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Aptamer based diagnosis 
of crimean‑congo hemorrhagic 
fever from clinical specimens
Tahmineh Jalali1,2, Mostafa Salehi‑Vaziri2,3, Mohammad Hassan Pouriayevali2 & 
Seyed Latif Mousavi Gargari1*

Crimean-Congo hemorrhagic fever (CCHF) is an acute viral zoonotic disease. The widespread 
geographic distribution of the disease and the increase in the incidence of the disease from new 
regions, placed CCHF in a list of public health emergency contexts. The rapid diagnosis, in rural and 
remote areas where the majority of cases occur, is essential for patient management. Aptamers 
are considered as a specific and sensitive tool for being used in rapid diagnostic methods. The 
Nucleoprotein (NP) of the CCHF virus (CCHFV) was selected as the target for the isolation of aptamers 
based on its abundance and conservative structure, among other viral proteins. A total of 120 
aptamers were obtained through 9 rounds of SELEX (Systematic Evolution of Ligands by Exponential 
Enrichment) from the ssDNA aptamer library, including the random 40-nucleotide ssDNA region 
between primer binding sites (GCC​TGT​TGT​GAG​CCT​CCT​AAC(N40)GGG​AGA​CAA​GAA​TAA​GCA​). The 
KD of aptamers was calculated using the SPR technique. The Apt33 with the highest affinity to NP 
was selected to design the aptamer-antibody ELASA test. It successfully detected CCHF NP in the 
concentration of 90 ng/ml in human serum. Evaluation of aptamer-antibody ELASA with clinical 
samples showed 100% specificity and sensitivity of the test. This simple, specific, and the sensitive 
assay can be used as a rapid and early diagnosis tool, as well as the use of this aptamer in point of care 
test near the patient. Our results suggest that the discovered aptamer can be used in various aptamer-
based rapid diagnostic tests for the diagnosis of CCHF virus infection.

Crimean-Congo Hemorrhagic Fever (CCHF) is the most critical tick-borne viral disease of humanity caused by 
a negative sense RNA virus classified within the genus Orthonairovirus of the family Nairoviridae1. The CCHF 
virus (CCHFV) has a diameter of 80–100 nm with the genome consisting of three segments of RNA, designated 
as Small (S), Medium (M), and Large (L), according to their size. The S segment encodes the nucleoprotein (NP), 
the main structural protein of the virion, and serves a role in the packaging of the viral genome. The M segment 
encodes a precursor for the viral glycoproteins, which is converted to viral glycoproteins Gn (G1) and Gc (G2) 
following proteolytic cleavage2. The L segment encodes viral RNA polymerase, which is responsible for the syn-
thesis of viral RNAs. Among arthropod-borne viruses (arboviruses), CCHFV has the highest genetic variation 
of 20%, 22%, and 31% within the S, M, and L segments respectively of different genotypes3.

Since 1944, when the disease was first described in the Crimean Peninsula, human cases of CCHF have been 
reported in more than 31 countries located in Asia, Africa, and Europe. Consequently, the disease is considered 
as the most geographically widespread tick-borne viral infection and the second most pervasive arboviral infec-
tion after dengue. Since 2000, the geographical spread and incidence of CCHF have significantly increased. The 
expansion could be rooted in the distribution of tick vectors by either international livestock trades or migratory 
birds5. Due to the high risk of outbreaks soon, the World Health Organization (WHO) has placed CCHF on the 
list of priority diseases for research and development for diagnosis, prevention, and control4. One of the areas 
underlined by WHO is the development of rapid diagnostic tests (RDT) that can provide a reliable diagnosis as 
a point of care testing3, 5.

In general, diagnostic methods for CCHF are divided into two groups: direct and indirect assays. Direct 
methods, useful in the early stage after the onset of the disease, including isolating the virus, detecting the 
virus antigen, and identifying the genome of the virus6. Indirect methods include serological techniques such 
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as immunofluorescence, hemagglutination inhibition, complement fixation, and ELISA, for the detection of 
antibodies against the virus. IgM and IgG antibodies can be detected in the serum of patients, 5–7 days, and 
7–9 days after the onset of illness, respectively7, 8.

