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Abstract

Motivation: Although genome-wide association studies (GWASs) have identified thousands of variants for various
traits, the causal variants and the mechanisms underlying the significant loci are largely unknown. In this study, we
aim to predict non-coding variants that may functionally affect translation initiation through long-range chromatin
interaction.

Results: By incorporating the Hi-C data, we propose a novel and powerful deep learning model of artificial intelli-
gence to classify interacting and non-interacting fragment pairs and predict the functional effects of sequence alter-
ation of single nucleotide on chromatin interaction and thus on gene expression. The changes in chromatin inter-
action probability between the reference sequence and the altered sequence reflect the degree of functional impact
for the variant. The model was effective and efficient with the classification of interacting and non-interacting frag-
ment pairs. The predicted causal SNPs that had a larger impact on chromatin interaction were more likely to be iden-
tified by GWAS and eQTL analyses. We demonstrate that an integrative approach combining artificial intelligence—
deep learning with high throughput experimental evidence of chromatin interaction leads to prioritizing the function-
al variants in disease- and phenotype-related loci and thus will greatly expedite uncover of the biological mechanism
underlying the association identified in genomic studies.

Availability and implementation: Source code used in data preparing and model training is available at the GitHub
website (https://github.com/biocai/DeepHiC).

Contact: hdeng2@tulane.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWASs) are designed to study
the associations between genetic variants and diseases. GWASs fa-
cilitate studies in complex-trait genetics and the biology of diseases.
Thousands of variants which are assumed to tag one or a few causal
variants have been identified for various diseases and traits (Welter
et al., 2013). However, most of these variants (93%) are located in
the non-coding regions including introns, long terminal repeats and
intergenic regions (Maurano et al., 2012). The major challenge of
GWAS lies in interpreting the involvement of these non-coding var-
iants in the etiology of diseases.

Many methods have been proposed to tackle this problem by
combining other omics data. Summary data-based Mendelian

randomization integrates independent GWAS summary statistics
data with expression quantitative trait loci (eQTL) data to identify
potential functional genes (Zhu et al., 2016). Similarly, a Bayesian
analysis approach, COLOC, colocalizes GWAS and eQTL signals at
known GWAS risk loci (Giambartolomei et al., 2014) and combines
the DNA methylation quantitative trait loci (mQTL) signals
(Giambartolomei et al., 2018). Regulatory information, including
CHIP-seq peaks, DNase I hypersensitivity peaks, DNase I foot-
prints, ATAC-seq, conserved motifs, eQTL and transcription factor
(TF) binding sites, was used to suggest functional hypotheses for
variants associated with diseases (Boyle et al., 2012; Bryois et al.,
2018). Other studies used chromatin interaction information to ex-
plain GWAS significant variants through predicting the target genes
(Chen and Tian, 2016; Lu et al., 2013).
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DNA looping is a widely held model that posits that enhancers
can be brought proximately to the promoter of the target genes by
bending DNA structure via transcription factor binding and medi-
ation of cohesin and mediators (Mossing and Record, 1986). This
process of DNA looping facilitates the regulation of gene expression.
The structure of chromatin interaction can be captured at the level
of a single locus (3C, 4C), a set of loci (5C, ChIA-PET and Capture-
C) and genome-wide (Hi-C) (Ay and Noble, 2015). The mutations
on enhancers may disturb normal cell activity and influence patho-
genesis of diseases, for example, aniridia (Kleinjan, 2001) and
Hirschsprung’s disease (Emison et al., 2005).

Previous studies have used chromatin interaction information to
understand the mechanisms underlying the non-coding variants. For
example, rs11610206, located on the enhancer of VDR, is associ-
ated with Alzheimer’s disease (Yu et al., 2011). There is an inter-
action between the enhancer region and the VDR gene region. This
SNP influences the function of the enhancer, which then affects the
expression of VDR and leads to Alzheimer’s disease (Lu et al.,
2013). The hypothesis is that the non-coding variant may disturb
the interaction between these two regions.

