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Abstract

Motivation: The overall association evidence of a genetic variant with multiple traits can be evaluated by cross-
phenotype association analysis using summary statistics from genome-wide association studies. Further dissecting
the association pathways from a variant to multiple traits is important to understand the biological causal relation-
ships among complex traits.

Results: Here, we introduce a flexible and computationally efficient Iterative Mendelian Randomization and
Pleiotropy (IMRP) approach to simultaneously search for horizontal pleiotropic variants and estimate causal effect.
Extensive simulations and real data applications suggest that IMRP has similar or better performance than existing
Mendelian Randomization methods for both causal effect estimation and pleiotropic variant detection. The devel-
oped pleiotropy test is further extended to detect colocalization for multiple variants at a locus. IMRP will greatly fa-
cilitate our understanding of causal relationships underlying complex traits, in particular, when a large number of
genetic instrumental variables are used for evaluating multiple traits.

Availability and implementation: The software IMRP is available at https://github.com/XiaofengZhuCase/IMRP. The
simulation codes can be downloaded at http://hal.case.edu/�xxz10/zhu-web/ under the link: MR Simulations
software.

Contact: xxz10@case.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the past decade, genome-wide association studies (GWASs) have
been successful in identifying genetic variants associated with com-
plex traits (https://www.genome.gov/gwastudies/). Although most
GWASs have been conducted for individual traits, a recent study
showed that 90% of the identified variants are associated with mul-
tiple traits (Watanabe et al., 2019). Such phenomenon is often
termed as cross-phenotype (CP) association (Andreassen et al.,
2013; Cortes et al., 2020; Cotsapas et al., 2011; Liang et al., 2017;

Park et al., 2016; Solovieff et al., 2013; Wagner and Zhang, 2011;
Yan et al., 2020; Zhu et al., 2015), which suggests that multiple
traits potentially share common genetic pathways. Noted that CP
association is not the same as pleiotropy, a concept that has been
continuously evolving in light of current genomic data. Solovieff
et al. (2013) classified CP associations into four categories: (i) medi-
ated pleiotropy; (ii) biological pleiotropy; (iii) colocalization; and
(iv) spurious pleiotropy. Mediated pleiotropy and biological plei-
otropy have been called as vertical and horizontal pleiotropy, re-
spectively (Jordan et al., 2019; Verbanck et al., 2018). In brief,
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mediated pleiotropy occurs when a genetic variant directly affects
one trait that in turn has a direct contribution to a second trait. For
example, genetic variants are associated with both low-density lipo-
protein (LDL) levels and the risk of myocardial infarction, but their
associations with myocardial infarction are caused through the vari-
ation of LDL levels (Voight et al., 2012). Biological pleiotropy
occurs when a genetic variant influences multiple traits through in-
dependent physiological mechanisms. Thus, the association of the
genetic variant with the second trait does not disappear conditional
on the first trait. For example, the rs6983267 variant on 8q24 is a
risk factor for both prostate and colorectal cancer by conferring dif-
ferential in vivo activity to a MYC enhancer in both colon and pros-
tate tissue types (Pomerantz et al., 2009; Wasserman et al., 2010).
Colocalization is also considered as a type of pleiotropy, in which
multiple risk variants of different traits fall into the same gene or
genomic region. GWASs have reported that variants of many traits
are colocalized with eQTLs in different tissue types (Barbeira et al.,
2018; Giambartolomei et al., 2014; Hormozdiari et al., 2016; Wen
et al., 2017). Spurious pleiotropy is caused by various biases includ-
ing ascertainment bias, phenotypic misclassification and shared con-
trols (Solovieff et al., 2013). The CP association analysis can greatly
improve statistical power in detecting genetic variants associated
with multiple traits (Turley et al., 2018; Zhu et al., 2015), but it
does not provide information on the underlying pleiotropy type.
Novel statistical approaches are necessary to differentiate different
pleiotropies for better understanding of causal relationships among
traits. To simplify our discussion, we call biological (horizontal)
pleiotropy as pleiotropy, simplify mediated pleiotropy as mediation,
leave colocalization as it is, and do not consider spurious pleiotropy
from now on.

Mendelian Randomization (MR) is a widely used epidemiologic-
al approach to infer causality of an exposure on a disease outcome
(Davey Smith and Hemani, 2014; Evans and Davey Smith, 2015).
MR uses mediation genetic variants as instrumental variables (IVs)
for testing whether the exposure has a causal role in the etiology of
diseases (Burgess et al., 2017). Since the proportion of phenotypic
variation explained by a genetic variant is often small, a meta-
analysis of the inverse variance weighted (IVW) approach can be
applied (Bowden et al., 2015) to combine multiple variants to im-
prove the statistical power in MR analysis. An inherent difficulty of
MR lies in the selection of mediation genetic variants as IVs. When
IVs consist of genetic variants with pleiotropic effects, MR will lead
to a biased estimate of a causal effect (Bowden et al., 2015). In fact,
there is a debate about whether MR can reliably identify causality
between two traits given the widespread of pleiotropy or colocaliza-
tion (Davey Smith, 2015; Pickrell, 2015). To correct the potential
bias from variants with pleiotropic effect, MR-Egger regression has
been developed without the need to identify any pleiotropic variants,
however the power is also diminished (Bowden et al., 2015).
Recently, MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO)
approach has been developed to detect pleiotropic outliers in multi-
instrument summary-level MR analysis and the causal effect esti-
mate is obtained using the IVW approach after excluding the out-
liers (Verbanck et al., 2018). However, MR-PRESSO requires a
simulation procedure to test pleiotropy, which substantially
increases computational cost. Similarly, the generalized summary
data-based MR (GSMR) approach detects pleiotropic variants and
performs MR analysis after dropping the pleiotropic variants (Zhu
et al., 2018). In particular, GSMR chooses the single nucleotide
polymorphism (SNP) that shows the strongest association with the
exposure in the third quantile of the distribution. A different ap-
proach based on parametric mixture model (MRmix) has recently
been developed by assuming bivariate effect-size distribution of the
SNPs across pairs of traits (Qi and Chatterjee, 2019). Under the zero
modal pleiotropy assumption (ZEMPA), MRmix showed a better
trade-off between bias and variance than existing estimators. Similar
to MR-Egger, MRmix did not performed well when the number of
IVs is small. Further, MRmix does not provide a way to identify
pleiotropic loci.

In this study, we introduce the Iterative Mendelian
Randomization and pleiotropy (IMRP) approach to overcome

shortcomings of existing methods. We model the residual distribu-
tion of C -̂bc ,̂ where C^and c^represent the effect sizes of an IV for
an outcome and an exposure, respectively, and b is the causal effect
of the exposure to the outcome. The residual follows a normal distri-
bution when no IVs have pleiotropic effect. IMRP identifies pleio-
tropic IVs and recalculates causal effect after excluding pleiotropic
IVs at each iterative step. Consequently, it can simultaneously per-
form MR analysis and detect pleiotropic variants. IMRP is computa-
tionally efficient as it is based on the IVW method and uses GWAS
summary statistics without requiring simulations. We evaluated the
performance of IMRP by comparing it with existing MR methods
using extensive simulations. We further applied IMRP to publicly
available GWAS summary statistics to estimate causal effects and
search for pleiotropic loci.

