emissions along the rice production life cycle for at least one scenario. 

To specifically evaluate our near-field component, we additionally considered consumer 

exposure to six chemicals found in rice packaging (see ESM, Table S9), namely a single 

recycled cardboard package (CN), a single polyethylene rice package (IN), and multiple 

polyethylene rice cooking bags stored in a single recycled cardboard package (US/CH).

We applied the ‘article interior’ model to calculate chemical mass released from rice 

packaging to indoor air, and the ‘food contact material’ model to obtain the chemical mass 

migrated from rice packaging into rice during storage and boiling (see Table 1 for model 

descriptions). On the toxicity side, we derived non-cancer DRF values according to the 

approach presented in Figure 3 for 71 chemicals based on regulatory toxicity values, 47 

based on in vivo experimental animal toxicity studies, and 3 utilizing QSAR (see ESM, 

Figure S5 for ingestion exposure and Figure S6 for inhalation exposure). Furthermore, we 

obtained information on carcinogenicity for 58 chemicals. Among those, we derived cancer 

DRF values for 37 chemicals, while the data for 21 chemicals showed no carcinogenic effect 

indication in the underlying experimental studies.
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All individual chemicals across inventory, intake, effect, and impact-score levels were 

compared and ranked by decreasing impact scores for the US/CH scenario (ESM, Figure 

S7). Packaging-related manufacturing and disposal emissions are for most chemicals one to 

three orders of magnitude lower than total cradle-to-gate emissions. Overall, inventory 

results span over 10 orders of magnitude, with varying contributions of emission 

compartments across chemicals and scenarios. Intake fractions, aggregated over all 

contributing exposure pathways, span over 8 orders of magnitude, ranging from 5 × 10−9 to 

almost 1. For individual pathways, emission-based intake fractions range from < 10−15, i.e. 1 

pg inhaled per kg halosulfuron-methyl, up to 3 × 10−3, i.e. 3 g ingested per kg 2,3,7,8-

Tetrachlorodibenzo-p-dioxin (TCDD), for both being emitted to freshwater, spanning 16 

orders of magnitude. Product intake fractions for chemicals in rice packaging range from 2 

ppt of laurolactam inhaled by household members after volatilization during storage to 

>90% ingested by users after migration to rice during boiling, spanning 12 orders of 

magnitude across exposed sub-populations and pathways for the same chemical. Human-

toxicity effect factors combining dose-response and effect severity span over more than 10 

orders of magnitude, from 10−4 DALY per kg propene inhaled to 7 million DALY per kg 

TCDD ingested. Inventory data, (product) intake fractions, and effect factors for all case 

study chemicals are provided in ESM, Table S10.

Combining emission-based intake fractions and product intake fractions with effect factors 

yields characterization factors across the rice-case-study chemicals, aggregated over all 

pathways per exposure route (Figure 4a). Significant characterization factors are found for 

all six chemicals in rice packaging (ranging from 0.0003 to 0.07 DALY/kg in packaging) 

and for some of the 115 emitted chemicals (highest being TCDD with 21000 DALY/kg 

emitted to freshwater). Characterization factors span 18 orders of magnitude, with varying 

contributions of effect types (cancer, reproductive/developmental, and other non-cancer 

effects) and exposure routes (inhalation, ingestion, and dermal exposure) across chemicals.

Combining characterization factors with chemical mass in packaging and cradle-to-gate 

emissions yields the final impact scores expressed as DALY per functional unit (Figure 4b-

d). In this cumulative score, results from near-field exposure to chemicals in consumer 

products (in our case rice packaging) are directly comparable with results from far-field 

population exposure to chemical emissions. Chemicals in packaging all show high impact 

scores, mostly via ingestion following migration from rice packaging into rice, and to a 

lesser extent via inhalation after volatilization from packaging into indoor air. This 

emphasizes the importance of including exposure to chemicals in consumer products and an 

adequate indoor environment into toxicity characterization methods used in LCA. While this 

primarily illustrates how chemicals in food packaging and near-field exposure are relevant, it 

would also be interesting in future studies to compare the impacts of packaging, accounting 

for the entire supply chain of the packaging and a larger number of contained chemicals. 

Impact scores range from 10−23 DALY for trichlorofluoromethane to 2 × 10−5 DALY for 

dibutyl phthalate, spanning 18 orders of magnitude. Aggregating impact scores yields 

between 5 × 10−8 DALY for US/CH and 2 × 10−7 DALY for IN, dominated by pesticide 

emissions to soil across scenarios. Rice packaging manufacturing and disposal contributes 

with <1% to overall impact scores across scenarios. Impacts from direct exposure to 

packaging chemicals exceed cradle-to-gate impacts by up to >2 orders of magnitude, 
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ranging from 2 × 10−6 DALY for IN to 3 × 10−5 DALY for CN, dominated by exposure of 

consumers via ingestion of packaging chemicals migrating into rice. When translating the 

functional unit into daily use, we would arrive at impacts per individual usage per person. 