Prioritizing candidate variants and elucidating the function of
non-coding variants is challenging. Many computational tools have
been developed to assess the functional impact of non-coding var-
iants (Nishizaki and Boyle, 2017). The general framework is to build
predictive models that learn the rules of combining genome sequen-
ces, multiple genomic annotations, functional attributes and evolu-
tionary features to differentiate disease-related non-coding variants
from neutral ones (Liu et al., 2019). Deep learning (an artificial in-
telligence approach) is a state-of-the-art technology that has been
widely used in genomics (Zou et al., 2019). Several studies combine
deep learning with regulatory information to predict chromatin
effects of sequence alterations with single-nucleotide sensitivity
(Wang et al., 2018; Zhou and Troyanskaya, 2015). For example,
Deep learning-based Functional impact of non-coding variants
evaluator (DeFine) combines a deep learning approach with large-
scale TF ChIP-seq data to predict the TF binding intensities to given
DNA sequences (Wang et al., 2018). The changes in TF binding
intensities between the reference sequence and the alternative se-
quence reflect the functional impact of the variant on TF binding
(Wang et al., 2018). This suggests that well-trained deep learning
models can be used to reveal, illuminate and prioritize potential
functional variants.

In this study, combining the Hi-C data, we for the first time de-
velop a deep learning model (DeepHiC) to predict the effects of se-
quence alteration of single nucleotide on chromatin interaction.
Further, we demonstrate that it is useful to determine whether a
non-coding variant has a functional impact and identify the poten-
tial target gene affected by this variant.

2 Materials and methods

2.1 Hi-C data
Although Capture-C enables us to obtain cis interactions at hun-
dreds of selected loci at high resolution (Hughes et al., 2014), Hi-C
which captures the genome-wide interactions is more suitable to
study features of interacted sequences. A previous study suggested
that local chromatin interaction domains and topological domains
are stable across different cell types (Dixon et al., 2012). Hi-C data
generated from three representative cell lines (a human embryonic
stem cell line, a human lymphoblastoid cell line and a human eryth-
roleukemic cell line) were used in this study. Hi-C data generated
from human embryonic stem cells (hESC) at a resolution of 5 kb
were downloaded from the Gene Expression Omnibus (GEO) data-
base (accession number GSE52457) (Dixon et al., 2015). Hi-C data
generated from GM12878 (a human lymphoblastoid cell line) and
K562 (a human erythroleukemic cell line) at a resolution of 5 kb
were downloaded from the GEO database (accession number
GSE63525) (Rao et al., 2014). In the original paper, the authors
aggregated the results of nine biological replicate experiments of
GM12878 cell line to generate a Hi-C map that reached the

resolution of 950 bp. To match the resolution in other cell lines, we
only used two replication results of GM12878 cell line (accession
numbers GSM1551584 and GSM1551585). All the raw sequencing
data of the two replications of these three cell lines were
downloaded.

2.2 Whole genome sequencing data and processing
The whole genome sequencing reads of hESC were downloaded
from the GEO database (accession number GSE69471) (Mertes
et al., 2016). The whole genome sequencing reads for the GM12878
cell lines were downloaded from ftp://ftp-trace.ncbi.nlm.nih.gov/
giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_300x/
RMNISTHS_30xdownsample.bam. The K562 whole-genome
sequencing reads were downloaded from https://www.ncbi.nlm.nih.
gov/sra/SRX118400. The raw short reads were first cleaned to re-
move adaptor sequences and truncate low quality reads using
Trimmomatic (Bolger et al., 2014). Burrows–Wheeler Aligner
(BWA) was used to map all the cleaned short reads to the reference
genome with default parameters (Li and Durbin, 2009). The Variant
Call Format (VCF) file was generated using GATK after removing
polymerase chain reaction duplicates (Van der Auwera et al., 2013).
The reference bases at variation sites were replaced to generate cell
type-specific genome sequences using GATK (Van der Auwera et al.,
2013). The cell type-specific genome sequences were used in the fol-
lowing steps to correct the cell type-specific variants (Wang et al.,
2018).

