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N E T W O R K  S C I E N C E

Cluster-based network modeling—From snapshots 
to complex dynamical systems
Daniel Fernex1, Bernd R. Noack2,3*, Richard Semaan1*

We propose a universal method for data-driven modeling of complex nonlinear dynamics from time-resolved 
snapshot data without prior knowledge. Complex nonlinear dynamics govern many fields of science and engi-
neering. Data-driven dynamic modeling often assumes a low-dimensional subspace or manifold for the state. We 
liberate ourselves from this assumption by proposing cluster-based network modeling (CNM) bridging machine 
learning, network science, and statistical physics. CNM describes short- and long-term behavior and is fully au-
tomatable, as it does not rely on application-specific knowledge. CNM is demonstrated for the Lorenz attractor, 
ECG heartbeat signals, Kolmogorov flow, and a high-dimensional actuated turbulent boundary layer. Even the 
notoriously difficult modeling benchmark of rare events in the Kolmogorov flow is solved. This automatable uni-
versal data-driven representation of complex nonlinear dynamics complements and expands network connectiv-
ity science and promises new fast-track avenues to understand, estimate, predict, and control complex systems in 
all scientific fields.

INTRODUCTION
Climate, epidemiology, brain activity, financial markets, and turbulence 
constitute examples of complex systems. They are characterized by 
a large range of time and spatial scales, intrinsic high dimensionali-
ty, and nonlinear dynamics. Dynamic modeling for the long-term 
features is a key enabler for understanding, state estimation from 
limited sensor signals, prediction, control, and optimization. Data- 
driven modeling has made tremendous progress in the past decades, 
driven by algorithmic advances, accessibility to large data, and hardware 
speedups. Typically, the modeling is based on a low-dimensional ap-
proximation of the state and system identification in that approximation.

The low-dimensional approximation may be achieved with sub-
space modeling methods, such as proper orthogonal decomposition 
(POD) models (1, 2), dynamic mode decomposition (3), and empirical 
dynamical modeling (4), to name only a few. Autoencoders (5) rep-
resent a general nonlinear dimension reduction to a low-dimensional 
feature space. The dynamic system identification is substantially 
simplified in this feature space.

An early breakthrough in system identification was reported by 
Bongard and Lipson (6) using symbolic regression. The method 
performs a heuristic search of the best equation that describes the 
dynamics (7). They are, however, expensive and not easily scalable 
to large systems. Recent developments in parsimonious modeling 
lead to the “sparse identification of nonlinear dynamics” (SINDy) 
algorithm that identifies accurate parsimonious models from data 
(8). Similarly, SINDy is not easily scalable to large problems. The 
computational expense becomes exorbitant already for moderate 
dimensional feature spaces.

This limitation may be bypassed by black box techniques. These 
include Volterra series (9), autoregressive models (e.g., ARX, ARMA, 
and NARMAX) (10), eigensystem realization algorithm (11), and 

neural network (NN) models (12). These approaches, however, have 
limited interpretability and provide little physical insights. Some 
(e.g., NN) require large volumes of data and long training time, lux-
uries that are not always at hand.

In this study, we follow an alternative modeling paradigm starting 
with a time-resolved snapshot set. We liberate ourselves from the re-
quirement of a low-dimensional subspace or manifold for the data 
and the analytical simplicity assumption of the dynamical system. 
The snapshots are coarse-grained into a small number of centroids 
with clustering. The dynamics is described by a network model with 
continuous transitions between the centroids. The resulting cluster- 
based network modeling (CNM) uses time-delay embedding to 
identify models with an arbitrary degree of complexity and nonlin-
earity. The methodology is developed within the network science 
(13–15) and statistical physics (16) frameworks. Because of its ge-
neric nature, network analysis is being increasingly used to inves-
tigate complex systems (17, 18). The proposed method builds on 
previous work by Kaiser et al. (19), where clustering is used to 
coarse-grain the data into representative states and the temporal 
evolution is modeled as a probabilistic Markov model. By construc-
tion, the state vector of cluster probabilities converges to a fixed 
point representing the posttransient attractor, i.e., the dynamics 
disappear. A recent improvement (20) models the transition dy-
namics between the network nodes as straight constant-velocity 
“flights” with a travel time directly inferred from periodic or quasi- 
periodic data. The present study expands on these innovations and 
generalizes the approach to arbitrary high-order chains with time- 
delay coordinates (21) enabled by array indexing to model complex 
and possibly chaotic nonlinear dynamics, and introduces a control- 
oriented extension to include external inputs and control. Besides 
its accuracy, one major advantage that the method has is the ability 
to control the resolution level through adaptive coarse graining.

Dynamics of complex systems is often driven by complicated 
small-scale (sometimes microscopic) interactions (e.g., turbulence 
and biological signaling) that are either unknown or very expensive 
to fully resolve (22). The resolution of CNM can be adapted to match 
any desired level, even when microscopic details are not known. This 
universal representation of strongly nonlinear dynamics, enabled 
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by adaptive coarse graining and a probabilistic foundation, promis-
es to revolutionize our ability to understand, estimate, predict, and 
control complex systems in all scientific fields. The method is inher-
ently robust and honest to the data. It requires no assumption on 
the analytical structure of the model and is computationally tracta-
ble, even for high–degree of freedom problems. A code is available 
at https://github.com/fernexda/cnm.