With that, our framework can also be applied in chemical exposure assessment and risk 

prioritization frameworks (Fantke and Illner 2019, Fantke et al. 2020a, Jolliet et al. 2021).

Based on the application of our framework in the rice case study, we developed additional 

recommendations. First, we recommend expressing human toxicity characterization factors 

as DALY per unit mass emitted (for environmentally mediated exposure) or as DALY per 

unit mass in a product application (for product use-related exposure), which can be 

interpreted as relative capacity to cause harm. We further recommend presenting impact 

scores separately for organic substances and metals/metalloids (the latter have not been 

discussed in the present document), to acknowledge important differences in characterizing 

fate, exposure and effects for these substance groups. Finally, we recommend presenting 

human toxicity impact results on log10-scale and allow for no more than two significant 

digits (e.g. 3.4 × 10−5) due to the substantial variability across and uncertainty in 

characterization factors.

8 Conclusions and next steps

Following up on recommendations from an expert task force for refining and expanding the 

original LCIA toxicity characterization approach, we present the methodological framework 

underlying these recommendations, and describe their implementation in USEtox. We 

considered recommendations for environmental fate, human exposure and toxicity effects, 

with a focus on expanding the exposure assessment to consider consumer exposure to 

chemicals in products and refining the non-cancer dose-response assessment by adapting a 

probabilistic framework. These adaptations enable future studies to (a) go beyond life cycle 

emissions by also considering exposure to chemicals related to various product use settings, 

(b) obtain inhalation, ingestion, and dermal exposure estimates for various chemical-product 

combinations, and delineating between product users, other relevant sub-populations, and 

the rest of the human population, (c) derive dose-response information for a much broader 

range of chemicals, (d) improve the reliability of human effect factors by applying a non-

linear extrapolation from systematically selected points of departure, and (e) discriminate 

severity for three indicators, namely cancer, developmental/reproductive non-cancer, and 

other non-cancer effects. In all, the presented methodological advancements of the USEtox 

toxicity characterization model address several key limitations in earlier approaches. This 

includes considering both emission-based and product-based exposure along with their 

respective health effects in a consistent matrix framework. This is supported by our case 

study results, illustrating that product-use related exposure dominates overall life cycle 

exposure. Sub-models for product-related exposure already allow for considering dynamics 

in fate and exposure settings. To consider such dynamics also for environmental far-field 

emissions, we would need to define an exposure duration and introduce a dynamic solution 

for the entire multi-compartment transfer fractions system.

Applying a single overarching framework for considering various exposure and toxicity 

effects for a wide range of chemicals found in multiple products and their life cycles in a 
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comparable way is very beneficial. However, it requires some necessary simplifications and 

assumptions (especially with respect to low-dose exposure and the consideration of 

differences in exposure and toxicity), which all contribute to a substantial level of 

uncertainty. In a comparative context with results ranging over many orders of magnitude 

and with a limited number of chemicals often dominating overall impact profiles, such 

uncertainties are acceptable, while guiding further research efforts for refining our 

framework.

For impact of food contact substances, useful insights on maximal levels and potential 

material matrices for intended conditions of use can be found in regulatory databases (e.g. 

the U.S. FDA ‘Inventory of Environmental Impact Decisions for Food Contact Substance 

Notifications’ with more than 2000 substance-material combinations). To study specific 

types of packaging, foreground data from manufacturing companies might be necessary to 

determine the specific food contact substances used in packaging, also considering the life 

cycle of the packaging. In the longer term, LCI databases might add data on typical chemical 

masses in products for a range of household products, such as food packaging, cosmetics, 

and paints. However, these are likely to be customized to each specific product and usage 

type, thus the importance of making the USEtox tool and its near-field component available 

to practitioners to determine exposure and impacts for the specific product studied.

Next steps are to test the recommended characterization framework in various case studies 

and to close remaining research gaps related to, for example, missing chemical content in 

product information, introducing additional exposure pathways and product types, as well as 

including the latest effect test data and effect severity information. The new toxicity data that 

have recently been made available also open the possibility to substantially extend the 

training set for in silico extrapolation and improve the quality of route-of-exposure-specific 

dose-response extrapolations. Our framework is applicable not only for evaluating chemical 

emissions and product-related exposure in LCIA, but also in chemical alternatives 

assessment (CAA) and chemical substitution, consumer exposure and risk screening, and 

high-throughput chemical prioritization (see Text box 1). The formal USEtox near-field/far-

field model is freely available at https://usetox.org.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors would like to thank all members of the UNEP GLAM Human Toxicity taskforce for their input into the 
consensus-building process. W.A. Chiu and S. Jang were partly supported by the U.S. National Institute of 
Environmental Health Sciences (grant no. P42 ES027704). The present work was supported by the ‘Global Best 
Practices on Emerging Chemical Policy Issues of Concern under UN Environment’s Strategic Approach to 
International Chemicals Management (SAICM)’ (GEF project ID 9771, grant no. S1-32GFL-000632), and by the 
‘Safe and Efficient Chemistry by Design (SafeChem)’ project funded by the Swedish Foundation for Strategic 
Environmental Research, MISTRA (grant no. DIA 2018/11).

