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Symptomatic and preventive effects of the novel
phosphodiesterase-9 inhibitor BI 409306 in an immune-
mediated model of neurodevelopmental disorders
Joseph Scarborough1, Daniele Mattei1, Cornelia Dorner-Ciossek2, Michael Sand3, Roberto Arban2, Holger Rosenbrock2,
Juliet Richetto 1,4 and Urs Meyer 1,4

BI 409306, a phosphodiesterase-9 inhibitor under development for treatment of schizophrenia and attenuated psychosis syndrome
(APS), promotes synaptic plasticity and cognition. Here, we explored the effects of BI 409306 treatment in the polyriboinosinic-
polyribocytidilic acid (poly[I:C])-based mouse model of maternal immune activation (MIA), which is relevant to schizophrenia and
APS. In Study 1, adult offspring received BI 409306 0.2, 0.5, or 1 mg/kg or vehicle to establish an active dose. In Study 2, adult
offspring received BI 409306 1mg/kg and/or risperidone 0.025mg/kg, risperidone 0.05 mg/kg, or vehicle, to evaluate BI 409306 as
add-on to standard therapy for schizophrenia. In Study 3, offspring received BI 409306 1mg/kg during adolescence only, or
continually into adulthood to evaluate preventive effects of BI 409306. We found that BI 409306 significantly mitigated MIA-
induced social interaction deficits and amphetamine-induced hyperlocomotion, but not prepulse inhibition impairments, in a dose-
dependent manner (Study 1). Furthermore, BI 409306 1mg/kg alone or in combination with risperidone 0.025mg/kg significantly
reversed social interaction deficits and attenuated amphetamine-induced hyperlocomotion in MIA offspring (Study 2). Finally, we
revealed that BI 409306 1mg/kg treatment restricted to adolescence prevented adult deficits in social interaction, whereas
continued treatment into adulthood also significantly reduced amphetamine-induced hyperlocomotion (Study 3). Taken together,
our findings suggest that symptomatic treatment with BI 409306 can restore social interaction deficits and dopaminergic
dysfunctions in a MIA model of neurodevelopmental disruption, lending preclinical support to current clinical trials of BI 409306 in
patients with schizophrenia. Moreover, BI 409306 given during adolescence has preventive effects on adult social interaction
deficits in this model, supporting its use in people with APS.
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INTRODUCTION
Abnormal glutamatergic neurotransmission related to N-methyl-D-
aspartate (NMDA) receptor hypofunction is implicated in the etiology
of neuropsychiatric disorders, including schizophrenia [1–3]. NMDA
receptors mediate Ca2+ entry into postsynaptic neurons, activating
guanylyl cyclase via nitric oxide signaling to trigger postsynaptic
production of cyclic guanosine monophosphate (cGMP), which acts in
turn on a range of downstream protein targets to mediate synaptic
plasticity [4, 5]. Signaling is terminated through cGMP hydrolysis
mediated by phosphodiesterase (PDE) enzymes, particularly PDE9,
which has higher affinity for cGMP than any other PDE isoform [5, 6].
BI 409306 is a novel PDE9 inhibitor, a class of compounds that

are thought to promote NMDA receptor-related glutamatergic
transmission by elevating postsynaptic levels of cGMP in neurons
[4, 5]. In rodents, BI 409306 has been shown to increase cGMP in
brain tissue and cerebrospinal fluid (CSF), promote synaptic
plasticity (evaluated using hippocampal long-term potentiation),
improve episodic memory, and reverse working memory deficits
induced by acute pharmacological blockade of NMDA receptors

[7]. Furthermore, dose-dependent increases in cGMP levels in the
CSF of healthy volunteers have been observed after a single oral
dose of BI 409306 [8]. Therefore, PDE9 inhibition with BI 409306
may provide benefits for patients with neurodevelopmental
disorders by facilitating synaptic stabilization and plasticity-
dependent NMDA receptor function. On this basis, ongoing
clinical trials are investigating the potential of BI 409306 for the
prevention of relapse in patients with schizophrenia treated with
antipsychotic medications (NCT03351244), and for early interven-
tion in patients with attenuated psychosis syndrome (APS)
(NCT03230097).
Maternal immune activation (MIA) is an established experimental