Although antigen detection can be useful for early diagnosis, to the best of our knowledge, only one com-
mercial kit (CCHFV-Ag-ELISA,VectorBest, Novosibirsk, Russia) is available. While molecular assays are fast, 
highly sensitive, and specific diagnostic methods, they are expensive and need well-equipped laboratories. This 
could be the main challenge in rural and remote areas where the majority of cases occur.

Considering the importance of point-of-care testing for timely diagnosis of CCHFV infection, there is a 
sheer necessity for the development of specific, sensitive, and easy to use RDT. Currently, there is no confirmed 
CCHF RDT available on the market. Recently, Coris BioConcept company has designed a CCHF IgM RDT kit; 
however, based on two recent studies its sensitivity is not suitable for screening purposes9, 10.

Aptamers are considered as an effective and powerful tool for being used in rapid diagnostic methods because 
of their ability to bind to a wide range of targets with high affinity, specificity and sensitivity11, 12.

Aptamers are single-stranded DNA (ssDNAs), RNAs, or modified nucleic acid sequences that are usually 
isolated during the process of SELEX’s (Systematic Evolution of Ligands by Exponential Enrichment). Aptamers, 
as a class of ligands, have significant advantages over other diagnostic tools such as antibodies. These include tem-
perature resistance, non-immunogenic, non-toxic, high permeability, and a high potential for chemical changes 
to increase stability, minimum changes in production and reproduction, cost-effective, and easy standardization11, 

13–15.
Highly specific aptamer/aptamers can be selected toward the whole virus or one of its antigens. The NP of the 

CCHFV is the main protein in the structure of the virus and the most abundant viral detectable antigen in the 
patient’s blood. The highest levels of antibodies are produced against NP16. Compared to other viral proteins, NP 
is the most conserved one among different strains of the virus, which helps to identify the disease with different 
virus genotypes17. Therefore, in this study, the NP was selected as the target for the isolation of aptamers from 
an aptamer library with the protein-SELEX method. Aptamers from the last round of SELEX were cloned into 
a pTG19-T vector (Cat No./ID: 231124, Qiagen, Hilden, Germany), sequenced, and were analyzed by Surface 
Plasmon Resonance (SPR) method for affinity (KD) determination. Finally, the Enzyme Linked Aptamer Sorbent 
Assay (ELASA) method was designed using aptamer as a detector and antibody against viral NP as a capture to 
investigate the clinical specimens.

Results
SELEX.  SELEX was performed to identify the high binding ssDNA aptamers toward CCHFV NP using an 
80-nucleotide aptamer library. The recombinant NP that was fixed from the C-terminal by biotin on the surface 
of the magnetic bead entered to SELEX as a target molecule. The SELEX steps are schematically shown in Fig. 1.

Choosing the optimum round.  The same concentrations of aptamers obtained from SELEX round 
zero(negative selection), 6, 7, 8, and 9 were incubated with CCHFV NP for 1 h. The bound ssDNA aptamers 
were amplified in the same conditions with SYBR Green Real-Time RT-PCR. Cycle thresholds (Ct) of the last 
four rounds were compared with each other. Round zero did not show any amplification. The Mean Ct of each 
round were demonstrated in Fig. 2. SELEX 6 had a significantly higher Ct compared to SELEX rounds 7, 8, and 
9. Therefore, based on Real-Time results, round 9 was selected as optimal round selection.

Aptamers obtained from the SELEX round 9 was cloned into a pTG19-T vector and screened with white/
blue screening assay and further verified with PCR. A total of 120 positive clones were obtained and sent for 
sequencing. Bi direction sequences of 109 clones were assembled using CLC Mainworkbench 5.5. The sequences 
were verified according to the primer binding sites in both sides. The results are shown in Table 1.

