Table 1.
Default |
Linear regression |
MLP |
OTU latent space |
Combined latent space |
||||||
---|---|---|---|---|---|---|---|---|---|---|
Input Variables |
Pearson | Bray–Curtis | Pearson | Bray–Curtis | Pearson | Bray–Curtis | Pearson | Bray–Curtis | Pearson | Bray–Curtis |
Age, T, rain, line, variety | 0.5852 | 0.5140 | 0.6629 | 0.4659 | 0.7219 | 0.4169 | 0.7340 | 0.4222 | 0.7229 | 0.4065 |
Age, T, rain | 0.5852 | 0.5140 | 0.6641 | 0.4638 | 0.6927 | 0.4527 | 0.7348 | 0.4181 | 0.7220 | 0.4072 |
T and rain | 0.5852 | 0.5140 | 0.5881 | 0.5089 | 0.6323 | 0.5047 | 0.6087 | 0.4686 | 0.6676 | 0.4557 |
Age and T | 0.5852 | 0.5140 | 0.6622 | 0.4664 | 0.6814 | 0.4591 | 0.7323 | 0.4204 | 0.7189 | 0.4094 |
Age and rain | 0.5852 | 0.5140 | 0.6628 | 0.4728 | 0.7155 | 0.4211 | 0.7361 | 0.4200 | 0.7048 | 0.4139 |
Note: In Pearson, higher scores are better, because it is a correlation metric. In Bray–Curtis, lower scores are better, as it is a dissimilarity metric. Bold means the best model per metric and row. Underline means the best model per metric in the table.