approach based on immune-mediated disruption of neurodevelop-
ment in the offspring to induce brain and behavioral dysfunctions
[9, 10]. Based on evidence highlighting a link between prenatal
exposure to infectious or noninfectious MIA and neuropsychiatric
disorders in the offspring [11], MIA approaches are commonly used
to study the developmental trajectory of schizophrenia and other
neurodevelopmental disorders [9–12]. In a commonly used MIA
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model, pregnant mouse dams are exposed to the viral mimic,
polyriboinosinic–polyribocytidilic acid (poly[I:C]), a synthetic analog
of double-stranded RNA that binds to transmembrane toll-like
receptor 3, triggering an innate immune response [9]. Prenatal poly
(I:C) treatment disrupts fetal development and induces lasting
behavioral and cognitive abnormalities, including deficits in social
behavior, sensorimotor gating, and dopaminergic neurotransmis-
sion in adult offspring [13–15]. MIA offspring display altered
expression of the GluN1 subunit of NMDA receptors in the brain
[16–18], altered basal extracellular glutamate levels, and modified
responses to NMDA receptor antagonists [18–21]. These animals
are therefore likely to have deficits in glutamatergic signaling that
make them suitable for the investigation of compounds targeting
this pathway.
We report the findings of three studies exploring the

symptomatic and preventive effects of BI 409306 in the poly(I:
C)-based MIA mouse model. Study 1 investigated the chronic
effects of three doses of BI 409306 on MIA-induced behavioral
deficits in adult offspring. These investigations aimed to evaluate
the effect of PDE9 inhibition on MIA-induced behavioral deficits
and to select an active dose for use in the subsequent studies. To
examine the potential benefits of BI 409306 as an add-on to
standard therapy (Study 2), BI 409306 was administered alone or
in combination with risperidone, an antipsychotic drug acting
primarily at dopamine D2 and serotonin 5-HT2A receptors [22].
Finally, Study 3 investigated the ability of an active dose of BI
409306, administered during adolescence, to prevent the
emergence of MIA-induced behavioral deficits in the adult
offspring.

MATERIALS AND METHODS
Animals and ethical approval
Female and male C57Bl6/N breeder mice (10–12 weeks of age;
Charles River Laboratories, Sulzfeld, Germany) were acclimatized
in a temperature- and humidity-controlled (21 ± 3 °C, 50 ± 10%)
specific-pathogen-free environment for 2 weeks under a reversed
light–dark cycle (lights off: 09:00 a.m. to 09.00 p.m.), after which
timed mating was conducted as previously described [23]. The
animals were kept in individually ventilated cage systems
(Tecniplast, Buguggiate, Italy) as previously described [24]. The
cages were minimally enriched with a triangular plastic hut that
allows only red-wavelength light to pass through (Tecniplast
MOUSE HOUSE; Tecniplast, Buguggiate, Italy), wooden particle
bedding, and additional nesting material provided by 2 sheets of
regular paper tissues. All animals had ad libitum access to the
same food (Kliba 3436, Kaiseraugst, Switzerland) and water
throughout the entire study. All procedures were approved by
the Cantonal Veterinarian’s Office of Zurich, and efforts were made
to minimize the number of animals used.

Drugs
Poly(I:C) potassium salt (lot number 117M4005V) and D-ampheta-
mine sulfate (Amph) were obtained from Sigma-Aldrich (St Gallen,
Switzerland). The molecular composition, purity, and immunopo-
tency of the poly(I:C) lot used in this study has been previously
evaluated [24]. Risperidone was obtained from Tocris Bioscience
(Wiesbaden-Nordenstadt, Germany). BI 409306 was synthesized at
Boehringer Ingelheim Italia, Chemistry Research Center (Milan,
Italy). Pyrogen-free 0.9% NaCl solution (saline) was obtained from
B. Braun (Melsungen, Switzerland).

Breeding and maternal immune activation
The MIA model was implemented as previously reported [23–26]
and full details are provided in Supplementary Table S1. In brief,
successful mating was verified by the presence of a vaginal plug
(designated as gestational day [GD] 0). Dams were housed
individually throughout gestation. On GD 12, pregnant dams

were randomly assigned to a single intravenous tail-vein injection
of either poly(I:C) 5 mg/kg to induce MIA, or pyrogen-free 0.9%
NaCl (prenatal control). All injections had a total volume of 5 mL/
kg. Following the injection, dams were placed back in their home
cages and left undisturbed until the first cage change on postnatal
day (PND) 7. Offspring were weaned on PND 21 and littermates of
the same sex were caged separately and maintained in groups of
4–5 animals per cage.