2.3 Processing Hi-C data
We analyzed the raw sequencing reads of the two replications of
hESC using HOMER (Heinz et al., 2010). The pair-end reads were
separately aligned to the cell type-specific genome using Subread
(Liao et al., 2013). HOMER taking SAM file as input only removes
reads if their ends form a self-ligation with adjacent restriction sites
and removes reads from the selected bins (for examples, 10 kb) that
contain more than 53 the average number of reads (Heinz et al.,
2010). HOMER can identify significant interactions by searching
for pairs of loci that have a greater number of Hi-C reads than
expected by chance (Heinz et al., 2010). We used HOMER to iden-
tify significant interactions for each replication using different bin
sizes (10, 40 and 100 kb). We also used HOMER to run principal
component analysis (PCA) of Hi-C data. The first principal compo-
nent (PC1) was used to classify each region of the chromosome into
active (‘A’) and inactive (‘B’) compartments. Compartment A is
gene-rich and has relatively high GC content, while compartment B
is gene desert.

2.4 Data preparation
Since the sequence data produced by Hi-C are noisy, Hi-C may cap-
ture random chromatin interactions. The significant interactions
presented in both replications with FDR<0.05 were considered as
positive, and the other bin pairs as negative. Since the interactions
between the same compartment were overestimated, we balanced
the number of interaction pairs within compartment A, the number
of interaction pairs within compartment B and the number of inter-
action pairs between different compartments. The distribution of
distances between selected positive interaction pairs was shown in
Supplementary Figure S1. For each positive interaction pairs in the
positive set, a negative pair with matched GC% content and com-
partment was included in the negative set. Because there was only a
small fraction of inter-chromosomal chromatin interaction pairs
which was too rare to train a deep learning model, we did not con-
sider inter-chromosomal chromatin interactions any further
(Supplementary Fig. S2). Finally, we generated 95 849 intra-
chromosomal interactions of 10 kb bin pairs, 654 156 intra-
chromosomal interactions of 40 kb bin pairs and 63 015 intra-
chromosomal interactions of 100 kb bin pairs. The sequences of 10,
40 and 100 kb bins generated from the hESC genome were extracted
from the hESC genome sequences using SAMtools (Li et al., 2009).
As DNA is a double helix, both the forward sequence and the re-
verse sequence were considered. Nucleotides A, T, C and G are
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encoded as [1,0,0,0], [0,1,0,0], [0,0,1,0] and [0,0,0,1] (Zou et al.,
2019). The sequences of each fragment pair were merged and con-
verted to a one-hot matrix with 10 000 rows for 10 kb bins (40 000
rows for 40 kb bins and 100 000 rows for 100 kb) and 16 columns
encoding 4 nucleotides. The matrix can be viewed as a gray image
and used as the input to feed to the deep learning model. We com-
pared with the models taking different length of bin pairs (10–
100 kb) as input.

2.5 Overview of the DeepHiC deep learning model
DeepHiC employed the convolutional neural network (CNN) to
understand the sequence feature that characterizes real interactions.
The overall architecture of DeepHiC is shown inFigure 1B. The
CNN model consisted of convolution layers, pooling layers, fully
connected layers and a SoftMax layer. The dropout layer with a
probability of 0.5 was added between two fully connected layers to
improve the generalization capability of the model and avoid over-
fitting (Srivastava et al., 2014).