2 Materials and methods

2.1 Introduction of existing MR methods
We assume, there are summary statistics of n independent genetic
variants for two traits Y1 and Y2 being available from GWASs. The
summary statistics are either from the same dataset or different data-
sets (possibly with overlapping samples). We assume that the associ-
ation paths between genetic variants and two traits (demonstrated in
Fig. 1) can be represented by the following models:

Y1 ¼
Xn1

i¼1

ciGi þ
Xn2

i¼1

c1iGi þU þ e1

Y2 ¼ bY1 þ
Xn2

i¼1

c2iGi þU þ e2

; (1)

where ci is the direct contribution of the variant Gi to trait Y1, c1i

and c2i are the direct contributions of variant G
0

i to traits Y1 and Y2,
b is the causal effect of trait Y1 to trait Y2, U represents confounding
factors and e1 and e2 are error terms, respectively. In these two equa-
tions, the contribution of a variant Gi (i¼1,. . ., n1) to trait Y2 is
mediated through Y1. In contrast, each of G

0
i (i¼1,. . ., n2) has a

pleiotropic effect. The goal of MR analysis is to establish the causal
contribution of the exposure Y1 to the outcome Y2 by using a set of
genetic variants as the IVs. We assume all the genetic variants are in-
dependent, which can be achieved by pruning variants. In the MR
analysis, a valid IV requires that the genetic variant is (i) independ-
ent of U; (ii) associated with exposure Y1; and (iii) independent of
the outcome Y2 conditional on the exposure Y1 and confounders U.

Let ĉi and ĉ1i be the estimated effect sizes of variants Gi and G
0
i

on the exposure Y1, respectively, from the GWAS. Correspondingly,
let Û i and Û1i be the estimated effect sizes of variants Gi and G

0

i on
the outcome Y2; respectively. It is to observe that EðĈiÞ ¼ bEðĉ iÞ for
the mediation variant Gi, and EðĈ1iÞ ¼ bE ĉ1ið Þ þ c2i for the pleio-
tropic variant G

0
i. Noted that, the effect size of a pleiotropic variant

to the outcome has an additional term c2i besides the effect through
the exposure. For an individual IV, the causal effect b can be esti-
mated by Ĉi=ĉ i, which is unbiased if the IV is a mediation variant
and biased if the IV is a pleiotropic variant. With multiple IVs, the

Fig. 1. The association paths of genetic IVs, exposure (Y1) and outcome (Y2).

G1; G2; . . . ; Gn1
represent mediation variants, which are valid IVs in MR ana-

lysis. G
0

1; G
0

2; . . . ; G
0

n2
represent pleiotropic variants, which are invalid IVs in MR

analysis. Each c represents a direct contribution of a genetic variant. b represents the

causal effect from exposure Y1 to outcome Y2. U represents confounding factors
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causal effect estimator b̂ can be calculated as the weighted meta-
analysis with the weight being the inverse variance of Ĉi=ĉ i, which
refers the IVW estimator (Borenstein, 2009). Alternatively, we can
perform a weighted linear regression of the Ĉi on ĉ i:
Ĉi ¼ b0 þ bĉ i þ �i. When b0 is fixed to be 0, the weighted least
square estimator of b is the IVW estimator. Accordingly, the MR-
Egger estimator corresponds to the weighted least estimator of b
without fixing b0 to be 0 (Bowden et al., 2015). Including the var-
iants with pleiotropic effects will lead to a biased estimation of the
causal effect. Although such a bias may be alleviated through Egger
regression, it has substantially reduced statistical power in testing
causality (Bowden et al., 2015). Hence, it is desirable to identify and
exclude pleiotropy variants from MR analysis in order to obtain an
unbiased estimate of the causal effects, while maintaining statistical
power. Thus, MR-PRESSO first identifies horizontal pleiotropic var-
iants and then performs IVW to estimate the causal effect by remov-
ing the pleiotropic variants (Verbanck et al., 2018). MR-PRESSO
comprises of three steps: (i) testing whether horizontal pleiotropic
variants are present through a global test; (ii) performing an outlier
test to detect pleiotropic variants; and (iii) comparing the causal esti-
mates before and after removal of pleiotropic variants through a dis-
tortion test. The global and pleiotropic variant tests are based on a
leave-one out approach with the null distribution is obtained by sim-
ulations. Since MR-PRESSO estimates the causal effect after remov-
ing potential pleiotropic variants, it is less biased than IVW but is
computationally intensive. GSMR shares similarity to MR-PRESSO
by identifying pleiotropic variants and performing IVW analysis
after excluding the pleiotropic variants without using simulations
(Zhu et al., 2018). On the other hand, MRmix is an estimating
equation approach that requires the residuals Ĉ i � bĉ i to follow a
normal-mixture model (Qi and Chatterjee, 2019). The normal-
mixture model seems plausible when the genetic instruments include
mediation variants, horizontal pleiotropic variants, as well as the
genetic variants contributing to reverse causality. In order to achieve
an unbiased causal estimate, MRmix requires the ZEMPA assump-
tion. When the sample size is large, MRmix usually shows a better
trade-off between bias and variance than the approaches mentioned
before, even more than when 50% IVs are invalid (Qi and
Chatterjee, 2019). Similar to MR-Egger, MRmix did not performed
well when the number of IVs is small.

2.2 IMRP method
Here, we propose a direct test to differentiate mediation from plei-
otropy before MR analysis. The null hypothesis of the test is U ¼ bc.
When the causal effect b is known, the test statistic is

TPleio ¼
Ĉ � bĉffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðĈ � bĉÞ
q ; (2)

where Ĉ and ĉ are the estimated effect sizes of a variant on Y1 and
Y2, respectively. The statistic Tpleio asymptotically follows a stand-
ard normal distribution N(0,1) when mediation is true. Under the al-
ternative hypothesis that a variant has a pleiotropic effect, TPleio

departs from mean 0. The problem of this test is that the causal ef-
fect b is unknown. To solve this problem, we propose an iterative
approach named IMRP by combining the pleiotropy test with MR
analysis:

1. Initialization: selecting n genome-wide significant independent

variants of exposure Y1 and obtain the initial causal estimate of

b by MR-Egger analysis, named as b̂0.

2. Pleiotropy test: for each genetic variant gi (i¼1,. . ., n) at the kth

iteration, we perform the Tpleio test using b̂k�1 to determine

whether the variant gi has a pleiotropic effect at a predefined sig-

nificance level a.

3. Estimation of causal effect b: we perform IVW analysis to obtain

b̂k after removing the variants found to be significant in plei-

otropy test at step 2;

4. Iteration: the above steps 2 and 3 are repeated until there is no

change in detected pleiotropic variants.