Allocation and behavioral testing of offspring
Male and female offspring were allocated to daily treatment
groups (Supplementary Table S2) and maintained as described
above. All mice were subjected to a battery of behavioral tests in
the following order, with 3–4 rest days between each test: (1)
social interaction; (2) prepulse inhibition (PPI); (3) Amph-induced
hyperlocomotion.

BI 409306 and vehicle treatment
BI 409306 and/or risperidone were suspended in distilled water
with 0.5% hydroxyethylcellulose and sonicated for 20 min, then
mixed with 30% condensed milk solution at the required dose. For
all treatments, 2 mL/kg of solution was administered using the
micropipette-guided drug administration (MDA) method, as
previously described [25]. On testing days, animals were treated
30min before testing.

Pharmacokinetic study
Male C57Bl6/N mice (10–12 weeks of age; Charles River
Laboratories, Sulzfeld, Germany) were orally administered with BI
409306 0.5 mg/kg via MDA. Blood samples were taken via tail-vein
sampling after 0.5, 1, and 2 h in 1.5 mL ethylenediaminetetraacetic
acid (EDTA)-containing tubes and centrifuged (10,000 × g) for 10
min at 4 °C, as described previously [26]. The resulting plasma was
stored at −20 °C. BI 409306 plasma concentrations were
determined using liquid chromatography coupled to mass
spectrometry, as previously described [25].

Study 1: BI 409306 dose–response study in adult offspring
To limit the overall number of mice required to identify the
optimal dose for subsequent studies, only male mice were used in
the initial dose–response study. Male MIA offspring (7 litters; 36
mice) were assigned to daily BI 409306 0.2, 0.5, or 1 mg/kg, or
vehicle control (Supplementary Table S2). Due to limited
availability, prenatal control offspring (5 litters; 27 mice) were
allocated to three treatment groups only (BI 409306 0.5 or 1 mg/
kg, or vehicle control; Supplementary Table S2). Treatment began
on PND 70 and continued throughout the experimental period,
and behavioral testing began on PND 84.
One day after the final behavioral test, BI 409306 0.2, 0.5, or 1

mg/kg was administered orally to offspring using the MDA
method in order to assess plasma exposure of the drug. Mice were
sacrificed by decapitation 30min later, and blood was collected
from the trunk in 1.5 mL EDTA-containing tubes. Plasma
concentrations of BI 409306 were determined as outlined above.

Study 2: Study of add-on BI 409306 in combination with
risperidone in adult offspring
Male and female MIA offspring (15 litters; 103 mice) were
assigned to daily risperidone 0.025 or 0.05 mg/kg, risperidone
0.025 mg/kg plus BI 409306 1 mg/kg, BI 409306 1 mg/kg alone, or
vehicle control (Supplementary Table S2). Risperidone doses
were selected based on previous pilot experiments in the Amph-
induced hyperlocomotion test. To evaluate the effect of MIA in
the absence of drug treatment, male and female control
offspring (5 litters; 23 mice) received daily treatment with vehicle
control only. Treatment began on PND 77 and continued
throughout the experimental period, and behavioral testing
began on PND 91.
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Study 3: Prevention study in adolescent offspring
Male and female adolescent offspring from 14 MIA litters (65 mice;
Supplementary Fig. S1 and Supplementary Table S2) and 15
prenatal control litters (64 mice; Supplementary Fig. S1 and
Supplementary Table S2) were assigned to daily BI 409306 1mg/
kg (2 cohorts) or vehicle control (1 cohort) treatment starting at
PND 30. After 4 weeks of treatment, one of the BI 409306-treated
cohorts switched to daily treatment with vehicle control, while the
other cohort continued treatment with BI 409306 1mg/kg
throughout the duration of behavioral testing (Supplementary
Figure S1). Behavioral testing was performed between PND 74 and
PND 100.