2.6 Training of DeepHiC
The whole dataset generated from hESC Hi-C data was separated
into training, validation and testing with a ratio of 3:1:1. The valid-
ation dataset was used in the grid search progress to determine the
hyper-parameters in the deep learning model during training. The
following hyper-parameters were applied: (batch size was 32, the fil-
ter was a 24-by-1 matrix, the number of filters in each convolution
layer were 64, 64, 64, 128, 128 and 128, the number nodes in the
full connected layers was 2048, learning rate was 0.0001). In the
supervised training step, CNN learned features that help to differen-
tiate interacting fragment pairs from randomly selected fragment
pairs. We trained the deep learning model with a mini-batch sto-
chastic gradient descent algorithm (Adam) (Kingma and Ba, 2015).
During each mini-batch training, the parameters in the model were
updated based on a gradient calculated using backpropagation.
Training was run for 30 epochs. During each epoch of training, the
loss in the validation set was calculated and monitored. When the
loss in the validation dataset did not decrease in five epochs, the
training was stopped, and the model weights from the epoch with
the smallest loss in the validation dataset were saved. The training
and testing procedures were implemented on an Ubuntu 18.04 com-
puter with a NVIDIA GTX 2080Ti 11 Gb GPU. We used python li-
brary Keras 2.3 with Tensorflow backend (https://keras.io) for data
preprocessing and CNN model training and testing.

2.7 Prediction
There currently remains no database of causal SNPs affecting the
target gene through chromatin interaction. We assumed those SNPs
changing the interaction state as putatively causal SNPs. In the

inference step, the trained model predicted the interaction probabil-
ity of the paired fragments with one altered fragment sequence cen-
tered at the variant site (Fig. 1B). The difference between the two
predicted interaction probabilities (YA1 calculated using the refer-
ence allele A1 and YA2 calculated using the other allele A2) was
used to assess the functional impact of the SNP which was defined
as DeepHiC functional score. Non-coding variant dataset was col-
lected from the 1000 Genomes Project phase 3, which comprises
8 251 605 non-coding SNPs. In total, 2 844 552 SNPs from the non-
coding variant dataset were located in the positive bin pairs in the
positive set. We then measured the scores of each non-coding SNP in
the positively interacted bin pairs. To estimate the statistical signifi-
cance of interaction probability difference caused by the alteration
of a single nucleotide, FastPval which computed the empirical P-
value by a two-stage ranking strategy (Li et al., 2010) was used to
calculate the P-value of each absolute DeepHiC functional score.
The direction of the DeepHiC functional score was used to show
which allele was helpful with the interaction (e.g. positive DeepHiC
functional score meant that the reference allele was helpful with the
interaction).

2.8 Enrichment analysis
To check whether the putatively causal SNPs predicted by DeepHiC
were enriched in ClinVar, GWAS, eQTL datasets and CTCF binding
sites, we performed enrichment analysis. ClinVar aggregates infor-
mation about genomic variation and the relationships among human
variations and phenotypes (Landrum et al., 2014). Functional non-
coding variants from ClinVar database (released on 03/09/2019)
were employed in this study. We collected GWAS SNPs identified
by previous studies from the NHGRI-EBI GWAS Catalog (Welter
et al., 2014), publicly available at https://www.ebi.ac.uk/gwas/, and
downloaded on May 16, 2019. We limited our study to the most sig-
nificant associations, eliminating SNPs with P-values larger than the
genome-wide significance (P-value¼5 3 108

2). Westra eQTLs data-
set which were performed in peripheral blood samples of 5311 indi-
viduals were used in this study (Westra et al., 2013). Since CTCF
plays a critical role in chromatin interaction, we also evaluated
whether the putatively causal SNPs were enriched in CTCF binding
sites with the data downloaded from https://github.com/gkichaev/
PAINTOR_V3.0/wiki/2b.-Overlapping-annotations.