The initial value at step 1 above can be chosen in different ways.
For example, we can also use the causal effect estimate of IVW by
including all the IVs. However, taking the MR-Egger estimate as its
initial estimate followed by IVW has the advantages of both MR-
Egger, which is less biased when pleiotropy is present or Instrument
Strength Independent of Direct Effect (InSIDE) assumption is not
valid, and IVW, which has less uncertainty, as we observed in simu-

lations. At step 2, let b̂ be the estimated causal effect by IVW. The
pleiotropy test statistic for a genetic variant is modified as

TPleio ¼ Ĉ�b̂ ĉffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĈ�b̂ ĉÞ
p . The denominator variance can be approximated

by var Ĉ� b̂ĉ
� �

� var Ĉð Þþ b̂
2
var ĉð Þþ ĉ2varðb̂Þ�2b̂q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĈÞvarðĉÞ

q
using the delta method. Here, we ignore the correlation of b̂

and Ĉ and the correlation of b̂ and ĉ, which is reasonable be-

cause b̂ is estimated using all independent IVs and less depend-

ent on individual Ĉ or ĉ. When GWAS of Y1 and Y2 are
performed in the same sample cohort, q is the correlation coeffi-

cient of Y1 and Y2. In general, q represents the correlation of Ĉ
and ĉ induced by overlapping or related samples in the GWASs
of Y1 and Y2 and can be estimated using GWAS summary sta-
tistics (Zhu et al., 2015) or LD score regression (Bulik-Sullivan
et al., 2015).

The presence of pleiotropic variants among the n IVs can be
examined by a global test: SS2

GT ¼
Pn

i¼1 T2
pleio; i, which can be

approximated as a v2 distribution with n-1 degrees of freedom for n
independent IVs. To test whether an individual variant has a pleio-
tropic effect, we use Tpleio at the significance level 0.05/n at the final
stage. When a large number of potential IVs are available in the MR
analysis, we can use less strict significance level to aggressively ex-
clude IVs with potential pleiotropic effect, as we demonstrated in
our real data analysis. IMRP is a combined approach to test plei-
otropy versus mediation while performing MR analysis and estimat-
ing the causal effect of Y1 on Y2 simultaneously, therefore, it can
robustly estimate the causal contribution of a risk factor to an
outcome.

The single variant pleiotropy test statistic TPleio can be readily
extended to multiple variants at a locus. In this case, Ĉ and ĉ are
vectors representing the estimated effect sizes from GWAS of M gen-
etic variants at a locus for the outcome and exposure, respectively.
Let Ĉ ¼ ðĈ1; Ĉ2; . . . ; ĈMÞ and ĉ ¼ ðĉ1; ĉ2; . . . ; ĉMÞ. We construct
the corresponding statistics of M variants by

Spleio ¼ Ĉ � b̂ĉ
� �T

R�1 Ĉ � b̂ĉ
� �

; (3)

where R is an M�M variance–covariance matrix with diagonal

elements var Ĉi � b̂ĉ i

� �
� var Ĉi

� �
þ b̂

2
var ĉ ið Þ þ ĉ i

2varðb̂Þ

�2b̂q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĈiÞvarðĉ iÞ

q
, and off-diagonal elements cov Ĉi � b̂ĉ i;

�

Ĉ j � b̂ĉ jÞ � rij½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Ĉi

� �
var Ĉ j

� �r
þ b̂

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ĉ ið Þvar ĉ j

� �q
þ ĉiĉ jvarðb̂Þ

� qb̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Ĉ i

� �
var ĉ j

� �q
� qb̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Ĉ j

� �
var ĉ ið Þ

r
Þ�, where rij is the link-

age disequilibrium (LD) parameter between markers i and j: If we

work on the standardized Y1, Y2 and markers, we have var Ĉ i

� �
¼

var Ĉ j

� �
¼ 1

N1
and var ĉ ið Þ ¼ var ĉ j

� �
¼ 1

N2
. Further assuming varðb̂Þ

is ignorable in comparing with var Ĉ j

� �
or var ĉ ið Þ, we can simplify

Spleio to

SPleio ¼
N1N2

N1 þ b̂
2
N2 � 2qb̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p Ĉ � b̂ĉ
� �T

R�1 Ĉ � b̂ĉ
� �

;

where R is the LD matrix among M variants. Under the null hypoth-
esis of mediation, SPleio follows a v2 distribution with M degrees of
freedom. When the variants are in high LD, matrix D can be

1392 X.Zhu et al.



singular. In this case principle component analysis by Eigen decom-
position of the LD matrix can be applied. We choose the number of
components that together represent at least 90% of the variance to
determine the degree of freedom for the v2 test.

2.3 Simulations
We conducted simulations to evaluate the type I error and power of
IMRP in detecting pleiotropy and to compare the bias of causal ef-
fect estimates with the existing MR methods in a variety of scen-
arios. We compared IMRP with the simulation-based MR-PRESSO
because of their similar features in identifying pleiotropic variants.
Following the simulation method in Verbanck et al. (2018), we
simulated two traits and 50 variants with a variety of proportions of
genetic variants with pleiotropic effects. The two traits were simu-
lated with or without causal relationship. We simulated pleiotropy
variants and their effects to the two traits with or without satisfying
the InSIDE, referring to the condition that the direct effects of the
genetic variants G

0

i, which are c1i and c2i in the model (1), are inde-
pendent (Bowden et al., 2015). The effect sizes ci; c1i and c2i of gen-
etic variants in model (1) were drawn from a uniform distribution
U(0.5,1). If the InSIDE condition is invalid, we added to both c1i

and c2i a common value drawn from U(0, 0.1), in order to create the
dependence between the pleiotropic effects for both traits. We simu-
lated positive pleiotropy type by drawing all c2i from U(0.5, 1), and
balanced pleiotropy type by drawing half of c2i from U(0.5, 1) and
the other half from �U(0.5, 1). We varied the causal effect param-
eter b to be 0, 0.1, 0.2, 0.5 and the percentage of pleiotropic variants
to be 0%, 4%, 50% or 90%. We simulated trait Y1 and Y2 in two
cases: (i) both Y1 and Y2 came from the same cohort (one-sample)
and (ii) Y1 and Y2 came from two independent cohorts (two-sam-
ples), with sample size 10 000. We performed linear regression of Y1

and Y2 on the 50 IVs to obtain the summary statistics of the IVs. To
save computational time, we performed the linear regression by
including all IVs in the regression model. Therefore, the correlation
q was estimated by the residuals of Y1 and Y2 in the one-sample ana-
lysis. We examined the performance of IMRP for one-sample be-
cause it is common that only summary statistics of large GWAS
from consortium studies are available in practice (Franceschini
et al., 2013; Liang et al., 2017), as well as for two-samples. IMRP
can be applied to analyze different traits in GWAS containing over-
lapping or related samples.