Social interaction test
Social interaction was assessed using the relative time spent
exploring an unfamiliar congenic mouse and an inanimate
dummy object in a modified Y-maze, as described previously
[26, 27]. During each trial, the mouse was allowed to explore the
maze freely for 5 min. Social interaction was defined as nose
contact within a 2 cm interaction zone. For each animal, a social
preference index was calculated using the formula:

time spent with mouse½ �
time spent with the inanimate objectþ time spent with the mouse½ �

� �
� 0:5

Positive social preference index values indicate a preference
toward the unfamiliar mouse over the dummy object. Total
distance moved during the test was also recorded, as a measure of
general exploratory activity.

PPI test
Sensorimotor processing was assessed using PPI of the acoustic
startle reflex, as described previously [26, 28]. Animals were
presented with a mixture of prepulse-only trials, pulse-only trials,
prepulse–plus–pulse trials, and no stimulus trials. The prepulse
and pulse were delivered by sudden elevation in broadband white
noise level (lasting 40 and 20ms, respectively) from background
(65 dBA) with a rise time of 0.2–1.0 ms. Three pulse intensities (100,
110, and 120 dBA) and three prepulse intensities (71, 77, and 83
dBA, corresponding to +6, +12, and +18 dBA above background)
were used. PPI was calculated as percent inhibition of the startle
response obtained in the pulse-alone trials using the formula:

100% ´ 1� mean reactivity in prepulse plus pulse trials
mean reactivity in pulse only trials

� �� �

Amphetamine-induced hyperlocomotion
Amph-induced hyperlocomotion was used to evaluate functional
changes in dopaminergic neurotransmission, as previously
described [27]. Animals explored the open field freely for 30 min
before receiving an intraperitoneal injection of saline. Animals
then explored the open field for a further 30 min before
intraperitoneal administration of Amph 2.5 mg/kg (total volume
5mL/kg). Locomotor responses were monitored for 90 min after
Amph administration.

Statistical analysis
The social interaction data were analyzed by analysis of variance
(ANOVA), whereas the PPI and Amph-induced hyperlocomotion
data were analyzed by repeated-measures ANOVA (RM-ANOVA),
followed by Tukey’s post hoc test where appropriate. In the PPI
test, prepulse and pulse intensities served as within-subject
factors, whereas 5-min bins were used as within-subjects factors
in the Amph-induced hyperlocomotion test. In the latter, the three
phases of the test (baseline, saline, and Amph conditions) were
analyzed separately.
The limited availability of prenatal control offspring in Study 1

precluded a full-factorial design with four treatment groups (BI

409306 0.2, 0.5, or 1 mg/kg, or vehicle control) in both prenatal
treatment conditions. Hence, in Study 1, prenatal control offspring
could only be assigned to three treatment groups (BI 409306 0.5
or 1 mg/kg, or vehicle control), whereas prenatal MIA offspring
could be assigned to four MIA groups (BI 409306 0.2, 0.5, or 1 mg/
kg, or vehicle control). As a consequence, a full-factorial two-way
ANOVA on all groups was not feasible; therefore, the available
data from Study 1 were analyzed using both one-way and two-
way ANOVA or RM-ANOVA. Since the main objective of Study 1
was to perform a dose–response study in MIA offspring to identify
the optimal dosage for our subsequent experiments (Study 2 and
3), we focused on the one-way ANOVAs or RM-ANOVAs in the
analysis and in the main text of this article in order to present all
treatment groups in the MIA offspring. The data from Study 1 that
were analyzed by two-way ANOVA or RM-ANOVA are presented in
the supplementary materials and aimed to evaluate possible main
effects and interactions of treatments (BI 409306 0.5 or 1 mg/kg, or
vehicle control) in both prenatal conditions. According to their
experimental design, all data from Study 2 were analyzed by one-
way ANOVA or RM-ANOVA, whereas data from Study 3 were
analyzed by two-way ANOVA or RM-ANOVA. Preliminary analyses
of the data from Studies 2 and 3 showed no sex-dependent
effects, and so data from male and female offspring were
combined to enhance statistical power. All statistical analyses
were performed using SPSS Statistics (version 22.0; IBM, Armonk,
NY, USA) and Prism (version 7.0; GraphPad Software, La Jolla, CA,
USA). The threshold for statistical significance was set at P < 0.05.