3 Results

3.1 Chromatin interaction state was accurately

predicted by deep learning model
We built deep learning models to predict the interaction probability
of bin pairs. The architecture of the deep learning model is shown in

Fig. 1. Overview of DeepHiC method. (A) The workflow of this study. (B) The overall architecture of DeepHiC. The sequences of each fragment pair were merged and con-

verted to a one-hot matrix with 10 000 rows for 10 kb bins. The matrix can be viewed as a gray image and used as the input to feed to the CNN model. (C) DeepHiC function-

al score was defined as the difference between the two predicted interaction probabilities (YA1 calculated using the reference allele A1 and YA2 calculated using the other allele

A2)
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Figure 1B. The DeepHiC models took sequences from bin pairs of
different sizes generated from hESC as input. The receiver operating
characteristic (ROC) curves were generated to select the best pre-
dictive model. The performance of different models on the testing
dataset was evaluated by comparing the area under the curve
(AUC). The model trained on 40 kb bin pairs (Fig. 2A) generated the
highest AUC value (0.922) and was used in the following study. The
model trained on 100 kb bin pairs generated an AUC of 0.889 while
the model taking 10 kb bin pairs as input achieved an AUC of 0.765
(Fig. 2A). Detailed results were shown in Table 1.

To assess the generalization capability of the CNN model, we
further evaluated the performance on independent datasets gener-
ated from GM12878 and K562 cell lines. The raw sequencing pair-
end reads were separately aligned to the genome of GM12878 or
K562 cell line, respectively. HOMER was used to identify signifi-
cant interactions at the resolution of 40 kb. GM12878 cell line
shared 93.37% significant interactions with hESC cell line while
K562 cell line shared 75.96% significant interactions
(Supplementary Fig. S3). The positive set and the negative set were
selected based on the same strategy of the hESC cell line. The CNN
model yielded accuracies of 0.86 (AUC¼0.923) on the dataset gen-
erated from the GM12878 cell line and 0.82 (AUC¼0.897) on the
dataset generated from the K562 cell line (Fig. 2B). The performan-
ces were similar or dropped only slightly compared with the per-
formance on the testing dataset which was generated from the hESC
cell line.

3.2 Putatively causal SNPs were enriched in GWAS and

eQTL datasets
Based on the CNN model, to assess the functional impact of the
non-coding variants, DeepHiC functional score was defined as the
change of interaction probability of the altered fragment pairs
(Fig. 1C). The altered fragment sequence was centered at the non-
coding variant site. We investigated the utility of DeepHiC function-
al scores for discriminating disease-related non-coding variants from
neutral ones. After computing the functional scores of 2 844 552
non-coding SNPs (including 26 243 694 different interactions), we
get the distribution of interaction probability difference
(Supplementary Fig. S4). FastPval was used to generate the empirical
P-value of each SNP by the two-stage ranking strategy (Li et al.,
2010). To decrease the false-positive rate accumulated by multiple
testing, SNPs with an absolute DeepHiC functional score >0.031
(P-value<0.001) as suggested by FastPval were considered as puta-
tively causal SNPs.

We further checked whether the putatively causal SNPs were
enriched in ClinVar, GWAS, eQTL datasets and CTCF binding sites.
After comparing the consistency with the non-coding SNPs collected
from the 1000 Genome Project, 3933, 22 584 and 51 138 SNPs
were selected from ClinVar, GWAS datasets and CTCF binding
sites, respectively. Since one SNP may interact with different regions
in the genome, the largest score of each SNP was used in the enrich-
ment analyses of SNPs from ClinVar, GWAS datasets and CTCF
binding sites. The enrichment analyses showed that the putatively
causal SNPs were significantly enriched in the GWAS dataset with a
fold change of 1.18 (Fisher’s exact test P-value¼4.9 3 104

2, Fig. 3)
using 2 844 552 SNPs with the largest score as background. For

each phenotype in the GWAS dataset, the putatively causal SNPs
were significantly enriched in body mass index, educational attain-
ment, systolic blood pressure and mean corpuscular hemoglobin
(Supplementary Fig. S4). We observed a 1.27-fold enrichment for
CTCF binding (Fisher’s exact test P-value¼5.6 3 108