2.4 Colocalization simulation
We simulated two variants at a locus by varying LD r2 values (0.3,
0.5 and 0.7). Three continuous phenotype models were simulated,
(i) mediation: one genetic variant directly contributed to exposure
but did not directly contribute to outcome; (ii) pleiotropy: one genet-
ic variant directly contributed to both exposure and outcome; and
(iii) colocalization: one genetic variant directly contributed to expos-
ure and the other genetic variant directly contributed to outcome.
We set the causal effect b to be 0.2, and the trait correlation to be
0.25, 0.5 and 0.75. The sample sizes for both exposure and outcome
were 4000, with 0%, 50% and 100% (complete) overlapped
samples.

3 Results

3.1 Power and type I error for detecting pleiotropic

variants
Table 1 compares the type I error rates of IMRP and MR-PRESSO
for detecting pleiotropic variants when true causal effects were 0.0
and 0.1, and percentages of pleiotropic variants were 0.0%, 4%,
50% and 90%, respectively. Additional comparisons were in
Supplementary Tables S1–S4. We examined the case when there
were no pleiotropic variants. When two traits were simulated in the
same cohort (one-sample), IMRP had a reasonable type I error rate
for the global test SS2

GT as well as for testing an individual variant by
Tpleio (Table 1 and Supplementary Tables S1 and S3). In contrast,
the type I error rates of the global test and individual variant test of

MR-PRESSO were conservative, especially when causal effect b
increased. When two traits were simulated in two independent
cohorts (two-samples), the IMRP analysis had reasonable type I
error rates. However, the global test of MR-PRESSO had slightly
inflated type I error rates.

The global tests of IMRP and MR-PRESSO for detecting pleio-
tropic variants had similar power (Table 1 and Supplementary
Tables S1–S4). However, the power of the global test for MR-
PRESSO decreased when the causal effect increased but not for
IMRP in the one-sample case (Supplementary Table S1). IMRP
detected a higher average number of true pleiotropic variants and
lower average number of false pleiotropic variants than MR-
PRESSO when InSIDE assumption was valid (Table 1 and
Supplementary Tables S1 and S3). When InSIDE assumption was in-
valid, MR-PRESSO detected a higher average number of true pleio-
tropic variants but also had a higher average number of false
pleiotropic variants than IMRP (Table 1 and Supplementary Tables
S2 and S4).

3.2 Causal effect estimates
Since IMRP is an iterative approach and the causal effect b can be
estimated when testing for pleiotropy, we compared the causal esti-
mates of IMRP with IVW, MR-Egger, MR-PRESSO and GSMR
under a variety of true causal effects and IVs (Table 2, and more
model parameter scenarios in Supplementary Tables S5–S8). When
pleiotropic variants had balanced distribution and the InSIDE as-
sumption was valid, IVW, IMRP, MR-PRESSO and GSMR had un-
biased causal estimates while MR-Egger had larger bias with larger
standard error than others for all the model parameters that we
examined (Table 2 and Supplementary Tables S5 and S7). When
InSIDE assumption was valid and pleiotropic variants was positively
distributed, MR-Egger had the smallest bias, followed by IMRP,
and IVW, MR-PRESSO and GSMR had the largest but similar bias
for either one-sample or two-sample analysis (Table 2 and
Supplementary Tables S5 and S7). When InSIDE assumption was in-
valid and balanced pleiotropy was present, IMRP had smaller bias
than IVW, MR-PRESSO and GSMR (Table 2 and Supplementary
Tables S6 and S8). In the presence of positive pleiotropy, IMRP,
IVW, MR-PRESSO and GSMR had similar levels of bias and MR-
Egger had the least bias. In terms of type I error, IMRP maintained a
better control of type I error rates than MR-PRESSO, IVW and
GSMR when InSIDE was invalid (Supplementary Table S9). Of
note, MR-Egger had the best control of type I error rates when the
percentage of pleiotropic variants was above 50%. However, IMRP
better maintained power than MR-Egger (Supplementary Tables S6
and S8). Finally, we compared the computational speed between
IMRP and MR-PRESSO. In general, IMRP was three orders faster
than the simulation-based MR-PRESSO. For example, with 50 IVs,
the IMRP analysis required 0.015 s while MR-PRESSO required
22.6 s in the HPC cluster at Case Western Reserve University.

3.3 Pleiotropy and colocalization
We extended the pleiotropy test Tpleio of single genetic variant to
Spleio for multiple variants at a locus (see Section 2). We examined
the type I error and power of Spleio for testing pleiotropy or colocali-
zation when two variants were tested at a locus by assuming a
known causal effect b. We compared the performance of Spleio with
that of Tpleio using the simulated data. The statistic Spleio is distrib-
uted as a v2 with two degree of freedom. Figures 2 and 3 present
type I error and power at a significance level a¼0.05 for testing me-
diation against pleiotropy or colocalization for a variety of trait cor-
relation q and LD coefficient r2. When mediation was present, we
observed that Tpleio had a reasonable type I error and Spleio was con-
servative. When pleiotropy was true, Tpleio had stable power regard-
less of the trait correlation. The LD between two variants did not
affect the power, which was reasonable since the second variant did
not contribute to Tpleio. However, the power of Tpleio dropped sub-
stantially when colocalization was present (Fig. 2, the rightest
panel). In comparison, the power of Spleio was stable for both
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Table 1. Comparisons of power and type I error rates for pleiotropy detection for IMRP and MR-PRESSO (1000 replicates, 50 IVs)