RESULTS
Pharmacokinetic study and plasma exposure
Following oral dosing with BI 409306 0.5 mg/kg via MDA [25],
pharmacokinetic analysis in mice indicated that maximal plasma
concentration of BI 409306 was reached within 30 min, with a
mean (standard deviation [SD]) plasma concentration of 270 (65)
nM (Supplementary Table S3). Based on the potency of BI 409306
against the PDE9 enzyme and a CSF/plasma ratio of 0.2 [7], this
plasma exposure corresponds to a CSF exposure similar to the BI
409306 half maximal inhibitory concentration (IC50) against PDE9.
Furthermore, this plasma exposure was in the range reported in
clinical studies in healthy male volunteers and in patients with
schizophrenia after a single oral dose of BI 409306 25mg [8, 29].

Study 1: BI 409306 dose–response study in adult offspring
In the social interaction test, MIA offspring did not display a clear
preference toward the live mouse, as indicated by a main effect of
prenatal poly(I:C) treatment in the two-way ANOVA (F[1,48]=
7.332; P= 0.009; Supplementary Fig. S2), and by a main group
effect in the one-way ANOVA (F[4,40]= 3.657; P= 0.013) showing
a statistically significant difference between control offspring and
MIA offspring in post hoc tests (P < 0.05; Fig. 1A). Treatment of MIA
offspring with BI 409306 significantly reversed this deficit in a
dose-dependent manner compared with vehicle control, with
almost complete reversal observed at a dose of 1 mg/kg (Fig. 1A).
These effects were not influenced by locomotor activity, as there
were no group differences in total distance moved during the
social interaction test (Supplementary Fig. S3).
A significant main effect of prenatal treatment on PPI was

detected at the 100 dBA pulse level, but not at higher pulse levels,
leading to a significant interaction between pulse intensity and
prenatal treatment in the two-way RM-ANOVA (F[2,96]= 3.44; P <
0.05). Subsequent two-way RM-ANOVA restricted to each pulse
conditions confirmed a significant main effect of prenatal
treatment in the 100 dBA pulse condition (F[1,48]= 4.80; P <
0.01; Supplementary Fig. S4). Treatment with BI 409306 did not
affect PPI, either when the data were analyzed by two-way RM-
ANOVA (Supplementary Fig. S4) or by one-way RM-ANOVA
(Fig. 1B).
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Vehicle-treated MIA offspring displayed increased Amph-
induced hyperlocomotion, which was mitigated by BI 409306
treatment as demonstrated by a significant interaction between
prenatal treatment and drug treatment (two-way RM-ANOVA; F
[2,48]= 3.40; P < 0.05; Supplementary Fig. 5). Comparison between
CON and MIA groups using one-way RM-ANOVA failed to reach
statistical significance, although BI 409306 treatment showed a
trend for attenuation of distance moved following Amph
treatment (main effect of groups; F[4,40]= 2.1; P= 0.09; Fig. 1C).

Study 2: Add-on study of BI 409306 in combination with
risperidone in adult offspring
In Study 2, social interaction differed significantly between
treatment groups (main effect of treatment group F[5,120]=
11.83; P < 0.001; Fig. 2A); in post hoc tests, social interaction was
significantly impaired in adult MIA offspring compared with
control offspring (P < 0.001). Chronic daily treatment with BI
409306 1mg/kg reversed this deficit when administered alone or
in combination with risperidone 0.025mg/kg (P < 0.001; Fig. 2A).
Risperidone administered alone at 0.05 mg/kg also improved the
social interaction deficits in MIA offspring (P < 0.001; Fig. 2A).
Similar to Study 1 (Supplementary Fig. S3), there were no group
differences in total distance moved (data not shown).
There were no significant group differences in PPI (Fig. 2B),

suggesting that MIA failed to induce PPI deficits in this study.

Moreover, treatment with BI 409306 alone or in combination with
risperidone did not alter PPI in MIA offspring (Fig. 2B).
In the Amph-induced hyperlocomotion test, there was a

significant interaction between treatment group and bins (F
[85,2040]= 1.562; P= 0.001). Post hoc analyses of each 5-min bin
revealed that Amph-induced hyperlocomotion in MIA offspring
was significantly mitigated by risperidone 0.05 mg/kg. In addition,
there was a nonsignificant attenuation by BI 409306, both alone
and in combination with risperidone, compared with vehicle-
treated MIA offspring (Fig. 2C).