Cluster-based network modeling
Robust probability-based data-driven dynamical modeling for com-
plex nonlinear systems has the potential to revolutionize our ability 
to predict and control these systems. Cluster-based network models 
reproduce the dynamics on a directed network, where the nodes are 
the coarse-grained states of the system. The transition properties 
between the nodes are based on high-order direct transition proba-
bilities identified from the data. The model methodology is applied 
to a variety of dynamical systems, from canonical problems such as 
the Lorenz attractor to rare events to high–degree of freedom sys-
tems such as a boundary layer flow simulation. The general meth-
odology is illustrated in Fig. 1 with the Lorenz system and is detailed 
in the following.
Data collection and clustering
The starting point of CNM is the data collection of M consecutive 
discrete N-dimensional state of the system x(t) ∈ ℛN equally spaced 
in time with t such that the state at tm is  x( t   m  ) = x(mt ) = [ x 1  m , … ,  
x N  m ] . The state x can consist of the full state, a low-dimensional rep-
resentation of the full state, or an observable. The discrete states are 
grouped into K clusters Ck, and the network nodes are identified as 
the clusters’ centroids ck, defined as the average of the states in each 
cluster. In this study, clustering is achieved with the unsupervised 
k-means++ algorithm (23, 24) that minimizes the inner-cluster vari-
ance. In other words, the algorithm organizes the data such that the 
inner-cluster similarity is maximized and the intercluster similarity 
is minimized. Other clustering algorithms are possible. The choice 
is a problem-dependent option. The vector  K = [ K  1  , … ,  K  I  ] , Ki 
∈ [1, K], contains the indexes of the consecutively visited clusters 
over the entire time sequence such that Ki is the index of the ith 
visited cluster. The first and last clusters are CK1 and CKI, respec-
tively. The size I of  K  is equal to the number of transitions between 
K centroids over the entire ensemble plus one. We note that two 
sequential cluster visits are not necessarily equally spaced in time but 
rather depend on the state’s rate of change in their vicinity.
Transition properties
Before we detail the transition properties of cluster-based network 
models (20), we briefly review those of cluster-based Markov models 

(19) upon which the current method builds. In cluster-based Markov 
models, the state variable is the cluster population q = [q1, …, qK]T, 
where qk represents the probability to be in cluster k and the super-
script T denotes the transpose. The transitions between clusters are 
modeled with a first-order Markov model. The probability to move 
from cluster Cj to cluster Ck is described by the transition matrix 
P = (Pk, j) ∈ ℛK × K as

   P  k,j   = Pr( K  i   = k ∣  K  i−1   = j)   (1)

The transition matrix P is computed as

   P  k,j   =   
 n  k,j   ─  n  j      (2)

where nk, j is the number of samples that move from Cj to Ck and nj 
is the number of transitions departing from Cj regardless of the des-
tination point.

The transition time t is a user-specified constant. Let ql be the 
probability vector at time tl = lt; then, the change in one time step 
is described by

   q   l+1  = P  q   l   (3)

With time evolution, Eq. 3 converges to the asymptotic probability   
q   ∞ ≔ lim l → ∞  q   l  . In a typical case, Eq. 3 has a single fixed point q∞.

Conversely, CNM relies on the direct transition matrix Q, which 
ignores inner-cluster residence probability and only considers in-
tercluster transitions. The inner-cluster residence probability refers 
to that of staying in the same cluster, whereas the intercluster prob-
ability refers to that of transitioning to another cluster. The direct 
transition probability is inferred from data as

   Q  k,j   =   
 n  k,j   ─  n  j      (4)

with Qj, j = Pr (Ki = j∣Ki−1 = j) = 0, by the very definition of a direct 
transition. We emphasize that despite their similarity, Eqs. 2 and 4 
define two different properties. Generalizing to an L-order model, 
which is equivalent to using time-delay coordinates, the direct tran-
sition probability is expressed as Pr(Ki∣Ki − 1, …, Ki−L). Illustrating 
for a second-order model, the probability to move to Cl having pre-
viously visited Ck and Cj is given by

   Q  l,k,j   = Pr( K  i   = l ∣  K  i−1   = k,  K  i−2   = j)  (5)

Fig. 1. CNM methodology. M consecutive N-dimensional states x(t) ∈ ℛN × M are collected at fixed sampling frequency. On the basis of their similarity, the states are 
grouped into K clusters. The network nodes are computed as the cluster centroids ci, and the transition time T and transition probability Q between the nodes are iden-
tified from the data. The CNM dynamics are propagated as consecutive flights between centroids. Each transition is characterized by its destination, given by Q, and its 
transit time, given by T.

https://github.com/fernexda/cnm
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Time-delay embedding is a cornerstone of dynamical systems 
(25). The optimal Markov chain order L is problem dependent. 
Larger L values are typically necessary for problems with complex 
phase-space trajectories. In this study, we shall demonstrate how 
time-delay embedding benefits extend to higher-order cluster-based 
network models.