TP PPV (%) b GPTP

IMRP

ANTPV

IMRP

ANFPV

IMRP

GPTP

MR_PRESSO

ANTPV

MR_PRESSO

ANFPV

MR_PRESSO

One-sample and InSIDE assumption is valid

0 0 0.055 — 0.05 0.064 — 0.026

0 0.1 0.049 — 0.062 0.011 — 0.009

B 4 0 0.997 1.978 0.048 0.997 1.972 0.114

4 0.1 0.997 1.976 0.053 0.993 1.963 0.068

50 0 1.00 23.876 1.554 1.00 24.541 0.327

50 0.1 1.00 24.055 1.177 1.00 24.429 0.191

90 0 0.998 32.838 2.564 1.00 43.779 0.131

90 0.1 1.00 33.259 2.531 1.00 43.445 0.082

P 4 0 0.995 1.981 0.096 0.996 1.972 0.157

4 0.1 0.997 1.97 0.053 0.991 1.947 0.08

50 0 1.00 21.48 3.363 1.00 14.607 14.1

50 0.1 1.00 21.37 3.429 1.00 13.734 12.466

90 0 1.00 24.32 2.438 1.00 7.045 4.862

90 0.1 1.00 22.912 2.606 1.00 5.762 4.791

One-sample and InSIDE assumption is invalid

B 4 0 0.893 1.417 0.046 0.896 1.431 0.18

4 0.1 0.888 1.404 0.028 0.854 1.349 0.064

50 0 1 17.514 0.154 1 20.452 6.445

50 0.1 1 17.381 0.105 1 20.142 5.427

90 0 1 29.314 1.266 1 38.591 3.309

90 0.1 1 29.468 1.261 1 38 3.229

P 4 0 1 1.999 0.028 1 1.999 0.23

4 0.1 1 2 0.038 1 1.999 0.163

50 0 1 11.154 21.546 1 19.17 23.793

50 0.1 1 11.351 21.478 1 18.505 23.324

90 0 1 16.058 4.994 1 17.613 5

90 0.1 1 16.385 4.946 1 16.149 5

Two-sample and InSIDE assumption is valid

0 0 0.034 — 0.042 0.036 — 0.015

0 0.1 0.066 — 0.053 0.068 — 0.031

B 4 0 0.995 1.975 0.039 0.997 1.973 0.111

4 0.1 0.997 1.954 0.057 0.997 1.962 0.132

50 0 1.00 24.061 1.217 1.00 24.523 0.307

50 0.1 1.00 23.84 1.163 1.00 24.322 0.272

90 0 0.999 33.064 2.492 1.00 43.697 0.154

90 0.1 0.999 32.048 2.529 1.00 43.347 0.107

P 4 0 0.999 1.97 0.05 0.999 1.97 0.168

4 0.1 0.996 1.949 0.055 0.995 1.941 0.143

50 0 0.999 21.548 3.014 1.00 14.683 14.015

50 0.1 1.00 21.748 2.51 1.00 13.71 12.538

90 0 1.00 25.105 2.263 1.00 7.22 4.852

90 0.1 1.00 23.59 2.288 1.00 6.398 4.774

Two-sample and InSIDE assumption is invalid

B 4 0 0.895 1.422 0.036 0.898 1.421 0.155

4 0.1 0.879 1.398 0.044 0.89 1.398 0.151

50 0 1 17.471 0.087 1 20.459 6.353

50 0.1 1 17.048 0.273 1 20.159 5.433

90 0 1 29.106 1.318 1 38.579 3.282

90 0.1 1 28.546 1.136 1 37.809 3.073

P 4 0 1 1.999 0.031 1 1.998 0.278

4 0.1 1 1.999 0.047 1 1.997 0.258

50 0 1 10.924 20.726 1 19.107 23.658

50 0.1 1 11.443 19.112 1 18.626 23.01

90 0 1 14.738 4.963 1 17.623 4.999

90 0.1 1 13.338 4.985 1 16.402 5

Note: TP, type of pleiotropy; B, balanced; P, positive; PPV, percent of pleiotropic variant; b; true causal effect; GPTP, global pleiotropy test power; ANTPV,

average number of true pleiotropic variants detected; ANFPV, average number of false pleiotropic variants detected. When PPV¼0, GPTP represents the type I

error rate for testing pleiotropy. When PPV>0, GPTP represents the power.
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Table 2. Comparisons of causal effect estimates in MR analysis for IMRP, MR-PRESSO, IVW, MR_EGGER and GSMR (1000 replicates, 50

IVs)

TP PPV (%) b IMRP MR-

PRESSO

IVW ME-Egger GSMR

One-sample and InSIDE assumption is valid

B 4 0 0.000 (0.002) 0.000 (0.002) 0.000 (0.003) 0.002 (0.018) 0.000 (0.002)

4 0.1 0.100 (0.002) 0.100 (0.002) 0.100 (0.003) 0.102 (0.019) 0.100 (0.002)

50 0 0.001 (0.022) 0.000 (0.004) 0.001 (0.010) 0.003 (0.056) 0.000 (0.005)

50 0.1 0.101 (0.020) 0.100 (0.004) 0.101 (0.010) 0.103 (0.054) 0.100 (0.005)

90 0 0.000 (0.065) 0.001 (0.016) 0.001 (0.014) 0.001 (0.073) —

90 0.1 0.100 (0.064) 0.101 (0.017) 0.100 (0.014) 0.101 (0.072) —

P 4 0 0.000 (0.003) 0.000 (0.002) 0.004 (0.002) 0.003 (0.018) 0.000 (0.002)

4 0.1 0.100 (0.002) 0.100 (0.002) 0.104 (0.002) 0.103 (0.018) 0.100 (0.002)

50 0 0.012 (0.031) 0.047 (0.007) 0.048 (0.003) 0.005 (0.042) 0.071 (0.018)

50 0.1 0.113 (0.032) 0.145 (0.006) 0.148 (0.003) 0.105 (0.041) 0.169 (0.018)

90 0 0.047 (0.045) 0.092 (0.005) 0.087 (0.004) 0.002 (0.028) 0.095 (0.006)

90 0.1 0.150 (0.045) 0.192 (0.005) 0.187 (0.004) 0.105 (0.028) 0.195 (0.005)

One-sample and InSIDE assumption is invalid

B 4 0 0 (0.002) 0 (0.002) 0.003 (0.004) 0.009 (0.024) 0 (0.002)

4 0.1 0.1 (0.002) 0.1 (0.002) 0.103 (0.004) 0.108 (0.022) 0.1 (0.002)

50 0 �0.001 (0.01) 0.01 (0.008) 0.033 (0.011) 0.05 (0.063) �0.001 (0.004)

50 0.1 0.099 (0.009) 0.109 (0.008) 0.133 (0.011) 0.15 (0.059) —

90 0 0.026 (0.06) 0.048 (0.025) 0.056 (0.014) 0.049 (0.08) —

90 0.1 0.127 (0.06) 0.15 (0.025) 0.158 (0.013) 0.147 (0.077) —

P 4 0 0 (0.002) 0 (0.002) 0.007 (0.003) 0.016 (0.028) 0 (0.002)

4 0.1 0.1 (0.002) 0.1 (0.002) 0.107 (0.003) 0.117 (0.028) 0.1 (0.002)

50 0 0.119 (0.05) 0.094 (0.011) 0.081 (0.005) 0.092 (0.061) —

50 0.1 0.216 (0.05) 0.193 (0.011) 0.181 (0.006) 0.194 (0.061) —

90 0 0.144 (0.015) 0.142 (0.008) 0.139 (0.006) 0.064 (0.044) 0.15 (0.011)

90 0.1 0.243 (0.019) 0.242 (0.008) 0.239 (0.006) 0.163 (0.048) 0.249 (0.011)

Two-sample and InSIDE assumption is valid

B 4 0 0.000 (0.002) 0.000 (0.002) 0.000 (0.004) 0.000 (0.019) 0.000 (0.002)

4 0.1 0.100 (0.003) 0.100 (0.002) 0.100 (0.004) 0.099 (0.019) 0.100 (0.002)

50 0 �0.001 (0.020) 0.000 (0.004) 0.000 (0.010) �0.003 (0.055) 0.000 (0.005)

50 0.1 0.099 (0.020) 0.100 (0.005) 0.100 (0.010) 0.100 (0.056) 0.100 (0.007)