Fantke et al. Page 15

Int J Life Cycle Assess. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://usetox.org


References

Aurisano N, Huang L, Mila i Canals L, Jolliet O, Fantke P (2021) Chemicals of concern in plastic toys. 
Environ. Int 146:106194. doi:10.1016/j.envint.2020.106194 [PubMed: 33115697] 

Chiu WA, Slob W (2015) A unified probabilistic framework for dose-response assessment of human 
health effects. Environ. Health Perspect 123:1241–1254. doi:10.1289/ehp.1409385 [PubMed: 
26006063] 

Chiu WA, Axelrad DA, Dalaijamts C, Dockins C, Shao K, Shapiro AJ, Paoli G (2018) Beyond the 
RfD: Broad application of a probabilistic approach to improve chemical dose-response assessments 
for noncancer effects. Environ. Health Perspect 126:1–14. doi:10.1289/EHP3368

Crenna E, Jolliet O, Collina E, Sala S, Fantke P (2020) Characterizing honey bee exposure and effects 
from pesticides for chemical prioritization and life cycle assessment. Environ. Int 138:105642. 
doi:10.1016/j.envint.2020.105642 [PubMed: 32179322] 

Csiszar SA, Ernstoff AS, Fantke P, Meyer DE, Jolliet O (2016) High-throughput exposure modeling to 
support prioritization of chemicals in personal care products. Chemosphere 163:490–498. 
doi:10.1016/j.chemosphere.2016.07.065 [PubMed: 27565317] 

Csiszar SA, Ernstoff AS, Fantke P, Jolliet O (2017) Stochastic modeling of near-field exposure to 
parabens in personal care products. J. Expos. Sci. Environ. Epidemiol 27:152–159. doi:10.1038/
jes.2015.85

EC (2008) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 
December 2008 on classification, labelling and packaging of substances and mixtures, amending 
and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 
1907/2006. Commission of the European Communities, Brussels, pp. 1355

Ernstoff A, Niero M, Muncke J, Trier X, Rosenbaum RK, Hauschild M, Fantke P (2019) Challenges of 
including human exposure to chemicals in food packaging as a new exposure pathway in life cycle 
impact assessment Int. J. Life Cycle Assess 24:543–552. doi:10.1007/s11367-018-1569-y

Ernstoff AS, Fantke P, Csiszar SA, Henderson AD, Chung S, Jolliet O (2016) Multi-pathway exposure 
modelling of chemicals in cosmetics with application to shampoo. Environ. Int 92-93:87–96. 
doi:10.1016/j.envint.2016.03.014 [PubMed: 27062422] 

Ernstoff AS, Fantke P, Huang L, Jolliet O (2017) High-throughput migration modelling for estimating 
exposure to chemicals in food packaging in screening and prioritization tools. Food Chem. Toxicol 
109:428–438. doi:10.1016/j.fct.2017.09.024 [PubMed: 28939300] 

Fantke P, Jolliet O, Apte JS, Cohen AJ, Evans JS, Hänninen OO, Hurley F, Jantunen MJ, Jerrett M, 
Levy JI, Loh MM, Marshall JD, Miller BG, Preiss P, Spadaro JV, Tainio M, Tuomisto JT, Weschler 
CJ, McKone TE (2015) Health effects of fine particulate matter in life cycle impact assessment: 
Conclusions from the Basel guidance workshop. Int. J. Life Cycle Assess 20:276–288. 
doi:10.1007/s11367-014-0822-2

Fantke P, Ernstoff AS, Huang L, Csiszar SA, Jolliet O (2016) Coupled near-field and far-field exposure 
assessment framework for chemicals in consumer products. Environ. Int 94:508–518. doi:10.1016/
j.envint.2016.06.010 [PubMed: 27318619] 

Fantke P, Jolliet O (2016) Life cycle human health impacts of 875 pesticides. Int. J. Life Cycle Assess 
21:722–733. doi:10.1007/s11367-015-0910-y

Fantke P, Jolliet O, Apte JS, Hodas N, Evans J, Weschler CJ, Stylianou KS, Jantunen M, McKone TE 
(2017) Characterizing aggregated exposure to primary particulate matter: Recommended intake 
fractions for indoor and outdoor sources. Environ. Sci. Technol 51:9089–9100. doi:10.1021/
acs.est.7b02589 [PubMed: 28682605] 