Determination of KD values.  SPR analysis was used to determine the numerical values of KD. First, 
biotinylated recombinant NP was immobilized on the surface of the pre-streptavidin coated sensor. The signal 
change chart and the angel shift during the stabilization period are shown in Fig. 3. Four or five concentrations 
of each aptamer were used to draw binding kinetics and determine KD (Fig. 4). Selected aptamers have an affinity 
of 4 μM–0.66 nM. The numerical values of KD for the aptamers are given in (Table 1).

Aptamer selection in the aptamer‑antibody sandwich.  The results of the test performed are given 
in Table 1 (mean OD column) as an average OD. Based on the results, aptamer 33 and a polyclonal antibody 
against CCHF were appropriate for the formation of the Aptamer-CCHFV NP-Ab sandwich and were used in 
ELASA method.

Secondary structure prediction of aptamers.  The prediction of the secondary structure of the aptam-
ers in this study was made with the Vienna RNA Secondary Structure Server tool. Primer regions were also 
considered in the study of buildings. The two-dimensional structure based on minimum free energy (MFE) was 
predicted and drawn with the Vienna RNA online tool (Fig. 5)16.

ELASA.  ELASA was performed on 77 serum samples including 49 sara from confirmed CCHF cases with 
Real Time RT-PCR and antigen ELISA assays, and 26 sera from patients suspected to viral hemporrhagic fevers 
but negative for CCHF by Real Time RT-PCR and Ag ELISA assays. Fourty eight out of 49 confirmed CCHF 
positive samples were also positive in our ELASA. The quantification real time RT-PCR showed positive samples 
in range of 5 × 103–2.3 × 109 copies/µl (mean = 2.1 × 106 copies/µl). The only one sample that was tested nega-
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tive in the ELASA showed a laod of 2.8 × 105 copies/µl. All CCHF negative specimens, and positive dengue or 
Chikungunya serum samples were negative (Table 2). No false positive and just one false negative results were 
observed, therefore, specificity and sensitivity of the test in comparison to antigen ELISA test were calculated as 
100% and 97.95%, respectively.

Figure 1.   Schematic display of SELEX steps. (A) Schematic display of the preparation CCHFV NP-MB. The 
C-terminal of viral recombinant NP was biotinylated by the BirA enzyme and was fixed onto the surface of the 
streptavidin-coated magnetic beads. (B) ssDNA aptamers were mixed with Target; probable combinations of 
magnetic particles-NP-Aptamers (MB-NP-Apt) were deposited with a magnet. The attached aptamers were 
separated by heat giving after the sedimentation. The ssDNA bounded aptamers were amplified by PCR and 
were single-stranded by lambda exonuclease enzyme and entered the next round of SELEX. The PCR product of 
the optimum round was cloned and sequenced.

Figure 2.   Real-Time PCR results. The result of the amplification of rounds zero (negative selection), R6, R7, R8 
and R9 with the One Step SYBR TaKaRa kit. The mean values of Ct of each round have been demonstrated in 
the graph bar. Round 9 was selected as the optimum round with the lowest Ct value.
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Aptamer name Sequences Affinity (M) Mean OD Length % of occurrence