90 0 0.001 (0.064) 0.000 (0.016) �0.001 (0.014) 0.001 (0.074) —

90 0.1 0.100 (0.065) 0.101 (0.017) 0.100 (0.014) 0.100 (0.076) —

P 4 0 0.000 (0.002) 0.000 (0.002) 0.004 (0.002) 0.001 (0.018) 0.000 (0.002)

4 0.1 0.100 (0.003) 0.100 (0.002) 0.104 (0.002) 0.099 (0.018) 0.100 (0.002)

50 0 0.012 (0.029) 0.046 (0.006) 0.048 (0.003) 0.002 (0.040) 0.070 (0.018)

50 0.1 0.110 (0.028) 0.146 (0.006) 0.148 (0.003) 0.100 (0.040) 0.167 (0.018)

90 0 0.044 (0.046) 0.092 (0.005) 0.087 (0.004) 0.000 (0.029) 0.095 (0.006)

90 0.1 0.145 (0.047) 0.192 (0.005) 0.187 (0.004) 0.098 (0.029) 0.195 (0.006)

Two-sample and InSIDE assumption is invalid

B 4 0 0 (0.002) 0 (0.002) 0.003 (0.004) 0.007 (0.023) 0 (0.002)

4 0.1 0.1 (0.002) 0.1 (0.002) 0.103 (0.004) 0.106 (0.024) 0.1 (0.002)

50 0 �0.001 (0.009) 0.01 (0.008) 0.033 (0.011) 0.046 (0.059) �0.001 (0.004)

50 0.1 0.099 (0.016) 0.109 (0.008) 0.133 (0.011) 0.143 (0.061) 0.099 (0.004)

90 0 0.028 (0.063) 0.048 (0.026) 0.056 (0.014) 0.047 (0.078) —

90 0.1 0.123 (0.06) 0.148 (0.025) 0.156 (0.014) 0.144 (0.075) —

P 4 0 0 (0.002) 0 (0.002) 0.007 (0.003) 0.015 (0.028) 0 (0.002)

4 0.1 0.1 (0.002) 0.1 (0.002) 0.107 (0.003) 0.113 (0.028) 0.1 (0.002)

50 0 0.115 (0.054) 0.092 (0.011) 0.081 (0.006) 0.089 (0.064) —

50 0.1 0.207 (0.059) 0.191 (0.011) 0.181 (0.005) 0.185 (0.063) —

90 0 0.145 (0.017) 0.142 (0.008) 0.139 (0.007) 0.059 (0.047) 0.149 (0.012)

90 0.1 0.246 (0.015) 0.243 (0.008) 0.239 (0.006) 0.158 (0.047) 0.249 (0.011)

Note: TP, type of pleiotropy; B, balanced; P, positive; PPV, percent of pleiotropic variant; b; true causal effect.

The values in parenthesis are the corresponding standard errors. ‘—’, GSMR did not work because of high percent of pleiotropic IVs.
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pleiotropy and colocalization (Fig. 3). Taken together, Spleio has sig-
nificant advantage over Tpleio when analyzing multiple variants.

3.4 Data analysis
We applied IMRP, MR-PRESSO, IVW, MR-Egger, GSMR and
MRmix to test for causal effect across a variety of exposures and
health outcomes using publicly available summary statistics from
large GWASs, which were analyzed by Qi and Chatterjee (2019).
For each pair of traits, we selected genetic variants with exposure
associated P-values <5�10�8. We ensured that both traits have the
same effect allele and flipped the sign of the effect sizes for one trait
when the effect allele was inconsistent. We pruned these variants
using the software Plink (Purcell et al., 2007) based on 500 kb win-
dow size to identify independent variants as the IVs in MR analysis.
For IMRP, the correlation q was estimated between the standardized
effect sizes of the exposure and the outcome after excluding the
SNPs with the exposure associated P-values <0.01 using the GWAS
summary statistics, as suggested in our previous studies (Park et al.,
2016; Zhu et al., 2015). The number of IVs is presented in Table 2.
Overall, the causal effects estimated by IMRP were similar to those
estimated by MRmix and GSMR (Table 3). IMRP detected a sub-
stantial proportion of the IVs with significant pleiotropic effects
(Table 3 and Supplementary Table S10). All the methods consistent-
ly detected significant causal roles of body mass index (BMI), systol-
ic blood pressure (SBP), diastolic blood pressure (DBP) and LDL-C
on the risk of coronary artery diseases (CAD). The estimated odds
ratio (OR) for CAD ranged from 1.57 to 1.64 per SD unit increase
in LDL. The IMRP, IVW, MR-PRESSO and GSMR analyses
detected protective effect of high-density lipoprotein cholesterol
(HDL-C) on CAD while MRmix and MR-Egger did not. IMRP esti-
mated OR for CAD was 0.93 per SD unit increase in HDL, and
GSMR had the largest and most significant estimated OR. When we
pruned the IVs using Plink based on 1 Mb window size, the MRmix
estimate became significant while MR-Egger did not, and the
GSMR estimated OR was 0.65, the smallest and most significant
one (Table 3). In comparison, the IMRP estimated OR was stable.
Since colocalization may bias the causal effect estimate, we per-
formed Spleio analysis for all the 87 IVs and identified 48 of them

showing colocalization or pleiotropy evidence (Table 2 and
Supplementary Table S11). After excluding the IVs with colocaliza-
tion or pleiotropy evidence, the OR estimates were similar for
IMRP, IVW, MR-PRESSO and GSMR. However, MRmix had
smallest OR estimate but with large standard error, possibly due to
small number of IVs (48). All the methods had similar OR estimate
of triglycerides (TGs) on CAD.

All the methods detected a significant protective causal effect of
BMI on the risk of breast cancer (BC) with estimated OR ranged
from 0.60 to 0.93, except that the MR-Egger estimate was not sig-
nificant. MR-PRESSO failed to perform MR analysis for BMI and
height because of the large numbers of IVs. The IMRP, IVW, MR-
PRESSO and GSMR analyses detected inverse causal effect of HDL-
C on the risk of BC with OR ranged from 0.90 to 0.94 per SD unit
increase in HDL-C, while both MRmix and IVW detected signifi-
cant causal relationship of LDL-C and BC but in opposite causal
directions. IMRP, MRmix, MR-Egger, MR-PRESSO and GSMR
did not detect a causal relationship between height, TG and age at
menarche with BC, and significant causal evidence of height, LDL-C
on BC was suggested by IVW analysis. Interestingly, MRmix also
suggested significant causal relationship of LDL-C on BC. All meth-
ods except for MR-Egger detected a significant protective causal ef-
fect of BMI and educational attendance (EA) on the risk of major
depressive disorder (MDD). The estimated OR ranged from 1.18 to
1.4 for BMI and 0.71 to 0.84 for EA. The MR-Egger analysis did
not detect causal effect of BMI and EA on MDD. Finally, we found
that IMRP was near three orders faster than MRMix in our HPC
cluster at Case Western Reserve University. As demonstrated in the
HDL-CAD analysis with 87 IVs, IMRP took 0.016 s in comparing
with 15.394 s by MRMix, respectively.