The second transition property is the transition time. For Markov 
models, the time step is a critical user-defined design parameter. If 
the time step is too small, then the cluster-based Markov model 
idles many times in each cluster for a stochastic number of times 
before transitioning to the next cluster. The model-based transition 
time may thus substantially deviate from the deterministic data- 
driven trajectories through the clusters. If the time step is too large, 
then one may miss intermediate clusters. This design parameter can 
be avoided in CNM. The key idea is to abandon the “stroboscopic” 
view and focus on nontrivial transitions, thus avoiding rapid state 
diffusion to a fixed point representing the posttransient attractor. 
Let tn and tn + 1 be the time of the first and last snapshots to enter 
and, respectively, to leave Ck at the nth iteration (Fig. 2). Here, iter-
ations refer to the sequential jumps between the centroids. The res-
idence time n = tn + 1 − tn corresponds to the duration of the state 
transit in cluster Ck at this iteration. We define the individual tran-
sition time from cluster j to cluster k for one iteration as half the 
residence time of both clusters

    k,j  
n   =       

n−1  +     n  ─ 2   =    t   
n+1  −  t   n−1  ─ 2    (6)

Averaging all nk, j individual transition times from cluster Cj to Ck 
yields the transition time   T  k,j   = 1 /  n  k,j    ∑ n=1   n  k,j        k,j  

n   . This definition may 
appear arbitrary but is the least-biased guess consistent with the 
available data. Similar to the direct transition matrix Q for an L- 
order chain, the transition time matrix T = (Tk, j) ∈ ℛK × K also de-
pends on the L − 1 previously visited centroids. When L is large, this 
could yield to two storage-intensive L + 1−dimensional tensors Q 
and T with KL + 1 elements. The expensive tensor creation and stor-
age is circumvented by a lookup table, where only nonzero entries 
that correspond to actual transitions are retained. The lookup tables 
are typically orders-of-magnitude smaller than the full tensors (see 
section S1).
Propagation
The final step in CNM propagates the state motion. We assume a 
uniform state propagation between two centroids cj and ck as

  x(t ) =    kj  (t )  c  k   + [1 −    kj  (t ) ]  c  j  ,    kj   =   
t −  t  j   ─  T  k,j  

    (7)

where tj is the time when the centroids cj is left. The motion between 
the centroids may be interpolated with splines for smoother trajec-
tories. As CNM is purely data driven, the model quality is directly 
related to that of the training data. More specifically, the sampling 
frequency and total time range must be selected such that all rele-
vant dynamics are captured and are statistically fully converged. 
This usually requires a larger amount of data than other data-driven 
methods, such as ARMA and SINDy.

RESULTS
CNM of the Lorenz system
CNM is applied to the Lorenz system, a widely used canonical cha-
otic dynamical system (26) defined by three coupled nonlinear dif-
ferential equations

   

  dx ─ dt   = (y − x)

     
dy

 ─ dt   = x( − z ) − y   

  dz ─ dt   = xy − z

    (8)

where the system parameters are here defined as  = 10,  = 28, and 
 = 8/3. To assess the method’s robustness, the dynamical system is 
superimposed with a uniformly distributed stochastic noise with an 
amplitude of 10% of that of the clean signal. The data are clustered 
with K = 50 centroids, depicted in Fig. 3A. The snapshots are col-
ored on the basis of their cluster affiliations. CNM is performed 
with a chain order L = 22 using ≈17,000 transitions, which cover 
the same time range as that of the original data. The optimal K and 
L values are problem dependent. They are identified for the Lorenz 
system through a parametric study, where the root mean square er-
ror of the autocorrelation function between the reference data and 
the model is minimized. The autocorrelation computation is de-
scribed in section S2. Suboptimal K and L values evidently degrade 
the model performance in a case-dependent manner. Typically, the 
number of clusters is related to the desired level of resolution and 
the level of complexity in the dynamics. Too few centroids might 
oversimplify the dynamics, whereas too many might lead to a noisy 
solution. The chain order L is strictly dictated by the complexity of 
the dynamics in the phase space. A system with a highly irregular 
trajectory with multiple intersections typically requires higher chain 
order. A detailed analysis of the model hyperparameter selection 
and error topology is presented in section S3.

Time series obtained with CNM agree very well with the refer-
ence data (Fig. 3, B and C). We note that the black and purple colors 
in Fig. 3B denote the reference clean and noisy data, respectively. 
The oscillating amplitude growth in both ears, as well as the ear 
switching, is correctly captured by the model. Inherent to the meth-
od, the noise in the training data is mirrored in the reconstructed 
CNM time series. The model remains faithful to the training data. It 
might be, however, described as too faithful, as it also reproduces 
the measurement noise in the model dynamics. CNM cannot dis-
ambiguate between true dynamics and noise. This shortcoming is 
also the method’s strength, as the model remains robust regardless 
of the noise level (up to 70% noise level is tested). A detailed analysis 

Fig. 2. Definition of the transition time from cluster Cj to Ck. The transit time n 
in Ck at iteration n is the time range spanned by the data entry and exit times in the 
clusters, tn and tn + 1. The individual transition time    k,j  

n    is defined as the average 
transit time between two neighboring clusters.