Apta-33 CCG​TAG​GGT​TAG​GGG​CGG​ATC​GTC​AGG​GTG​GAT​AAG​
GCA​ 6.62 × 10−10 2.73 39 9.19

Apta-1 GAA​GTT​AGG​AGG​GGC​TTA​CAA​CGG​GGTCA​GTC​CGA​
TGG​CA 5.18 × 10−9 2.32 40 3.67

Apta-14 TTT​GAT​GTT​AGG​GGT​GAT​GCG​TGT​CCT​ATT​GAC​TGC​
ACCG​ 9.25 × 10−8 0.27 40 8.28

Apta-12 GTC​TTA​CTA​GGT​CAG​TAA​GGT​ACG​GAG​GGA​ACA​CGC​
GGCA​ 7.8 × 10−8 2.50 40 4.58

Apta-9 ATG​CTT​GTT​GGT​AGC​GGT​GGT​GTT​AGG​GTT​CGT​GGG​
GGCA​ 6.85 × 10−8 0.21 40 2.76

Apta-8 GAA​GTT​AGG​AGG​GGC​TTA​CAA​CGG​GGTCG​ATC​CGA​
TGG​CG 4.81 × 10−8 2.22 40 2.76

Apta-7 CGT​GCC​GCT​TGT​TCC​GTA​ACG​CCA​TTC​GCT​CGG​TTG​
GGCA​ 2.71 × 10−8 0.19 40 3.67

Apta-22 GAA​GTT​AGG​AGG​GGC​TTA​CAA​CGG​GGTCG​ATC​CGA​
TGG​CA 2.29 × 10−8 1.98 40 3.67

Apta-23 GAA​GTT​AGG​AGG​GGC​TTA​CAA​CGG​GGTTG​ATC​CGA​TGG​
CG 1.26 × 10−8 2.10 40 3.67

Apta-5 GGA​CGA​TGA​ATT​GTG​ATC​TCA​TCG​TTC​TAC​TTC​TGC​
ACCG​ 1.09 × 10−8 0.23 40 5.50

Apta-15 ATA​ACG​ATA​CGG​GGT​ATC​GCT​AGG​GGT​TGA​CTG​ACG​
TCCA​ 7.95 × 10−7 0.32 40 2.76

Apta-17 AGT​TAC​GTC​GGT​TGC​GAG​CGT​ATT​TGT​GTT​CCT​GCA​CGC​ 7.5 × 10−7 1.88 39 0.91

Apta-2 CTA​AGC​AGG​TAG​CTA​TTA​GCG​TGC​AGG​GTT​GGT​TGT​
GGCA​ 4.03 × 10−6 1.56 40 2.76

Apta-3 CGA​TGG​CAA​TTG​CGA​GGG​AGT​AAA​CCG​ATC​GGA​TGG​
GGCA​ 1.08 × 10−7 1.79 40 6.42

Apta-4 TCT​CGA​AGT​CCA​AGG​TCT​AGG​CTT​TCG​ACA​TTG​CTG​
CCCG​ 2.17 × 10−7 0.21 40 0.91

Apta-16 CCT​TTG​TCG​CAC​CGG​GAT​GGT​TAT​GGG​TGT​TCC​TCG​
GTCA​ 2.24 × 10−7 2.01 40 0.91

Apta-20 GAA​GTT​AGG​AGG​GGC​TTA​CAA​CGG​GGTCG​ATC​CGA​
CGG​CA 2.02 × 10−7 2.29 40 2.76

Apta-19 CTG​CGA​TTG​AGT​TGT​GGG​CAG​TTT​GCG​TTC​GTC​CGC​
CGCG​ 1.72 × 10−7 0.36 40 0.91

Apta-10 CGC​ACG​TGG​TGG​GGG​TGA​GTC​CAA​TTA​GTT​GGG​TTG​
TACA​ 1.38 × 10−7 2.09 40 0.91

Apta-13 ATC​GGT​CGA​TGT​GGT​TTG​CGT​GGA​GGT​GTG​CAG​TTG​
GGCA​ 1.2 × 10−7 1.78 40 0.91

Apta-21 TGG​CGC​CTG​TGC​ACA​GCT​GGT​GTG​TAT​CTT​CCG​TGC​
TGCA​ 0 0.18 40 0.91

Apta-6 GAG​TGC​AGG​AGC​GGA​TCT​AAC​TGC​GGA​TAC​GAG​TTT​
GGCA​ 0 0.18 40 2.76

Apta-18 TCG​GGA​TGG​GTT​TCT​TAG​CGA​GGG​CAA​TTT​ACA​TGT​
TGCA​ 0 0.16 40 1.83

Apta-11 GTT​GCC​TCC​GAG​CAT​TAT​TGT​GTA​TGT​CCG​TTC​TGC​
TGCA​ ND 0.98 40 0.91

Apta-24 GGC​TGC​GGA​TGG​AAA​TAG​TGG​ATC​TCC​CGT​TCG​TGC​
CGCA​ ND 1.14 40 2.76

Apta-25 ATG​ATT​GCA​TGG​GCT​GAT​TGT​TCG​GGG​TGA​TAC​TTT​
GGCA​ ND 1.90 40 2.76

Apta-26 GAA​GTT​AGG​AGG​GGC​TTA​CAA​CGG​GGCCG​ATC​CGA​
TGG​CA ND 1.78 40 0.91

Apta-27 ACT​GGT​CCG​TAA​GTG​AGT​TTG​GGG​ATG​GTT​GGC​TGC​
ACCA​ ND 1.30 40 4.58

Apta-28 AGC​CCA​GCA​AGC​TGG​GGG​ATT​ATC​CTG​TCA​GCG​GAG​
GTCA​ ND 0.93 40 3.67

Apta-29 CTC​TAC​ACA​TGC​GTT​GTC​ATG​CAT​TAC​GTC​CTT​GGC​
AGCA​ ND 0.86 40 3.67

Apta-30 GGG​GGG​TAT​CAG​GTG​CCG​CAG​GGA​CTA​TGT​GCCGC​ ND 1.08 35 0.91