2) and no en-
richment for ClinVar dataset (0.98, Fisher’s exact test P-value¼1,
Fig. 3). The paired fragments harboring the eQTL and the TSS of
the target gene were input into the DeepHiC model to generate the
interaction probability (YA1 and YA2). If there was an interaction be-
tween both fragments, the eQTL with an absolute DeepHiC func-
tional score>0.031 was considered to influence the target
expression by changing the interaction probability between the two
fragments. In total, 13 853 eQTL-gene pairs were included in the en-
richment analysis. Finally, the enrichment analyses showed that the
putatively causal SNPs were significantly enriched in the Westra
eQTLs (with a fold change of 1.71, Fisher’s exact test P-val-
ue¼6.3 3 103

2) compared with the totally 26 243 694 different
interactions. We also identified 31 putatively causal eQTLs
(Supplementary Table S1).

3.3 DeepHiC was capable of prioritizing disease-related

functional non-coding variants
We further explored whether DeepHiC could help to identify
disease-related functional non-coding variants from a difficult cred-
ible set. We employed a set of eQTLs (rs9533090, rs9594738,
rs8001611, rs9533094 and rs9533095) correlated with TNFSF11,
which has been identified for osteoporosis (Estrada et al., 2012;
Rivadeneira et al., 2009; Zhang et al., 2014). RANKL encoded by
TNFSF11 is a key factor for osteoclast differentiation and activation
(Wittrant et al., 2004). All of these SNPs are located in a super-
enhancer region to regulate the expression of RANKL via long-
range chromatin interaction (Zhu et al., 2018). We used DeepHiC
to prioritize these SNPs (Table 2). The results showed that DeepHiC
predicted rs9533090 with the highest functional score (0.024, P-val-
ue¼2.9 3 103

2). This result was consistent with one recent study
regarding rs9533090-C as a functional SNP to recruit transcription
factor NFIC and increase RANKL expression (Zhu et al., 2018).

Fig. 2. The performance of different DeepHiC models. (A) DeepHiC models were

trained with sequences from bin pairs with length of 10, 40 and 100 kb, respectively.

(B) The performance of the best DeepHiC model trained on bin pairs with 40 kb

length was evaluated on independent datasets generated from GM12878 cells and

K562 cells

Table 1. Performance of DeepHiC models

Length of bin pairs AUC Accuracy Specificity Sensitivity F1 score

10 kb 0.77 0.70 0.71 0.68 0.71

40 kb 0.92 0.85 0.78 0.92 0.86

100 kb 0.89 0.81 0.83 0.78 0.80

Fig. 3. The putatively causal SNPs predicted by DeepHiC functional scores were sig-

nificantly enriched in GWAS, eQTL datasets and CTCF binding sites
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rs7756521 was a causal variant significantly associated with
control of HIV infection (Jin et al., 2018). It may affect the DDR1
expression through chromatin interaction (Jin et al., 2018). The
variant was located in a DNase I hypersensitive site (DHS) active in
chimpanzees, macaques and humans when the variant position was
the T allele, since only the T allele was observed in other non-human
primates (Jin et al., 2018). The DeepHiC model showed that this
SNP had a strong impact on chromatin interaction (function score-
¼0.0096, P-value¼0.042). The sequence with the T allele gener-
ated a higher interaction probability, thus consistent with earlier
study (Jin et al., 2018) in that T allele increased the expression of
DDR1.

4 Discussion

In this study, we predicted chromatin interaction based on DNA
sequences using a deep learning approach in artificial intelligence.
The high accuracy of the DeepHiC model allowed us to quantify the
effect of variants on chromatin interaction probability. The per-
formance of DeepHiC model trained on 40 kb bin pairs was better
than others. We used PCA to classify each region of the chromosome
into A/B compartment. When small resolution was used, the classifi-
cation results may not accurately reflect the general chromosome
structure (Heinz et al., 2010). Then it would have an effect on selec-
tion of positive and negative interactions. A previous study sug-
gested that the local chromatin interaction domains, topological
domains, are stable across different cell types (Dixon et al., 2012).
We used cell type-specific genome sequences to generate interaction
sequences. Although the interactions can be the same in different
cell lines, the interaction sequences were different. The validation
rates were higher than the overlapping rates suggested that the per-
formance of the DeepHiC model trained on data from hESC was
successfully validated in the data generated from the GM12878 and
K562 cells. The DeepHiC model successfully predicted the function-
al SNPs that are identified by previous studies using Hi-C data from
other cell lines (Jin et al., 2018; Zhu et al., 2018). All of these results
suggest that the DeepHiC model captured the common features of
chromatin interactions across different cell types. The DeepHiC
model can be applied to predict chromatin interactions and potential
functional variants affecting translation initiation through chroma-
tin interaction in other cell lines.