4 Discussion

We presented a computationally efficient iterative approach (IMRP)
for simultaneously performing MR analysis and detecting pleiotrop-
ic variants using GWAS summary statistics. IMRP iteratively
searches for invalid IVs with pleiotropy effects on both exposure
and outcome, and then estimates the causal effect of exposure on
outcome after removing invalid IVs. IMRP is able to analyze

Fig. 2. Type I error and power of Tpleio when testing pleiotropy/colocalization

against mediation using two variants at a locus. Type I error rate and power were

evaluated at 0.05 significance level based on 1000 replicates. (A–C) Two traits have

complete overlapped samples and the LD between two variants are r2¼0.7, 0.5 and

0.3, respectively; (D–E) similar to (A–C) but with 50% overlapped samples; and

(G–I) similar to (A–C) but with 0% overlapped samples (two-sample model). q rep-

resents trait correlation

Fig. 3. Type I error and power of Spleio when testing pleiotropy/colocalization

against mediation using two variants at a locus. Type I error rate and power were

evaluated at 0.05 significance level based on 1000 replications. (A–C) Two traits

have complete overlapped samples and the LD between two variants are r2¼0.7, 0.5

and 0.3, respectively; (D–E) similar to (A–C) but with 50% overlapped samples;

and (G–I) similar to (A–C) but with 0% overlapped samples (two-sample model).

q represents trait correlation
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summary statistics from either overlapped or non-overlapped data
and is computationally efficient as it directly tests for pleiotropy
from mediation without incurring simulations. A recently developed
MR analysis method, MR-PRESSO, also detects pleiotropy and esti-
mates the causality after removing the invalid IVs. MR-PRESSO
constructs a pleiotropic test based on time-consuming simulations.
To compare the performance of IMRP and MR-PRESSO, we per-
formed simulations under a variety of causal models by allowing dif-
ferent genetic contributions to exposure and outcome. In most
situations, IMRP had better power to detect IVs with pleiotropic ef-
fect when InSIDE was valid (Table 1 and Supplementary Tables S1–
S4) and hence was less biased in estimating causal effect than MR-
PRESSO (Table 2 and Supplementary Tables S5–S8). When InSIDE
was invalid, MR-PRESSO detected more pleiotropic variants but
also increased false positive rates. In practice, we observed that
IMRP and MR-PRESSO detected similar number of pleiotropic var-
iants, although slightly more pleiotropic variants for IMRP than
MR-PRESSO were observed in some cases, which is consistent with
the simulations. IMRP was three order faster than MR-PRESSO or
MRMix. The computational requirement on MR-PRESSO will de-
teriorate rapidly when the number of IVs increases, as we observed
in the real data BMI and height analysis, but it has no effect on
IMRP. We observed that the IMRP analysis usually needed <10 iter-
ations. IMRP provides the global test statistic SS2

GT that follows a v2
distribution with degrees of freedom equaling to the number of IVs
reduced by 1. SS2

GT is able to assess whether there are remaining
pleiotropic variants after excluding variants with significant pleio-
tropic effects. If so, further exclusion of potential invalid IVs can be
applied, as demonstrated in the real data analysis, where we
detected many IVs with pleiotropic effects (Supplementary Table
S10) after correcting for the number of IVs in each of exposure-
outcome analysis. However, the global test statistic SS2

GT was often
significant even after excluding variants with significant pleiotropic
evidence, suggesting that a large number of pleiotropic variants still
exist. The global test statistic SS2

GT was no long significant when we
further excluded all IVs with pleiotropic TPleio test P-value <0.05 in
all the real data analysis.

The pleiotropy test TPleio for single variant is extended to SPleio

for multiple variants at a locus. Our simulations demonstrated that
SPleio is more powerful for detecting colocalization than TPleio (Figs 2
and 3). In HDL-C and CAD analysis, we observed many variants
with colocalization or pleiotropic evidence (Supplementary Table
S11). The SPleio is able to detect pleiotropy effects contributed by
multiple causal variants, providing that the causal effect is known.
In MR analysis, when a genetic variant in TPleio test only shows
nominal significance in pleiotropic test, we can further apply SPleio

and multiple variants at the same locus to verify if the variant has
evidence of pleiotropy or colocalization, as we did in real data ana-
lysis. Thus, the Spleio statistic should be applied with MR analysis to-
gether for detecting colocalization.

When ZEMPA assumption is not satisfied, IMRP may remove
the valid IVs in its iterations, resulting in bias or loss of power.
IMRP shares similarity with GSMR but also has substantial differ-
ences. IMRP uses all independent significant variants associated
with exposure in the MR analysis and automatically determines
which variants to be removed in an iterative way. In comparison,
GSMR uses causal estimates of top variants in the pleiotropic test.
In particular, GSMR chooses the SNP that shows the strongest asso-
ciation with the exposure in the third quantile of the distribution.
This selection is subjective, as suggested by Hemani et al. (2018). In
our simulations, we observed that the performance of GSMR was
similar to MR-PRESSO and IVW. When the number of IVs was
<50 and 50% or 90% IVs were pleiotropic variants, GSMR often
failed to estimate the causal effects. IMRP uses the MR-Egger esti-
mate as its initial estimate, followed by IVW, to take the advantages
of MR-Egger, which is less biased when pleiotropy is present or
InSIDE assumption is not valid (Bowden et al., 2015), and IVW,
which has less uncertainty. In theory, MR-Egger estimate is not con-
sistent when InSIDE assumption is violated. However, our simula-
tions demonstrated that the causal effect estimate of MR-Egger is
less biased but with larger standard error than that of IVW when the

InSIDE assumption is violated (Table 2 and Supplementary Tables
S6 and S8). This is consistent with what observed in the original
MR-Egger study (Bowden et al., 2015). When InSIDE assumption is
violated, a genetic IV can affect both exposure and outcome through
a confounder, which is similar to a pleiotropic variant. The differ-
ence is that the effects on the exposure and outcome can be inde-
pendent for a pleiotropic variant but dependent for a variant
violating InSIDE. Thus, the intercept of the MR-Egger regression
will still capture some of the violation and therefore reduces the bias
in causal estimate, motivating us to take the MR-Egger estimate as
the initial value. In comparison, when we took the initial estimate
from IVW, the IMRP results were either similar or worse than when
taking the initial estimate from MR-Egger (Supplementary Tables
S5–S8). Therefore, we suggest taking the MR-Egger estimate as the
initial causal estimate should be the first choice in the IMRP analysis
in practice. In real data analysis, we also observed that taking MR-
Egger estimate as the initial value will preserve power and reduce
bias, which can be attributed to a large number of IVs and low pro-
portion of pleiotropic IVs (<10%). When the number of IVs is large
and the proportion of pleiotropic variants is low, regression noise
can be reduced by dropping pleiotropic variants, while a good num-
ber of remained IVs can provide the adequate sample size in a
weighted regression model to achieve satisfactory power for IMRP.
This was demonstrated by our results, which showed that IMRP
identified similar or more significant causal effects than IVW and
MR-PRESSO (e.g. the causal effect estimates of BMI, SBP, DBP,
LDL, TG on CAD and BMI and EA on MDD, Table 3). In some
cases, GSMR had the most significant results, which may be at least
partially due to potential bias. For example, no direct causal contri-
bution of HDL to CAD was shown in clinical trials (Barter and
Genest, 2019), but GSMR suggested a strong causal protective
effect.