Apta-31 ACA​CAT​AAG​TGA​CAT​TGC​GTG​AAC​TCT​GTC​CTG​CTG​
TGCA​ ND 0.65 40 1.83

Apta-32 GAA​GTT​AGG​AGG​GGC​TTA​CAA​CGG​GGTCG​ATC​CGG​
TGG​CA ND 1.80 40 1.83

Apta-34 CCC​TTA​ACG​ACT​ATG​CAC​TCC​TTT​CGA​TCG​CTG​TTC​
GGCG​ ND 0.76 40 2.76

Table 1.   List of aptamers, their sequences, KD values and % of occurrence. The repeated regions are 
underlined. The mean OD for each aptamer in the initial evaluation of aptamers in the Aptamer–Antibody 
sandwich was demonstrated in Mean OD column.
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Discussion
A timely diagnosis of CCHF is critical for both the management of patients and infection control. However, the 
definitive diagnosis of CCHF is dependent on laboratory methods because the clinical symptoms are non-specific, 
especially in the early stages of the disease. Despite the advantages of the molecular techniques in the diagnosis 
of the CCHFV, current RT-PCR techniques are unsuccessful in identifying some strains of the virus or have 

Figure 3.   Biotin immobilization of NP on a pre-coated streptavidin chip. (A) Signal change during injection, 
(B) angle shift before and after stabilization.

Figure 4.   Interaction sensogram between Apt33 and CCHF-NP and calculating KD.

Figure 5.   Possible 2D structures of the minimum free energy for apt33 as predicted by ViennaRNA fold.
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insufficient sensitivity18. Therefore, serological methods are still considered as powerful diagnostic tools. The 
complexity of molecular tests, their relatively high expenses, and the need for well-trained personnel, especially 
in remote areas with poor infrastructure facilities, are other problems concerned with these techniques. The 
variability of the virus genome is about 20%, whereas that of the NP is about 8%, and that is why the serological 
tests are preferred to the molecular method, particularly in early-stage detection and Point of Care testing16.

Thus there is an urgent need to develop new techniques for the efficient recognition of CCHF. Currently, 
available methods are based on antibodies. Antibodies have been extensively used in diagnostic procedures. 
Application of nucleic acid-based aptamers as diagnostic tools, along with antibodies, may increase the specificity 
of the test, because the smaller size of aptamer compared to antibodies (about 2–3 nm vs. 12–15 nm in diameter) 
allows for the binding of more recognition molecules on the same surface area of the target. The smaller size also 
subjects them to less steric hindrance on the surface of the target19.