Fernex et al., Sci. Adv. 2021; 7 : eabf5006     16 June 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 10

of the noise influence on CNM is provided in section S7, where 
noise levels of up to 70% are superimposed on the Lorenz system 
and their effects on the dynamics were analyzed.

The cluster probability distribution (CPD) pk, k = 1, …, K, pro-
vides the probability of the state to be in a specific cluster. It indi-
cates whether the modeled trajectories populate the phase space 
similarly to the reference data (see section S2). The CPD for both 
the clean data and CNM is shown in Fig. 3D. We purposely show 
the CPD of the clean data to assess deviation from the original sys-
tem. For clarity, pk is shown with 10 clusters only instead of the full 
50 clusters. As the figure shows, CNM accurately reproduces the 
probability distribution. Following Protas et al. (27), the cluster- 
based network model is validated on the basis of the autocorrelation 
function of the state vector. This function avoids the problem of 
comparing two trajectories with finite dynamic prediction horizons 
due to phase mismatch. The autocorrelation function also yields the 
fluctuation energy (or variance) at zero time lag R(0) and can be 
used to infer the spectral behavior. As Fig. 3E shows, CNM accu-
rately reproduces the fast oscillatory decay, even after dozens of os-
cillations, as well as the fluctuation energy R(0), which is reproduced 
with a 2.8% root mean square error. This performance is in contrast 
to the cluster-based Markov models, where time integration leads 
to the average flow, and to first-order cluster-based network models 
(20), where the prediction accuracy is much lower. A detailed com-
parison between the cluster-based Markov model, the first-order 
cluster-based network model, and the current model is provided in 
section S4.

Demonstration on examples
CNM is applied to numerous examples, ranging from analytical 
systems to real-life problems using experimental and simulation 

data. The main results are summarized in Fig. 4. Details on each 
application are provided in Materials and Methods. The first two 
applications are the Lorenz (26) and Rössler (28) attractors, typical 
candidates for dynamical systems analysis. The two systems are gov-
erned by simple equations and exhibit chaotic behavior under specific 
parameter values. The following two implementations are one- 
dimensional systems: electrocardiogram (ECG) measurements (29) 
and the dissipative energy from a Kolmogorov flow (30). Whereas 
the ECG exhibits the regular heartbeat pattern, the dissipative energy 
of the Kolmogorov flow is quasi-random with intermittent bursts. 
The last CNM application is a high-dimensional large eddy simula-
tion of an actuated turbulent boundary layer for skin friction reduc-
tion (31). The clustering step on this ≈5 million grid cell simulation 
is performed on the mode coefficients of a lossless POD. We note 
that other dimensionality reduction techniques than POD are also 
possible. This dimensionality reduction step substantially reduces 
the computational load while yielding the same clustering outcome 
as the full difference matrix (19). The boundary layer time series are 
therefore represented with the mode coefficients.

In each example, both the qualitative and quantitative dynamics 
are faithfully captured. The reconstructed time series are hardly dis-
tinguishable from the original data. Intermittent events such as the 
peaks in the Rössler z component and the dissipation energy bursts 
of the Kolmogorov flow are statistically very well reproduced. The 
autocorrelation distributions of both reference data and models 
match accurately over the entire range, demonstrating both robust-
ness and accuracy. We note that robustness is inherent to CNM, 
because the modeled state always remains close to the training data.

The CPD of the data and CNM for the Rössler system, the ECG 
signal, the Kolmogorov flow dissipation energy, and the actuated 
turbulent boundary layer are presented in Fig. 5. For all cases, CNM 

A B C

D E

Fig. 3. CNM of the Lorenz system with 10% uniformly distributed superimposed stochastic noise. (A) Phase-space representation of the data clustering. The cen-
troids are depicted with black circles, and the small circles are the snapshots, colored by their cluster affiliation. The CNM accuracy is demonstrated in the accurate repro-
duction of (B and C) the time series, (D) the CPD, and (E) the autocorrelation function. Black, purple, and red colors denote the reference clean, the reference noisy, and 
CNM data, respectively.
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accurately reconstructs the distributions. The probabilities of less 
visited clusters corresponding to fast events such as the peaks in the 
z directions of the Rössler attractor (Fig. 5A) and the heartbeat pulse 
(Fig. 5B) or to rare events for the Kolmogorov flow (Fig. 5C) are very 
well captured by CNM. We note that a low cluster probability is only 
a postprocessing step to identify rare events. Details about CNM’s 
ability to predict a rare event ahead of time are provided below.