Previous studies suggested that algorithmic incorporation of
functional and evolutionary scores might resolve true causal variants
(Nariai and Greenwald, 2017; Trynka et al., 2015). Two previous
deep learning methods (DeFine and DeepSEA) combine the deep
learning functional score with the evolutionary conservation scores
to prioritize functional variants, and the evolutional conservation
helped to improve the prediction accuracy. However, the prediction
accuracies in GWAS and eQTL dataset were still modest (AUC
ranged from 0.549 to 0.652). This may be due to the fact that the
positive variants in GWAS and eQTL datasets were disease- and
trait-associated and may not be causal variants. Therefore, we used
enrichment analysis to show that the DeepHiC functional scores
were helpful with prioritizing the non-coding variants for further
functional studies.

We extended DeepHiC to prioritize functional SNPs on the basis
of the predicted interaction probability. The putatively causal SNPs
predicted by DeepHiC functional scores were significantly enriched

in GWAS, eQTL datasets and CTCF binding sites, although no en-
richment was observed for pathogenic non-coding variants from
ClinVar annotations. The pathogenic non-coding variants impli-
cated in heritable diseases are expected to have stronger functional
impact compared with those non-coding variants that underlie com-
plex diseases and traits (Liu et al., 2019). One possible cause is that
these non-coding variants from ClinVar annotations may not influ-
ence traits through changing the state of chromatin interaction, but
rather by transcription factor binding (Wang et al., 2018; Zhou and
Troyanskaya, 2015). eQTLs were expected to be mildly correlated
with pathogenicity (Liu et al., 2019). Although the enrichment score
was relatively small, it can be caused by the fact that many eQTLs in
high LD were associated with a target gene, but only one or a lim-
ited few of them were causal.

Previous methods including those based on evolution often
assigned the variant with one score (Nariai and Greenwald, 2017;
Trynka et al., 2015). However, like the eQTL study, the variant
may influence the expression of several target genes with different
effect sizes. In the present study, the variant may have several scores
because the region that harbors the variant may interact with several
different fragments. Therefore, inclusion of one evolution conserva-
tion score for each SNP may not be appropriate in this study.

During the training and testing, we corrected the sequences by
incorporating the cell-type-specific genomic variants to reflect the
actual genome sequences in hESC rather than using the reference
genome sequences. When testing the performance in the data from
GM12878 cells and K562 cells, the sequences were also corrected to
reflect the actual genome sequences in GM12878 or K562 cell line.
This step is very important in sequence-based models to train the
model with the actual sequences in each cell line, especially for mod-
els with single-base resolution (Wang et al., 2018).

Elucidating the function of non-coding variants is difficult, since
the non-coding variant may affect a number of biological activities,
including splicing, transcription, post-transcription regulation,
translation initiation/elongation and post-translational modification
(Sauna and Kimchi-Sarfaty, 2011). It has been suggested that a sin-
gle method cannot fully understand the genetic disorders caused by
the non-coding variants. Our proposed method, DeepHiC, tried to
predict variants affecting translation initiation through chromatin
interaction. We demonstrate that an integrative approach combining
artificial intelligence—deep learning with experimental evidence of
chromatin interaction leads to prioritizing the functional variants in
disease- and phenotype-related loci and generates the biological
mechanism underlying the association.
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