SELEX was performed to discover ssDNA with the highest affinity towards NP of CCHFV (CCHF NP-
Binding aptamer) using an 80-nucleotides aptamer library. Aptamers with a possible connection for field matrix 
(magnetite bead) was eliminated using negative selection at the beginning of the SELEX process. At rounds 7–9 
the rate of enrichment of the isolated Aptamers was reduced and it can be assumed that the saturation of the 
NP level has occurred. Round 9 showed the smallest Ct, which represents the highest level of initial template20.

Thirty four different aptamers were selected from round 9 of SELEX procedure. SPR plot showed different 
KD of aptamers indicating difference in their affinities to NP. The wide range of affinity from zero to 0.66 nM 
indicates the presence of various aptamer binding sites on the protein. NPs potentially can assemble around 
random RNA or ssDNA to form nucleoprotein particles21 similar to the native conformation in virus. Howerer, 
recent studies demonstrate that significant conformational changes are nessesary for RNA encapsidation22, 23. 
The role of NP in lifecyle of virus including replication, transcription and assembly are important but little data 
is available regarding the precise mechanism. Developed aptamers in current study had different recognition 
pockets on NP and may be used in future study to characterize NP-RNA interactions and even can be used as 
potential antiviral drugs against CCHF virus.

Selected aptamers showed affinity between 4 μM and 0.66 nM to the target. Obtaining better affinity can be 
due to pretreating NP with an antibody, which excludes sequences competing with the antibody for the same 
domain/domains and retaining those sequences binding to the pockets rather than antibody binding domains. 
This also fulfills the strategy of our assay system where antibody and aptamer are being used as capture and 
detector, respectively.

Although some aptamers including aptamers 4, 5, 7, 9, 13, 14, 15, and 19 showed high affinities toward NP, 
they were not suitable for use in our sandwich method assay as their ODs in ELASA were not significant. Having 
a common target site on the NP with antibodies could explain this finding.

After the initial screening, aptamer 33 with a 39 nucleotide in the variable region was selected for further 
analysis. The specificity of Apta33 was evaluated by testing whether it can bind to other arboviruses like Dengue 
and Chikungunya viruses. For this purpose, the Apta33 was tested by acute-phase serum samples from patients 
infected with Dengue virus or Chikungunya virus. Aptamer 33 did not bind and hence did not identify the pro-
teins of these viruses while detecting CCHF-NP. The cross reactivity in this study was investigate using clinical 
samples suspected to other common arboviruses and viral hemorrhagic fevers in Iran (Dengue and Chikungunya 
viruses). As a limitation of the current study, due to lack of availability to genetically close related to CCHF virus 
like Hazara and Dugbe viruses, cross reactivity analysis was not performed on these viruses.

Non-specific binding of Apt33 to other human serum proteins was evaluated with serum samples from sus-
pected CCHF patients who were negative for the disease. The negative results confirmed the lack of non-specific 
binding of Apta33 to other serum proteins. These studies were performed with ELASA technique where antibody 
and Apta33 were used as capture and detector, respectively. The sensitivity of ELASA method was about 90 ng/
ml of NP in human serum.

Aptamers and antibodies have been used together to design many diagnostic methods. Our previously created 
ELASA method, based on antibody-aptamer for the diagnosis of A. baumannii, successfully detected clinical 
specimens with 95.47% sensitivity24.

The same technique was also used by Lee and Zeng, and they could detect up to 10 ng of NS1 protein from 
ZIKA virus. Although the method was not evaluated with clinical specimens, the potential use of selected 

Table 2.   Sensitivity and specificity of the ELASA method in comparison with standard antigen ELASA test.