A special characteristic of CNM is its ability to accurately model 
and predict systems with rare events. This ability is rooted in the 
probabilistic framework upon which CNM is constructed, where 
the recurrence properties are the same as the reference data. If one 
cluster is visited multiple times (or seldom) in the data, it will also 
be a recurrence point of the CNM. A generic example of a rare event 
problem is the Kolmogorov flow (32), a two-dimensional incompress-
ible flow with sinusoidal forcing. With a sufficiently high forcing 

wave number, the flow becomes unstable and the dissipation energy 
D exhibits intermittent and spontaneous bursts (see Fig. 6C). The 
dashed line denotes an arbitrary threshold beyond which a peak is 
considered a rare event. The probability distribution function (PDF) of 
the dissipation energy from the data and CNM is compared in Fig. 6D.

The main peak centered around zero reflects the stochastic na-
ture of the dissipation energy, whereas the tail depicts rare events 
whose occurrence probability decreases with their amplitude. As 
the figure shows, CNM accurately captures the probabilistic behav-
ior of the dissipation energy. Both the main stochastic peak and the 
rare event tail of the distribution are well reconstructed. Moreover, 
the total number of bursts in the current sequence is well repro-
duced, with 58 bursts in the original data compared to 62 for CNM.

Besides reproducing the dynamics, CNM offers powerful capa-
bilities to predict and thus control rare events. Figure 6A presents 

Fig. 4. The CNM implemented on five applications covering a wide range of dynamics. The first two applications are three-dimensional chaotic systems, the Lorenz 
and Rössler attractors. The two following examples are one-dimensional experimental measurements from an ECG and numerical simulation of the dissipation energy in 
a Kolmogorov flow. The final application is a large eddy simulation of an actuated turbulent boundary layer. The excellent match of the autocorrelation functions for all 
applications demonstrates the CNM’s ability to capture the relevant dynamics for any complex nonlinear system. The modeled time series faithfully reconstruct the data 
including the intermittent quasi-random bursts of the Kolmogorov dissipation energy, as well as the z-component pulses of the Rössler system.
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the phase space spanned by the dissipation energy D and its time 
derivative   D ̇    constructed using CNM. Snapshots delimiting the on-
set of bursts are marked by the red diamonds and are concentrated 
in a specific region in the phase space. Dynamics crossing the red 
diamonds from the left will experience a burst on the right before 
returning to the left region from below. A close-up of the phase 
space around the red diamonds is shown in Fig. 6B, where the last 
visited clusters preceding a burst are marked in blue. The table on 
the bottom right of Fig. 6A lists the corresponding burst probability 
and the previewing time at the seven blue centroids. The burst prob-
ability represents the probability to encounter a burst during the next 
motion propagation from the current centroid. High burst proba-
bilities mark a high likelihood to encounter a burst. The previewing 
time denotes the look-ahead time from the centroid to the burst 
onset. In practice, a limit on the burst probability can be selected, 
above which an action (e.g., control) with a certain previewing time 
to execute can be taken. For the settings used (K = 200, L = 25), the 
burst probabilities and the previewing times at the seven listed cen-
troids range between 0.04 and 0.78% and between 0.14 and 0.42 time 
units, respectively. The burst probability and previewing time at 
other centroids away from this region are negligibly low.

Control-oriented CNM
To disambiguate the effect of internal dynamics from actuation or 
external input, we generalize CNM to include control b. We note 
that the current control-oriented CNM (CNMc) version is only 
suitable for autonomous forcing, where the input b is constant and 
time independent. The transition probabilities Q(b) and transition 
times T(b) are first identified for each actuation setting b individu-
ally. The three-step procedure for the propagation of a new control 
command    ̂  b    depicted in Fig. 7A is then performed. At each itera-
tion, (i) a search for the nearest centroids from the two closest actu-
ation test cases is performed. (ii) Their transition properties are 
then identified and (iii) averaged to determine the transition of the 
state    ̂  x   . More details of the CNMc algorithm are provided in section 

S5. CNMc is applied to two systems at new control conditions, the 
Lorenz attractor and the actuated turbulent boundary layer. The 
Lorenz system with  = 28 is interpolated from two test cases with  = 26 
and  = 30, and the boundary layer with actuation parameters + = 
1000, T+ = 120, and A+ = 30 is interpolated from cases with + = 
1000, T+ = 120, and A+ = 20 and + = 1000, T+ = 120, and A+ = 40. 
The CNMc settings are provided in section S6. Despite the algo-
rithm’s simplicity, the main dynamics are properly captured, as 
shown by the autocorrelation functions in Fig. 7 (B and C) and the 
time series (fig. S7). CNMc is cast in the same probabilistic frame-
work as CNM and thereby retains all previously demonstrated advan-
tages. As the dynamics are interpolated from centroids that belong 
to potentially different trajectories, the resulting motion might be 
noisier and a larger number of centroids than regular CNM are typ-
ically required.