The proposed pleiotropic tests depend on the selection of IVs in
estimating the causal effects. To reduce this selection bias, GSMR
takes the SNP that shows the strongest association with the expos-
ure in the third quantile of the distribution (Zhu et al., 2018).
Currently IMRP takes all the SNPs significantly associated with the
exposure in GWAS studies. It is possible that the most significant ex-
posure associated variants will be more likely show pleiotropic evi-
dence in the pleiotropic tests because of the ‘winner’s cures’. In this
case, the procedure of GSMR can be easily adopted in the initial
causal effect estimation in the IMRP analysis.

We compared IMRP with MRmix, IVW, MR-Egger, MR-
PRESSO and GSMR analysis by reanalyzing the GWAS summary
statistics data analyzed in Qi and Chatterjee (2019). MRmix (Qi
and Chatterjee, 2019) is based on normal-mixture models and ro-
bust against potential model misspecification by relying on an esti-
mating equation approach. IMRP has similar performance as
MRmix in estimating causal effects although notable different
results were also observed (Table 3). More recently, the horizontal
pleiotropy score (HOPS) was developed for detecting horizontal
pleiotropy (Jordan et al., 2019). However, the statistic of HOPS is
not able to maintain type I error rate in testing horizontal plei-
otropy, which warrants further investigation.

Many large-scale population studies reported an inverse relation-
ship between HDL-C and CAD (Emerging Risk Factors
Collaboration et al., 2009; Prospective Studies Collaboration et al.,
2007). A MR analysis using 15 genetic variants as IVs did not sug-
gest causal relationship between HDL-C and myocardial infarction
(Voight et al., 2012), which was consistent with the evidence from a
clinical trial study (Barter and Genest, 2019). The complex relation-
ship between HDL-C and CAD leads to a debate over whether
HDL-C is able to predict the risk of atherosclerotic cardiovascular
disease (Barter and Genest, 2019). When using the 15 genetic var-
iants from Voight et al. (2012), IMRP did not detect significant
causal effect (P¼0.58). However, when 143 IVs were used, IMRP,
IVW, MR-PRESSO and GSMR detected a protective effect of HDL-
C on the risk of CAD (OR 0.93 per SD unit increase in HDL) while
MRmix and MR-Egger did not. Interestingly, reducing the number
of IVs by pruning the IVs on 1 Mb window size, IMRP, IVW,
MRmix, MR-PRESSO and GSMR all detected significant causal
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effect of HDL on CAD (Table 2) (OR 0.16–0.66 per SD unit in-
crease in HDL), indicating the causal effect estimate is sensitive to
the genetic IVs in MR analysis for MRmix. Applying Spleio identified
additional IVs with either pleiotropy or colocalization evidence. After
excluding these variants, IMRP, IVW, MR-PRESSO and GSMR still
detected causal effect evidence but MRmix and MR-Egger did not.
Overall, IMRP had less significant causal estimate of HDL-C on CAD
than IVW, MR-PRESSO and GSMR, suggesting IMRP is less biased
than IVW, MR-PRESSO and GSMR. Our results, together with
others (Holmes et al., 2015; Voight et al., 2012), may suggest that the
causal role for HDL-C on CVD risk is weak if it exists. IMRP identi-
fied risk effect of TGs (OR 1.27) on CAD while MRmix did not.
Population-based epidemiology studies consistently suggested that TG
level predicts cardiovascular risk (Harchaoui et al., 2009; Singh and
Singh, 2016). The recent large clinical trial REDUCE-IT showed that
reducing TG levels decreased cardiovascular death (Bhatt et al.,
2019), which was consistent with our IMRP analysis. Since HDL-C
and TG are negatively correlated and genetic variants contribute to
both traits, conditional on HDL-C, the genetic variants can still affect
CAD by the mediation of TG. Therefore, the causal effect estimation
of the MR analysis by excluding pleiotropy variants for HDL-C and
CAD can still be biased (Zhu, 2020).

A consistent negative causal effect of BMI on the risk of BC was
observed by IMRP and other methods (Table 2). The inferred nega-
tive causal relationship between BMI and BC seems inconsistent
with positive association observed in epidemiologic studies.
Previous MR analysis using fewer IVs revealed the inverse causal re-
lationship between BMI and BC (Guo et al., 2016; Qi and
Chatterjee, 2019), although the effect size of IMRP was attenuated
(OR 0.93). IMRP, IVW, MR-PRESSO and GSMR identified a sig-
nificant inverse causal effect of HDL-C on the risk of BC while
MRmix and IVW detected an inverse causal relationship of LDL-C
on BC, which are consistent with the direct associations observed in
epidemiologic studies (Cedo et al., 2019). We did not observe the
causal relationship between age at menarche and BC suggested by
the previous MRmix analysis (Qi and Chatterjee, 2019), potentially
due to different number of IVs used. IMRP detected a significant
causal risk effect of BMI but a protective effect of EA on MDD, so
did MRmix, IVW and GSMR. However, MR-PRESSO was not able
to handle the large numbers of IVs for BMI and height.

Following CP association approaches that focus on detecting
overall association evidence of a variant with multiple traits, IMRP
is able to differentiate whether CP association (Zhu et al., 2015) is
caused by mediation or pleiotropic effect, which provides a better
understanding of causal relationship between two correlated traits.
Recent advances in estimating shared genetic correlations (Bulik-
Sullivan et al., 2015; Lee et al., 2012; Loh et al., 2015; Visscher
et al., 2014) provide insights into the genetic architecture among
correlated traits. However, these methods provide limited informa-
tion about how individual variants affect multiple traits, a gap that
can be filled by the IMRP analysis.

IMRP identified many pleiotropic variants among all the pairs of
exposure and outcome in the real data analysis (Table 2 and
Supplementary Table S10), consistent with a recent observation that
many disease-associated variants identified from GWASs have
effects on multiple traits (Gratten and Visscher, 2016; Watanabe
et al., 2019). It is then important to identify the IVs with pleiotropic
effects in performing MR analysis.

In conclusion, IMRP is a novel efficient tool for performing MR
analysis and identifying pleiotropic variants using summary statistics
from GWAS. In addition, IMRP is able to identify colocalization for
multiple variants in a locus. Through both simulations and real data
applications, we demonstrated that IMRP has better trade-off be-
tween bias and variance than alternatives and is a robust and power-
ful tool for understanding causal relationship among correlated
traits using genetic instruments.
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