Fantke P, Aurisano N, Backhaus T, Bulle C, Chapman PM, Cooper CA, De Zwart D, Dwyer R, 
Ernstoff A, Golsteijn L, Henderson A, Holmquist H, Jolliet O, Kirchhübel N, Nordheim E, Otte N, 
Owsianiak M, Peijnenburg W, Posthuma L, Roos S, Saouter E, Schowanek D, van Straalen N, 
Vijver M, Hauschild M (2018a) Toward harmonizing ecotoxicity characterization in life cycle 
impact assessment. Environ. Toxicol. Chem 37:2955–2971. doi:10.1002/etc.4261 [PubMed: 
30178491] 

Fantke P, Aylward L, Bare J, Chiu WA, Dodson R, Dwyer R, Ernstoff A, Howard B, Jantunen M, 
Jolliet O, Judson R, Kirchhübel N, Li D, Miller A, Paoli G, Price P, Rhomberg L, Shen B, Shin H-

Fantke et al. Page 16

Int J Life Cycle Assess. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



M, Teeguarden J, Vallero D, Wambaugh J, Wetmore BA, Zaleski R, McKone TE (2018b) 
Advancements in life cycle human exposure and toxicity characterization. Environ. Health 
Perspect 126:125001. doi:10.1289/EHP3871 [PubMed: 30540492] 

Fantke P, Aylward L, Chiu W, Gouin T, Jolliet O, Judson R, Rhomberg L, McKone TE (2019a) Human 
toxicity. In: Frischknecht R , Jolliet O (Editors), Global Guidance on Environmental Life Cycle 
Impact Assessment Indicators: Volume 2. UNEP/SETAC Life Cycle Initiative, Paris, France, pp. 
80–103

Fantke P, Illner N (2019) Goods that are good enough: Introducing an absolute sustainability 
perspective for managing chemicals in consumer products. Curr. Opin. Green Sustain. Chem 
15:91–97. doi:10.1016/j.cogsc.2018.12.001

Fantke P, McKone TE, Tainio M, Jolliet O, Apte JS, Stylianou KS, Illner N, Marshall JD, Choma EF, 
Evans JS (2019b) Global effect factors for exposure to fine particulate matter. Environ. Sci. 
Technol 53:6855–6868. doi:10.1021/acs.est.9b01800 [PubMed: 31132267] 

Fantke P, Aurisano N, Provoost J, Karamertzanis PG, Hauschild M (2020a) Toward effective use of 
REACH data for science and policy. Environ. Int 135:105336. doi:10.1016/j.envint.2019.105336 
[PubMed: 31884133] 

Fantke P, Huang L, Overcash M, Griffing E, Jolliet O (2020b) Life cycle based alternatives assessment 
(LCAA) for chemical substitution. Green Chem. 22:6008–6024. doi:10.1039/D0GC01544J

Frischknecht R, Fantke P, Tschümperlin L, Niero M, Antón A, Bare J, Boulay A-M, Cherubini F, 
Hauschild MZ, Henderson A, Levasseur A, McKone TE, Michelsen O, Mila y Canals L, Pfister S, 
Ridoutt B, Rosenbaum RK, Verones F, Vigon B, Jolliet O (2016) Global guidance on 
environmental life cycle impact assessment indicators: Progress and case study. Int. J. Life Cycle 
Assess 21:429–442. doi:10.1007/s11367-015-1025-1

Frischknecht R, Jolliet O (2019) Global Guidance on Environmental Life Cycle Impact Assessment 
Indicators: Volume 2. UNEP/SETAC Life Cycle Initiative, Paris, France

Gentil C, Fantke P, Mottes C, Basset-Mens C (2020) Challenges and ways forward in pesticide 
emission and toxicity characterization modeling for tropical conditions. Challenges and ways 
forward in pesticide emission and toxicity characterization modeling for tropical conditions 
25:1290–1306. doi:10.1007/s11367-019-01685-9

Hauschild MZ, Huijbregts MAJ, Jolliet O, MacLeod M, Margni MD, van de Meent D, Rosenbaum 
RK, McKone TE (2008) Building a model based on scientific consensus for life cycle impact 
assessment of chemicals: The search for harmony and parsimony. Environ. Sci. Technol 42:7032–
7037. doi:10.1021/es703145t [PubMed: 18939523] 

Hay SI, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulkader RS, Abdulle AM, 
Abebo TA, Abera SF et al. (2017) Global, regional, and national disability-adjusted life-years 
(DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and 
territories, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 
390:1260–1344. doi:10.1016/S0140-6736(17)32130-X [PubMed: 28919118] 

Hodas N, Loh M, Shin H-M, Li D, Bennett D, McKone TE, Jolliet O, Weschler CJ, Jantunen M, Lioy 
P, Fantke P (2016) Indoor inhalation intake fractions of fine particulate matter: Review of 
influencing factors. Indoor Air 26:836–856. doi:10.1111/ina.12268 [PubMed: 26562829] 