DISCUSSION
We propose a universal data-driven methodology for modeling non-
linear chaotic and deterministic dynamical systems. The method builds 
on prior work in cluster-based Markov modeling and network 
dynamics. CNM has several unique and desirable features. (i) It is 

A B

C D

Fig. 5. CPD of the data and CNM for four applications. (A to D) CPD of the 
Rössler system, ECG signal, Kolmogorov flow dissipation energy, and actuated tur-
bulent boundary layer, respectively. For all cases, the data (black) and CNM (red) 
are in good agreement. The specific features of each dataset, such as the rare 
events of the Kolmogorov dissipation energy and the fast heartbeat pulses, are 
probabilistically well reconstructed by CNM.

A

C D

B

Fig. 6. Rare events from the Kolmogorov flow dissipation energy. (A) The 
phase space spanned by the dissipation energy D and its time derivative   D ̇    con-
structed using CNM. Snapshots delimiting the onset of bursts are marked by the 
red diamonds and are concentrated in a specific region in the phase space. A close-
up of the phase space around the red diamonds is shown in (B), where the last 
visited clusters preceding a burst are marked in blue. The table on the bottom right 
of (A) lists the corresponding burst probability and the prediction time at the seven 
blue centroids. A portion of the dissipation time series is presented in (C). The 
dashed line denotes an arbitrary threshold beyond which the peaks, represented 
with green filling, are considered a burst. (D) Probability distribution of the data 
(black) and CNM (red). Both the main peak and the decaying tail of the distribution 
are accurately reproduced.
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simple and automatable. Once the various schemes are chosen (e.g., 
clustering algorithm and transition time), only two parameters must 
be selected: the number of clusters K and the Markov chain order 
L. Too few centroids might oversimplify the dynamics, whereas too 
many might lead to a noisy solution. We note that a high Markov 
chain order L is not always necessarily advantageous. Both parame-
ters are problem dependent and can be automatically optimized. (ii) The 
method does not require any assumption on the analytical structure 
of the model. It is always honest to the data. (iii) The offline compu-
tational load is low. The most expensive step in the process is the 
occasionally required snapshot-based POD for dimensionality re-
duction. After the POD computation, the clustering and network 
modeling require a tiny fraction of the computational operation. 
Details on the algorithm computational load are provided in section 
S6. (iv) The recurrence properties are the same as the reference data. 
If one cluster is visited multiple times (or seldom) in the data, it will 
also be a recurrence point of the CNM. This feature is what enables 
modeling of problems with rare events. (v) Long-term integration 
will never lead to divergence, unlike, e.g., POD-based models. The 
simplicity and robustness, however, have a price. On the kinematic 
side, the simple CNM version cannot extrapolate, e.g., resolve oscil-
lations at higher amplitudes not contained in the data. On the dy-
namic side, we lose the relationship to first principles: The network 
model is purely inferred from data, without links to the governing 
equations. In particular, cluster-based models are not natural frame-
works for dynamic instabilities, as the notion of exponential growth 
and nonlinear saturation is intimately tied to Galerkin expansions. 
Subsequent generalizations need to overcome these restrictions. 
(vi) The framework is generalizable, allowing control-oriented pre-
dictions beyond the training data. A simple interpolation-based 
control-oriented extension of CNM is proposed and tested. Despite 
its simplicity, CNMc accurately predicts the state dynamics at new 
operating conditions over the entire sample record.

CNM is found to have a distinct superiority over cluster-based 
Markov models, namely, the much longer prediction horizon as 

evidenced by the autocorrelation function. The modeling and pre-
diction capabilities are demonstrated on a number of examples ex-
hibiting chaos, rare events, and high dimensionality. In all cases, the 
dynamics are remarkably well represented with CNM; the temporal 
evolution of the main flow dynamics, the fluctuation level, the auto-
correlation function, and the cluster population are all accurately 
reproduced. In a computational fluid dynamics analogy, the cluster- 
based Markov models may be compared with unsteady Reynolds- 
averaged Navier-Stokes equations describing the transient mean 
flow and the CNM with large eddy simulations describing the co-
herent structures.

CNM opens a novel automatable avenue for data-driven nonlin-
ear dynamical modeling and real-time control. It represents a new 
powerful tool in the existing large toolbox of dynamical system 
identification and reduced-order modeling. It holds the potential 
for a myriad of further research directions. Its probabilistic founda-
tions are naturally extendable to include uncertainty quantification 
and propagation. One limiting requirement of CNM is the relatively 
large statistically converged training data that it requires compared 
to other known methods (e.g., ARMA and SINDy). This require-
ment could be relaxed through explicit coupling to first-principle 
equations. The control-oriented extension may be further refined 
and more broadly implemented on other applications.

MATERIALS AND METHODS
In this section, we detail the various systems including the numeri-
cal setup and the CNM modeling parameters. CNM is fully parame-
trized by the number of clusters K and the model order L. Their 
selection plays an important role in the model accuracy. The values 
used for the various systems are listed in Table 1. The procedure to 
select K and L is detailed in section S3. The last column in Table 1 
lists the normalized time delays tL/T0, where T0 is the fundamental 
period computed from the dominant frequency identified from 
the autocorrelation function. For purely random signals with no 

B

C

(1) Nearest centroids

CNM state Next state

(2) Nearest centroid
transitions

(3) Averaged
     transition

A

Fig. 7. Control-oriented CNM. (A) CNMc iteratively propagates the state in the phase space populated with the centroids from the two operating conditions with the 
closest control parameters. (1) Neighboring centroids to the current state     ̂ x     n   at iteration n are first identified. (2) Their transition properties are calculated and then (3) 
averaged to determine the next state     ̂ x     n+1  . CNMc accuracy is demonstrated by the autocorrelation function distributions of the data (black) and the predicted case (red) 
for the (B) Lorenz system and the (C) actuated turbulent boundary layer, respectively.
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deterministic component, such as the dissipative energy of the 
Kolmogorov flow, no characteristic period can be defined.