Study 3: Prevention study in adolescent offspring
Consistent with the previous studies, MIA impaired social
interaction, as evident from the substantial difference in social
preference index between MIA offspring and control offspring
treated with vehicle throughout the entire study (Fig. 3A). BI
409306 treatment, either in adolescence only or continuing
throughout adulthood, prevented this deficit, as demonstrated
by a significant interaction between prenatal treatment and drug
treatment (F[2,123]= 14.21; P < 0.001; Fig. 3A). Post hoc analyses
confirmed significant differences in the social preference index
between MIA offspring treated with vehicle and those treated with
BI 409306 1mg/kg in adolescence only (P < 0.01) or throughout
adulthood (P < 0.001; Fig. 3A). BI 409306 1mg/kg did not affect
social behavior in prenatal control offspring (Fig. 3A).
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There were no significant group differences in PPI (Fig. 3B),
suggesting that MIA failed to induce PPI deficits in this study.
Likewise, BI 409306 treatment had no effect on PPI when
administered either in adolescence only or throughout adoles-
cence and adulthood (Fig. 3B).
Vehicle-treated MIA offspring displayed an increased sensitivity

to the locomotor-stimulating effects of Amph, and this Amph
hypersensitivity was prevented by BI 409306 when given
continuously throughout adolescence and adulthood, but not by
treatment during adolescence only (Fig. 3C). These outcomes were
supported by the presence of a significant interaction between
prenatal treatment and drug treatment (F[2,123]= 3.132; P < 0.05;
Fig. 3C), and by post hoc analyses revealing a significant difference
between vehicle-treated MIA offspring and MIA offspring treated
continuously with BI 409306 1mg/kg throughout adolescence and
adulthood (P < 0.01; Fig. 3C).

DISCUSSION
This study explored the symptomatic and preventive effects of BI
409306 in offspring of the poly(I:C)-based MIA mouse model,
which bears preclinical relevance for schizophrenia and other
neurodevelopmental disorders [9, 11, 12]. In Study 1, social

interaction deficits in adult male MIA offspring were significantly
reversed, and Amph hypersensitivity was attenuated, by chronic
daily oral treatment with BI 409306 1mg/kg. Thus, this dose was
selected as the active dose for use in the subsequent studies. In
Study 2, chronic daily oral treatment of adult offspring with
risperidone, BI 409306, or both drugs in combination reversed
MIA-induced deficits in social interaction and ameliorated Amph
hypersensitivity, whereas risperidone 0.05 mg/kg alone signifi-
cantly reversed the locomotor response to Amph. In Study 3,
chronic daily oral treatment with BI 409306 in adolescence only
was sufficient to significantly prevent the social interaction deficit
in MIA offspring, but did not mitigate the increased Amph
sensitivity. However, treatment with BI 409306 starting in
adolescence and continuing throughout adulthood prevented
both MIA-induced social interaction deficits and dopaminergic
abnormalities assessed by the Amph hyperlocomotion test.
Our study did not provide any evidence for sex-dependent

effects of MIA and/or BI 409306 treatment. In keeping with the fact
that maternal poly(I:C) administration was conducted on GD 12,
the lack of sex-dependent MIA effects is consistent with our
previous findings, showing that poly(I:C)-induced MIA in early or
middle gestation (GD 9 or 12) mostly failed to induce robust sex-
specific effects on behavior [24, 26, 30], whereas identical MIA at a
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later gestational time period (e.g., GD 17) is associated with
remarkable sex-specific effects [31]. Hence, the precise prenatal
timing appears to be one of the factors determining the extent to
which poly(I:C)-induced MIA produces sex-dependent or -indepen-
dent effects on behavior. The sex-independent effects of the
pharmacological treatments (BI 409306 alone, risperidone alone, or
BI 409306 plus risperidone) reported here are consistent with our
previous investigations, which revealed comparable behavioral
effects of chronic (4 weeks) haloperidol, clozapine, or fluoxetine
administration in adolescent male and female mice that were
exposed to poly(I:C)-induced MIA [32]. Similar sex-independent
effects were also obtained in other mouse models of poly(I:C)-
induced MIA, which assessed the behavioral and cognitive effects
of chronic (2 weeks) treatment with haloperidol or clozapine in
adulthood [14]. Against this background, our findings suggest that
pharmacological inhibition of PDE9 is effective in both male and
female mice, at least with regards to mitigating social interaction
deficits and hypersensitivity to amphetamine.
A deficit in PPI was found in MIA offspring in Study 1, but this

