Skip to main content
. 2020 Dec 7;37(10):1444–1451. doi: 10.1093/bioinformatics/btaa971

Table 1.

Performance of evaluation metrics. In the test set

Default
Linear regression
MLP
OTU latent space
Combined latent space
Input
Variables
Pearson Bray–Curtis Pearson Bray–Curtis Pearson Bray–Curtis Pearson Bray–Curtis Pearson Bray–Curtis
Age, T, rain, line, variety 0.5852 0.5140 0.6629 0.4659 0.7219 0.4169 0.7340 0.4222 0.7229 0.4065
Age, T, rain 0.5852 0.5140 0.6641 0.4638 0.6927 0.4527 0.7348 0.4181 0.7220 0.4072
T and rain 0.5852 0.5140 0.5881 0.5089 0.6323 0.5047 0.6087 0.4686 0.6676 0.4557
Age and T 0.5852 0.5140 0.6622 0.4664 0.6814 0.4591 0.7323 0.4204 0.7189 0.4094
Age and rain 0.5852 0.5140 0.6628 0.4728 0.7155 0.4211 0.7361 0.4200 0.7048 0.4139

Note: In Pearson, higher scores are better, because it is a correlation metric. In Bray–Curtis, lower scores are better, as it is a dissimilarity metric. Bold means the best model per metric and row. Underline means the best model per metric in the table.