As indicated by the table, the CNM parameters are strongly de-
pendent on the nature of the systems dynamics. Physical interpreta-
tion of the chosen parameters is provided for each system in the 
following.

Lorenz system
The Lorenz system (26) is a typical candidate for dynamical system 
analysis. Despite its low dimension, it exhibits a chaotic behavior. 
The motion is characterized by periodic oscillations of growing am-
plitude in the “ears” and a random switching between them. The 
Lorenz system is driven by a set of three coupled nonlinear ordinary 
differential equations given by

   

  dx ─ dt  

  

= (y − x)

     
dy

 ─ dt  
  = x( − z ) − y   

  dz ─ dt  

  

= xy − bz

    (9)

The selected parameters are  = 10,  = 28, and  = 8/3 with ini-
tial conditions ( − 3,0,31). The simulation is performed with a time 
step t = 0.015 for a total of 57,000 samples. The numerical integra-
tion is performed with the explicit Runge-Kutta method of fifth or-
der using the SciPy library from the Python programming language 
(33, 34).

The relatively high number of clusters (K = 50) ensures that each 
wing is resolved by two orbits of centroids (see the phase-space 
clustering in Fig. 4) and allows us to reproduce some of the increas-
ing oscillation amplitude. K can be increased (decreased) to resolve 
more (less) orbits in each ear. Because of the dynamic complexity 
and especially the random ear flipping, the Lorenz system requires 
a large time delay tL equivalent to 1.7 rotations. With lower L values, 
the trajectory that reaches the ear intersection becomes more likely 
to wrongly switch sides.

Rössler system
The Rössler is a three-dimensional system governed by nonlinear 
ordinary differential equations (28) that read

   

  dx ─ dt  

  

= − y − z

    
dy

 ─ dt  
  = x + ay  

  dz ─ dt  

  

= b + z(x − c)

   (10)

where the parameters are a = 0.1, b = 0.1, and c = 14. The initial 
conditions are set to (1,1,1), and the simulation is performed with a 
time step t = 0.01 for a total of 50,000 samples. The Rössler data 
are also created with the SciPy library using the explicit Runge-Kutta 
method of fifth order. Similar to the Lorenz system, the Rössler is 
widely used for dynamical system analysis. The system also yields 
chaotic behavior under specific parameter combinations. The mo-
tion is characterized by rotations of slowly growing amplitude in 
the x-y plane and intermittent peaks in the z direction.

The Rössler system requires a large number of clusters to ensure 
a sufficient centroid coverage in the peak for an accurate reproduc-
tion of this intermittent and fast event. However, because the trajec-
tory itself is relatively simple, a time delay tL of approximately half 
of the characteristic period is sufficient (tL/T0 = 0.6).

ECG signal
An ECG measures the heart activity over time. Electrodes are placed 
on the person’s skin to deliver a univariate voltage of the cardiac 
muscle movements. The time series exhibit the typical pulse associ-
ated with the heartbeat. The ECG signal used in this study is from 
the PhysioNet database (35). The signal time range is 180 s, and the 
sampling frequency is 250 Hz.

Similarly to the Rössler, the ECG requires a large number of 
clusters K to resolve the quasi-circular phase-space trajectory corre-
sponding to the fast heartbeat pulse. Again, because of the very reg-
ular and repetitive nature of the heart activity, a small time delay tL 
is sufficient.

Kolmogorov flow
The Kolmogorov flow is a two-dimensional generic flow defined on 
a square domain q = (x, y) with 0 ≤ x ≤ L and 0 ≤ y ≤ L, subject to 
a horizontal sinusoidal forcing f, defined by

  f(x ) = sin (a y )  e  1    (11)

where e1 = (1,0)T is a unit vector in the x direction. The Kolmogorov 
flow is a test bed for various fluid mechanics and turbulence studies 
(36). The temporal evolution of the flow energy E, the dissipative 
energy D, and input energy I are defined by

  E(t ) =   1 ─ 
2  L   2 

  ∬  ∣ u(q, t ) ∣   2  dq  (12)

  D(t ) =    1 ─ 
 L   2 

  ∬  ∣ (q, t ) ∣   2  dq  (13)

  I(t ) =   1 ─ 
 L   2 

  ∬  ∣ u(q, t ) ·f(q, t ) ∣   2  dq  (14)

where  is the fluid viscosity and  is the vorticity. The rate of 
change of the energy is equal to the input energy minus the dissipa-
tion energy, as   E ̇   = I − D . With increasing forcing wave number a, 
the dissipation energy yields intermittent and random bursts. This 

Table 1. CNM settings for all applications. The number of clusters K and 
the model order L are listed for the five systems. The last column tL/T0 
designates the normalized time delay corresponding to the selected 
model order L. The fundamental period T0 is computed from the 
dominant frequency of the system, when possible. 