deficit was not ameliorated by BI 409306, suggesting that
pharmacological inhibition of PDE9 may not be effective in
mitigating MIA-induced deficits in PPI. This notion is consistent
with a previous preclinical study of the PDE9 inhibitor PF-4447943,
which showed no effect on PPI in naive mice when administered
alone [33]. In our study, BI 409306 also had no effect on PPI when
combined with risperidone, which contrasts with previous
findings that PF-4447943 in combination with risperidone
improves PPI in naive mice [33]. A possible reason for this
discrepancy may relate to differences in baseline levels of PPI. In
the study of Kleiman et al. [33], vehicle-treated control mice
(C57BL6/J background) displayed mean PPI levels of less than
30%, whereas the baseline PPI levels in our vehicle-treated control

mice (C57BL6/N background) were higher (40–60% on average).
While it has been shown that pharmacological compounds such
as antipsychotics can increase PPI in mice that exhibit inherently
low levels of PPI [34], the relatively high baseline PPI levels in our
study may have masked a possible effect of BI 409306 alone or in
combination with risperidone on PPI due to ceiling effects. The
latter may also provide a parsimonious explanation as to why we
failed to reveal an effect of risperidone alone on PPI here (Study 2)
and in previous studies [25]. Moreover, because poly(I:C)-induced
MIA was found to induce only subtle effects on PPI in the present
study, possible ceiling effects may have precluded the identifica-
tion of BI 409306 treatment effects in MIA offspring.
MIA offspring display altered glutamatergic signaling related to

NMDA receptor hypofunction, which originates during develop-
ment and is thought to underlie some of the behavioral and
cognitive deficits seen in these animals [16, 19]. While also having
relevance for other neurodevelopmental disorders, some of MIA-
induced behavioral and cognitive abnormalities are reminiscent of
and relevant to the symptoms of schizophrenia and related
psychotic disorders [9, 11, 12]. Our finding that BI 409306
treatment in adulthood can ameliorate MIA-induced social deficits
and dopaminergic dysfunction may, therefore, indicate a potential
symptomatic benefit for adult patients with schizophrenia. These
preclinical data lend additional support to the rationale for the
ongoing Phase II trial of BI 409306 as an add-on therapy for the
prevention of relapse in adult patients with schizophrenia
(NCT03351244). In the present study, the observed plasma
exposure of BI 409306 1mg/kg was in the range that would be
expected for human participants after a 50mg dose, based on
exposure levels observed in previous clinical studies in healthy
volunteers and patients with schizophrenia [7, 8, 29]. This dose is
used in the ongoing clinical trials on prevention of relapse in
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schizophrenia [10] and early intervention in patients with APS [35],
further supporting the relevance of our findings to patients.
BI 409306 reversed MIA-induced social interaction deficits in

adulthood in a similar manner when administered alone or in
combination with risperidone, an established treatment for
psychosis [22]. Similar to other medications currently used to
control symptoms of psychosis, risperidone acts predominantly on
the dopaminergic and serotoninergic signaling pathways, block-
ing D2 and 5-HT2A receptors among others [22]. In contrast, BI
409306 is thought to act primarily on NMDA receptor-mediated
glutamatergic signaling via the nitric oxide/cGMP pathway,
leading to improved synaptic plasticity [5, 7]. Given that BI
409306 and risperidone act on distinct targets and neurotrans-
mitter systems, the combination of these two treatments may
have resulted in further improvements that could not be detected
in the social interaction and Amph-induced hyperlocomotion
tasks due to ceiling effects. This will be explored further in the
ongoing Phase II trial (NCT03351244), which will determine the
benefit of BI 409306 as add-on therapy to standard care and
establish whether combining treatments that act on different
molecular targets is advantageous for the prevention of relapse in
patients with schizophrenia [10].
The neurodevelopmental origin of schizophrenia is thought to