Holmquist H, Fantke P, Cousins I, Owsianiak M, Liagkouridis I, Peters G (2020) An (eco)toxicity life 
cycle impact assessment framework for per- and polyfluoroalkyl substances. Environ. Sci. Technol 
54:6224–6234. doi:10.1021/acs.est.9b07774 [PubMed: 32364377] 

Huang L, Jolliet O (2016) A parsimonious model for the release of chemicals encapsulated in 
products. Atmos. Environ 127:223–235. doi:10.1016/j.atmosenv.2015.12.001

Huang L, Ernstoff A, Fantke P, Csiszar S, Jolliet O (2017) A review of models for near-field exposure 
pathways of chemicals in consumer products. Sci. Total Environ 574:1182–1208. doi:10.1016/
j.scitotenv.2016.06.118 [PubMed: 27644856] 

Huang L, Anastas N, Egeghy P, Vallero DA, Jolliet O, Bare J (2019) Integrating exposure to chemicals 
in building materials during use stage. Int. J. Life Cycle Assess. 24:1009–1026. doi:10.1007/
s11367-018-1551-8 [PubMed: 32632341] 

Fantke et al. Page 17

Int J Life Cycle Assess. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Huijbregts MAJ, Rombouts LJA, Ragas AMJ, van de Meent D (2005) Human-toxicological effect and 
damage factors of carcinogenic and noncarcinogenic chemicals for life cycle impact assessment. 
Integr. Environ. Assess. Manage 1:181–244. doi:10.1897/2004-007R.1

Jolliet O, Frischknecht R, Bare J, Boulay A-M, Bulle C, Fantke P, Gheewala S, Hauschild M, Itsubo N, 
Margni M, McKone T, Mila y Canals L, Postuma L, Prado V, Ridoutt B, Sonneman G, Rosenbaum 
R, Seager T, Struis J, van Zelm R, Vigon B, Weisbrod A (2014) Global guidance on environmental 
life cycle impact assessment indicators: Findings of the scoping phase. Int. J. Life Cycle Assess 
19:962–967. doi:10.1007/s11367-014-0703-8

Jolliet O, Ernstoff AS, Csiszar SA, Fantke P (2015) Defining product intake fraction to quantify and 
compare exposure to consumer products. Environ. Sci. Technol 49:8924–8931. doi:10.1021/
acs.est.5b01083 [PubMed: 26102159] 

Jolliet O, Antón A, Boulay A-M, Cherubini F, Fantke P, Levasseur A, McKone TE, Michelsen O, Milà 
i Canals L, Motoshita M, Pfister S, Verones F, Vigon B, Frischknecht R (2018) Global guidance on 
environmental life cycle impact assessment indicators: Impacts of climate change, fine particulate 
matter formation, water consumption and land use. Int. J. Life Cycle Assess 23:2189–2207. 
doi:10.1007/s11367-018-1443-y

Jolliet O, Huang L, Hou P, Fantke P (2021) High throughput risk and impact screening of chemicals in 
consumer products. Risk Anal.:(in press). doi: 10.1111/risa.13604

Kirchhübel N, Fantke P (2019) Getting the chemicals right: Toward characterizing toxicity and 
ecotoxicity impacts of inorganic substances. J. Cleaner Prod 227:554–565. doi:10.1016/
j.jclepro.2019.04.204

Kjeldsen P, Christensen TH (2001) A simple model for the distribution and fate of organic chemicals 
in a landfill: MOCLA. Waste Manage. Res 19:201–216. doi:10.1177/0734242x0101900303

Margni MD, Pennington DW, Bennett DH, Jolliet O (2004) Cyclic exchanges and level of coupling 
between environmental media: Intermedia feedback in multimedia fate models. Environ. Sci. 
Technol 38:5450–5457. doi:10.1021/es049716a [PubMed: 15543750] 

Owsianiak M, Fantke P, Posthuma L, Saouter E, Vijver M, Backhaus T, Schlekat T, Hauschild M 
(2019) Ecotoxicity. In: Frischknecht R , Jolliet O (Editors), Global Guidance on Environmental 
Life Cycle Impact Assessment Indicators: Volume 2. UNEP/SETAC Life Cycle Initiative, Paris, 
France, pp. 138–172

Ring CL, Arnot J, Bennett DH, Egeghy P, Fantke P, Huang L, Isaacs KK, Jolliet O, Phillips K, Price 
PS, Shin H-M, Westgate JN, Setzer RW, Wambaugh JF (2019) Consensus modeling of median 
chemical intake for the U.S. population based on predictions of exposure pathways. Environ. Sci. 
Technol 53:719–732. doi:10.1021/acs.est.8b04056 [PubMed: 30516957] 

Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen 
HF, MacLeod M, Margni MD, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild 
MZ (2008) USEtox - The UNEP-SETAC toxicity model: Recommended characterisation factors 
for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle 
Assess 13:532–546. doi:10.1007/s11367-008-0038-4