System Number of 
clusters K Model order L tL/T0

Lorenz 50 22 1.7

Rössler 100 2 0.6

ECG 50 23 0.14

Kolmogorov 
flow 200 25 –

Boundary layer 50 3 0.25
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behavior makes the dissipation energy a good candidate for rare event 
modeling. The current data were created and shared by Farazmand 
and Sapsis (37), with a wavenumber a = 4 and a Reynolds number 
Re = 40. The total time range is 100,000 dimensionless time units 
with a sampling frequency of 10.

The trajectory in the phase space spanned by D and its temporal 
derivative   D ̇    (Fig. 4) is particularly complex. The region with higher 
cluster density in the left region of the phase space corresponds to 
the random fluctuations, and the region with sparser centroid dis-
tribution describes the intermittent energy bursts. Because of its 
stochastic nature and the absence of deterministic patterns, the 
Kolmogorov flow dissipation energy has been particularly challeng-
ing to model. With sufficiently large K and L, CNM is capable of 
modeling D with high accuracy.

Actuated turbulent boundary layer
The reduction of viscous drag is crucial for many flow-related appli-
cations such as airplanes and pipelines, as it is a major contributor 
to the total drag. Many passive (38, 39) and active (40, 41) actuation 
techniques have been investigated to reduce the skin friction drag. 
In this study, skin friction reduction on a turbulent boundary layer 
is achieved by means of a spanwise traveling surface wave (31, 42).

The waves are defined by their wavelength +, period T+, and 
amplitude A+. The superscript + denotes variables scaled with the 
friction velocity and the viscosity. Details about the computational 
setup can be found in the work of Albers et al. (31). The actuation 
parameters are + = 1000, T+ = 120, and A+ = 60. The total time 
range in + units is 846, and the sampling frequency is 0.5, resulting 
in 420 snapshots. The velocity field is given by u(q, t+), where q = 
(x+, y+, z+) in the Cartesian coordinates with x+ ∈ [2309,4619], y+ ∈ 
[0,692], and z+ ∈ [0,1000].

Clustering of large high-dimensional datasets is costly. The re-
quired distance computation between two snapshots um and un

  d( u   m ,  u   n  ) =  ‖ u   m  −  u   n ‖      (15)

is computationally very expensive. Here, the norm is defined as

  ∥u ∥     =  √ 
_

  (u, u)        (16)

and the inner product in the Hilbert space ℒ() of square-integrable 
vector fields in the domain  is given by

   (u, v)     =  ∫ 


     u(q ) v(q) dq  (17)

For high-dimensional data such as the boundary layer velocity 
field, data compression with lossless POD can reduce the computa-
tional cost of clustering. Here, a snapshot um is exactly expressed by 
the POD expansions as

  u(q, t ) =  u  0  (q ) +   ∑ 
i=0

  
M−1

    a  i  (t )    i  (q)  (18)

where u0 is the mean flow, i denotes the POD modes, and ai(t) are 
the corresponding mode coefficients. As shown by Kaiser et al. (19), 
the distance computation (Eq. 15) can be alternatively performed 
with the mode coefficients instead of the snapshots, as

  d( u   m ,  u   n  ) =  ‖ u   m  −  u   n ‖      (19)

  = ∥ a   m  −  a   n ∥  (20)

Hence,   a   m  = [ a 1  m , … ,  a M−1  m  ]  becomes the POD representation of 
snapshot m at time tm = mt. Equation 20 is computationally much 
lighter than (19). Despite the additional autocorrelation matrix 
computation for the POD process, the data compression procedure 
remains very beneficial for large numerical grids. According to (20), 
the computational savings amount to

    M + 1 ─ 2J × I × K    (21)

where M is the number of snapshots, K is the number of clusters, I 
is the number of k-means inner iterations, and J is the number of 
random centroid initializations. For typical values (K ∼ 10, I ∼ 10K, 
and J ∼ 100), the savings are one or two orders of magnitude. Fur-
thermore, POD is computed only once for each dataset and will 
benefit all future clusterings performed on that dataset.

The actuated turbulent boundary layer at the used actuation set-
tings exhibits synchronization with the actuation wave. The dynam-
ics show quasi–limit cycle behavior with superimposed wandering. 
Therefore, a low number of centroids are sufficient to capture the 
dynamics. If desired, the limit cycle meandering associated with 
higher frequency turbulence can be resolved with a larger set of cen-
troids. The selected value of K = 50 is a compromise between a suffi-
cient resolution of the turbulence scales (64% of the data fluctuation 
is resolved) and a reasonable model complexity. The dynamics are 
well captured with a low model order L, equivalent to a time delay 
of a quarter of the actuation period.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/25/eabf5006/DC1
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