involve deficits in the maturation of glutamatergic and γ-amino
butyric acid (GABA)ergic networks in the prefrontal cortex [36–38].
During early brain development, changes in the glutamatergic and
GABAergic signaling result in alterations to the properties of the
excitatory/inhibitory network that are required for normal cognitive
function [39–42]. These processes represent a critical period in
neurodevelopment, during which environmental insults may
disrupt the maturation of prefrontal signaling networks and
increase the risk of developing long-term social and cognitive
deficits [39–42]. In the present study, BI 409306 treatment during
adolescence was sufficient to prevent the emergence of social
interaction deficits, whereas continuation of treatment into
adulthood was necessary to also prevent dopaminergic dysfunction
in MIA-exposed offspring. Therefore, treatments targeting glutama-
tergic transmission, such as BI 409306, during critical periods of
development may have a preventative mechanism of action and
improve long-term outcomes for patients at high risk of developing
schizophrenia. This supports the rationale for an ongoing trial of BI
409306 as an early intervention for patients with APS [35].
Certain limitations should be considered in the interpretation of

our findings. First, we observed some variability in the effects of
MIA between studies, especially with regard to its effects on PPI.
Indeed, MIA-induced deficits in PPI were observed in Study 1 but
were not present in subsequent studies. Consistent with the
existing data [43], our experience suggests that PPI is more prone
to variable outcomes in the poly(I:C)-based mouse model of MIA
than social interaction, which was another behavioral readout
included in the present study. We have recently explored
behavioral variability in the poly(I:C)-based MIA model by
comparing the contribution of within- and between-litter variation
in a cohort of >150 MIA and control mice [26]. In that study, we
used unsupervised cluster analyses to identify subgroups of MIA
offspring with differing behavioral profiles. We identified that
~40% of mice do not display overt deficits in PPI, and this
variability primarily stemmed from within-litter rather than
between-litter variation [26]. Even though the presence or
absence of social interaction deficits in adult MIA-exposed mice
was predictive of the presence or absence of PPI deficits when
subgroups were taken into account [26], the correlation between
these two measures is rather weak at the level of the individual
offspring (unpublished observation). Hence, an individual MIA-
exposed mouse offspring may display a strong deficit in social
interaction, but only minimal PPI impairments. These findings
suggest that the magnitude of MIA-induced changes in behavior
depends on the precise behavioral or cognitive measure, and

consequently it is challenging to run prior power analyses to
detect a behavioral effect of MIA in the PPI paradigm when
multiple readouts (e.g., social interaction, PPI and amphetamine
sensitivity) are simultaneously assessed in the same study. At this
stage, we have no evidence-based explanation as to why PPI is
more prone to variable outcomes in the poly(I:C)-based mouse
model of MIA compared with other behavioral readouts such as
social behavior, but its variability may be influenced by numerous
factors, including the precise prenatal timing [18], intensity of the
maternal immune response [23], and varying exposure to internal
(e.g., social hierarchies) as well as external (e.g., experimental
stimuli or manipulations) factors prior to testing [44]. Nonetheless,
MIA produced robust deficits in social behavior and dopamine-
related functional anomalies (assessed using Amph-induced
hyperlocomotion) in adult offspring across the three studies.
Another limitation of our study is that its experimental design

precluded a discrimination of short-term (acute) and long-term
(chronic) effects of BI 409306 treatment on behavior. Our study was
primarily designed as a preclinical investigation matching, as far as
possible, the ongoing clinical trials with BI 409306 [10, 35], in which
the enrolled participants are evaluated and characterized under
continuous treatment. Future studies assessing BI 409306 treatment
in preclinical models should include experimental designs in which
possible short-term (acute) and long-term (chronic) effects of BI
409306 treatment could be evaluated separately. Finally, it should
be noted that the MIA model, like any other model, does not
capture all aspects of schizophrenia, but instead reflects certain key
features of the behavioral phenotypes and neurodevelopmental
pathology associated with the disorder [45].
In conclusion, we present the first studies to use a MIA-based

neurodevelopmental disruption model to demonstrate the
efficacy of a novel drug in ameliorating behavioral deficits related
to glutamatergic neurotransmission. Taken together, our findings
demonstrate that chronic treatment with BI 409306 in adoles-
cence or adulthood can lead to attenuation or prevention,
respectively, of social interaction deficits and dopaminergic
dysfunction in a neurodevelopmental mouse model with rele-
vance to schizophrenia. In addition, BI 409306 treatment could
provide improvements alone and in combination with established
treatments for psychosis acting on the dopaminergic and
serotoninergic systems. These novel data support the ongoing
development of BI 409306 for the prevention of relapse in patients
with schizophrenia [10] and as an early intervention in patients
with APS [35].
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