Rosenbaum RK, Huijbregts MAJ, Henderson AD, Margni M, McKone TE, van de Meent D, Hauschild 
MZ, Shaked S, Li DS, Gold LS, Jolliet O (2011) USEtox human exposure and toxicity factors for 
comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical 
properties. Int. J. Life Cycle Assess 16:710–727. doi:10.1007/s11367-011-0316-4

Rosenbaum RK, Meijer A, Demou E, Hellweg S, Jolliet O, Lam NL, Margni M, McKone TE (2015) 
Indoor air pollutant exposure for life cycle assessment: Regional health impact factors for 
households. Environ. Sci. Technol 49:12823–12831. doi:10.1021/acs.est.5b00890 [PubMed: 
26444519] 

Salomon JA, Haagsma JA, Davis A, de Noordhout CM, Polinder S, Havelaar AH, Cassini A, 
Devleesschauwer B, Kretzschmar M, Speybroeck N, Murray CJL, Vos T (2015) Disability weights 
for the Global Burden of Disease 2013 study. Lancet Global Health 3:e712–e723. doi:10.1016/
S2214-109X(15)00069-8 [PubMed: 26475018] 

Saouter E, Aschberger K, Fantke P, Hauschild MZ, Bopp SK, Kienzler A, Paini A, Pant R, Secchi M, 
Sala S (2017a) Improving substance information in USEtox®, Part 1: Discussion on data and 
approaches for estimating freshwater ecotoxicity effect factors. Environ. Toxicol. Chem 36:3450–
3462. doi:10.1002/etc.3889 [PubMed: 28618056] 

Fantke et al. Page 18

Int J Life Cycle Assess. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Saouter E, Aschberger K, Fantke P, Hauschild MZ, Kienzler A, Paini A, Pant R, Radovnikovic A, 
Secchi M, Sala S (2017b) Improving substance information in USEtox®, Part 2: Data for 
estimating fate and ecosystem exposure factors. Environ. Toxicol. Chem 36:3463–3470. 
doi:10.1002/etc.3903 [PubMed: 28671290] 

Shin H-M, Ernstoff AS, Arnot JA, Wetmore B, Csiszar SA, Fantke P, Zhang X, McKone TE, Jolliet O, 
Bennett DH (2015) Risk-based high-throughput chemical screening and prioritization using 
exposure models and in vitro bioactivity assays. Environ. Sci. Technol 49:6760–6771. 
doi:10.1021/acs.est.5b00498 [PubMed: 25932772] 

Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH, Abbafati C, Abbasi N, Abbastabar 
H, Abd-Allah F et al. (2018) Global, regional, and national comparative risk assessment of 84 
behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 
countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 
2017. Lancet 392:1923–1994. doi:10.1016/S0140-6736(18)32225-6 [PubMed: 30496105] 

Steingrimsdottir MM, Petersen A, Fantke P (2018) A screening framework for pesticide substitution in 
agriculture. J. Cleaner Prod 192:306–315. doi:10.1016/j.jclepro.2018.04.266

UN (2020) United Nations Sustainable Development Goals

UNEP (2015) Strategic Approach to International Chemicals Management, United Nations 
Environment Programme, Geneva, Switzerland

US-EPA (1991) Guidelines for Developmental Toxicity Risk Assessment, United States - 
Environmental Protection Agency, Washington, D.C.

Verones F, Bare J, Bulle C, Frischknecht R, Hauschild M, Hellweg S, Henderson A, Jolliet O, Laurent 
A, Liao X, Lindner JP, de Souza DM, Michelsen O, Patouillard L, Pfister S, Posthuma L, Prado V, 
Ridoutt B, Rosenbaum RK, Sala S, Ugaya C, Vieira M, Fantke P (2017) LCIA framework and 
cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J. Cleaner Prod 
161:957–967. doi:10.1016/j.jclepro.2017.05.206

Wang G, Huang L, Nguyen V, Jolliet O (2016) Human exposure to household cleaning products: 
Application of a two-field model, The International Society of Exposure Science 26th Annual 
Meeting, 9-13 October, 2016, Utrecht, The Netherlands, pp. 825–826

Westh TB, Hauschild MZ, Birkved M, Jørgensen MS, Rosenbaum RK, Fantke P (2015) The USEtox 
story: A survey of model developer visions and user requirements. Int. J. Life Cycle Assess. 
20:299–310. doi:10.1007/s11367-014-0829-8

WHO (2014) Guidance document on evaluating and expressing uncertainty in hazard characterization, 
World Health Organization, Geneva, Switzerland

WHO (2017) Guidance document on evaluating and expressing uncertainty in hazard characterization. 
Second Edition, World Health Organization, Geneva, Switzerland

Wignall JA, Shapiro AJ, Wright FA, Woodruff TJ, Chiu WA, Guyton KZ, Rusyn I (2014) 
Standardizing benchmark dose calculations to improve science-based decisions in human health 
assessments. Environ. Health Perspect 122:499–505. doi:10.1289/ehp.1307539 [PubMed: 
24569956] 

Wignall JA, Muratov E, Sedykh A, Guyton KZ, Tropsha A, Rusyn I, Chiu WA (2018) Conditional 
toxicity value (CTV) predictor: An in silico approach for generating quantitative risk estimates for 
chemicals. Eviron. Health Perspect 126:057008. doi:10.1289/EHP2998

Zeise L, Bois FY, Chiu WA, Hattis D, Rusyn I, Guyton KZ (2013) Addressing human variability in 
next-generation human health risk assessments of environmental chemicals. Environ. Health 
Perspect 121:23–31. doi:10.1289/ehp.1205687 [PubMed: 23086705] 

Fantke et al. Page 19

Int J Life Cycle Assess. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Textbox 1.

Primary application areas of the recommended near-field/far-field USEtox 
modelling framework.

The presented, recommended near-field/far-field USEtox modelling framework is suitable for 
comparative evaluations of chemicals emitted along product life cycles and chemicals in various types of 
product applications. Primary application areas, where the framework is applicable and where it has 
already been tested are:

Application area Product types covered
(emissions are always 
directly
or indirectly included)

References

Product life cycle assessment 
(LCA)

Food contact materials Ernstoff et al. (2019), Figure 4 
(present study)

High-throughput screening 
(HTS) of chemical exposure

Personal care products; food 
contact materials

Csiszar et al. (2016), Ernstoff et al. 
(2016), Ernstoff et al. (2017)

High-throughput screening 
(HTS) of chemical risk

Children toys; building 
materials

Huang et al. (2019), Aurisano et al. 
(2021)

Chemical exposure and risk 
prioritization

Household products 
(cleaning, personal care, and 
home maintenance products)

Jolliet et al. (2021), Figure 4 
(present study)

Chemical alternatives 
assessment (CAA) and 
chemical substitution

Building materials; personal 
care products; pesticides

Fantke et al. (2016), 
Steingrímsdóttir et al. (2018), 
Fantke et al. (2020b)
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Figure 1. 
Recommended human toxicity characterization framework. Emission-based far-field 

exposure is integrated with product-related near-field consumer-exposure pathways, and 

linked to human toxicity dose-response and effect severity information. Unit mass emitted 

from or contained in a product can be expressed as unit inventory mass.
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Figure 2. 
Representation of the cumulative chemical mass transfer fractions matrix. It combines a 

product-related compartment of entry (left-most column) with near-field, far-field and 

human receptor compartments. Product intake fractions (PiF) start from the product 

compartment of entry and intake fractions (iF) start from environmental emissions, both 

linking to pathway- and population-specific human exposure.

Fantke et al. Page 22

Int J Life Cycle Assess. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Recommended approach for deriving human toxicity dose-response information based on a 

hierarchy of different toxicity input data to identify a suitable individual point of departure 

(POD), and a probabilistic extrapolation toward human population lifetime toxicity dose-

response factors.
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Figure 4. 
Human toxicity characterization factors (a) and impact scores (b-d) for the rice case study. 

Characterization factors (right-side y-axis) are plotted as function of human (product) intake 

fractions combining fate and exposure (x-axis) and corresponding human toxicity-related 

effect factors combining dose-response and effect severity (left-side y-axis). Impact scores 

(right-side y-axis) are plotted as function of life cycle inventory mass (x-axis) and 

characterization factors (left-side y-axis). Industrial chemicals are emitted to rural air, 

freshwater and natural soil, and pesticides are emitted to agricultural soil. TCDD: 2,3,7,8-

Tetrachlorodibenzo-p-dioxin.
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Table 1.

Underlying models for calculating direct chemical mass transfer fractions, TF [−], from chemicals in products, 

including exposure pathways and example products covered.

Model Transfers & compartments Direct exposure pathways Example products

Direct 
emission

Transfers from compartment of emissions to 
various near-field, far-field and human 
compartments

Inhalation, ingestion of drinking water, 
and dermal uptake

All chemical emissions to 
environmental compartments

TFi j =
ki j

(kloss, i + ∑jki j) (7)

with ki→j defined in Rosenbaum et al. (2008) for environmental compartments, and with ki→jx for human compartments j via 
exposure pathways x:

ki jx = XFi jx =
IRi jx × Npersons

V i
(8)

with IRi→jx defined in Rosenbaum et al. (2008) for inhalation and ingestion pathways.

For gaseous dermal uptake (not included in earlier USEtox versions), with i ∈ {any air compartment}:

ki jx kair epidermisgas
=

Kp‐gas × Askin‐gas × ftime in air × Npersons
V air

(9)

For aqueous dermal uptake (not included in earlier USEtox versions), with i ∈ {any water compartment}:

ki jx kwater epidermisaq
=

Kp‐aq × Askin‐aq × ftime in water × Npersons
V water

(10)

Article 
interior

Transfers from chemicals in articles to near-
person or indoor air; accounting for long-
term absorption on walls

Direct dermal contact, dust ingestion, 
(inhalation and gaseous dermal uptake 
are mediated via air)

Chemicals encapsulated in articles, 
building materials, toys, arts and crafts

TFproduct air
diffusion‐limited = α × (1 − e−β1

2 × Dm × t) + (1 − α) × (1

− e−β2
2 × Dm × t)

(11)

TFproduct air
partition‐limited = 1 − (v1 × eλ1 × t + v2 × eλ2 × t) (12)

with the following criterion for applying these two models:

If log10 Kma + 0.61 × log10 Dm + 0.4 < 0, eq. 11 is applied, else eq. 12 is applied

TFproduct skin
direct dermal = 1

m0
× Npersons × FQcontact × fhome

× Acontact ×
Kp‐aq

Kma × Kaw
× ∫t1

t2
Cm(dm, t) dt

(13)
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Model Transfers & compartments Direct exposure pathways Example products

TFproduct GI tract
dust ingestion = 1

m0
× fhome × fdust,ingested

×
IRing

Kmd × ρdust
× ∫t1

t2
Cm(dm, t) dt

(14)

Skin 
surface 
layer*

Transfers from chemicals applied to skin 
surface to near-person air, epidermis, and 
wastewater treatment plant

Dermal aqueous uptake, hand-to-
mouth, (inhalation and gaseous dermal 
uptake are mediated via air)

Personal care and hand dishwashing 
products

TFproduct skin
dermal,aq = fhm ×

kps
khm + kps + kpa

× 1 − e−(khm + kps + kpa) × t + (1 − fhm) ×
kps

kps + kpa
×

1 − e−(kps + kpa) × t

(15)

TFproduct air = fℎm ×
kpa

khm + kps + kpa
× 1 − e−(khm + kps + kpa) × t + (1 − fhm) ×

kpa
kps + kpa

×

1 − e−(kps + kpa) × t

(16)

TFproduct GI tract
hand‐to‐mouth = fhm ×

khm
khm + kps + kpa

× 1 − e−(khm + kps + kpa) × t
(17)

TFproduct WWTP = fhm × e−(khm + kps + kpa) × t + (1
− fhm) × e−(kps + kpa) × t (18)

For skin area without hand-to-mouth contact, fhm = 0, khm = 0.

Object 
surface*

Transfers from object surfaces to near-
person and indoor air

Direct dermal contact, (inhalation and 
gaseous dermal uptake are mediated 
via air)

Surface cleaning products

TFproduct near‐person air =
kNS NA

ktotal
× (1 − e−ktotal × t) (19)

TFproduct skin
direct dermal =

kNS skin
ktotal

× (1 − e−ktotal × t) (20)

TFproduct home air =
kNS FS + kNS,deg

ktotal
× (1 − e−ktotal × t) (21)

with ktotal = kNS→NA + kNS→skin + kNS→FS + kNS,deg

Food 
contact 
material

Transfers from food packaging to food Food ingestion Food packaging products
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Model Transfers & compartments Direct exposure pathways Example products

TFpackage food =

2
dp

× Dp × t
π

1
2 if t ≤ t∗, else

yt∗ + τ
1 + τ − yt∗ × [a × (1 − e−b × ω × (t − t∗)) + (1 − a) × (1 − e−c × ω × (t − t∗))] (22)

TFpackage GI tract = TFpackage food × (1 − ffood wasted) (23)

*
Rate constants for the “skin surface layer” and “object surface” models are detailed in ESM, Sections S-2b and S-2c.

Symbols: a, b, c, α, β, τ, ω, γ: coefficients in respective regression models; A: area (m2); C: chemical concentration (μg/m3); d: product thickness 

(m); D: diffusion coefficient (m2/s); f: fraction of time unless indicated otherwise via indices (s/s); FQ: frequency of an activity (s/s); IR: human 

intake rate (m3/s for inhalation, μg/s for ingestion); K: partition coefficient (various units); k: process rate constant for processes indicated in 

indices (s−1); m: chemical mass (μg); Npersons: number of persons (capita); ρ: density (μg/m3); t: time (s); TF: chemical mass transfer fraction; 

V: volume (m3); v: arbitrary vector; λ: eigenvalue; XF: exposure rate constant (s−1); yt*: food migration transfer fraction at deviation time t*. 

Indices: deg: degradation; FS: far-person surface; GI tract: gastrointestinal tract; hm: hand-to-mouth; NA: near-person air; NS: near-person surface; 
pa: product-to-air; ps: product-to-skin.
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