ELASA 
(Aptamer Results)Number of 

samples
Pos Neg

Pos 48 1 49
ELISA 
(Antigen 
Results)

Neg 0 28 28

Total 48 29 77

Sensitivity and Specificity 
95% Confidence Interval

Sensitivity 97.95% (89.1%-99.9%)
Specificity 100% (87.7%-100%)

Positive predictive value 100% (92.6%-100%)
Negative predictive value 96.6% (82.2%-99.9%)
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aptamers to detect the antigen of the ZIKA virus supporting our assay system was worthwhile20. They further 
reported that aptamer-antibody sandwich assay could increase the sensitivity of ELASA test tenfold compared 
to the aptamer-aptamer sandwich assay20. Their isolated aptamers have the KD values at the picomolar range 
while our isolated aptamers showed a KD values in the nanomolar range. The higher sensitivity of their assay 
system compared to ours can be due to the differences in SELEX procedures such as buffering and environmental 
conditions of the reactions. They analyzed their isolated aptamers in the chemical buffering condition, where as 
we evaluated the aptamers in the human serum and physiological conditions.

Bruno18et al., isolated aptamers with high-specificity and affinity toward four different epitopes of CCHFV 
envelope, as well as formalin-inactivated CCHFV particle of strains IbAr 10200 and Drosdov (Dros)18. The iso-
lated aptamers were used in ELASA method without determining the KD values of the aptamers. Moreover, the 
sensitivity and specificity of the methods in detecting the viral antigen have not been evaluated with the clinical 
specimen. Bruno et al.18 performed their SELEX toward glycoproteins epitopes of CCHFV, which show the 
highest rate of variation between the different strains of the virus. In the present study, we selected the CCHFV 
NP as a target, which is the most conserved antigen among the seven known genotypes of the virus. This could 
increase the sensitivity of the test.

Phylogenetic studies so far have shown that there are seven genotypes of the virus based on S-segment25. 
Four genotypes and one outgroup circulating in Iran, including Asia-1, Asia-2, Europe-1, and Europe-2 and 
Out-Group Kerman-22, were used in this study26. The antigen from all 5 strains has been detected with ELASA 
and this can be considered as an important advantage of our strategy particularly in primary screening and 
initial diagnosis of the disease.

Bay et al. (2012) isolated Aptamer for H5N1 hemagglutinin with a KD of 4.65 nM which could detect the virus 
in clinical swab specimens. They reported the lowest and remarkable turnaround time of 1.5-h for the Aptasen-
sor test in comparison with the virus isolation, ELISA, PCR methods27. The isolated aptamer was used to design 
SPR biosensors. Since our strategy is mainly based on the primary diagnosis of CCHF disease in the onset of the 
disease as well as in outbreak investigation, therefore we preferred simple test requiring less laboratory facilities.

The importance of the secondary structure of aptamers, in binding to the target has been reported by sev-
eral researchers and is used for in-sillico of design Aptamers28, 29. Aptamers 1, 8, 20, 22, 23, 26, and 32 showed 
very close 2D structures with a 26 nucleotide sequence repeat. The underlined areas in Table 1 shows repeated 
sequences. The results suggest that a distinct line, and possibly a specific structure, have been preferred by NP 
and are enriched during nine rounds of SELEXs. Interestingly Apta 33 and Apta 1, with the highest KD levels, 
exhibited quite similar structure.

Samples used as a positive control in this study were RT-PCR and Capture Antigen ELISA (CCHFV-Ag-
ELISA, VectorBest, Novosibirsk, Russia) positive samples. Based on the analyses performed in the department 
of Arboviruses and Viral Hemorrhagic Fevers (national reference laboratory), the ELISA kit used has a sensitiv-
ity of 97% with 100% specificity (data not shown)30. In our ELASA test, 90 ng of NP was detected, whereas the 
antibody-antibody sandwich ELISA method could detect a minimum of 170 ng of NP in serum. Using aptamers 
instead of antibodies as a detector could significantly improve the sensitivity of the test method.

Conclusion
In this study, specific aptamers against CCHFV NP were isolated and presented. The efficacy of isolated aptamers 
was evaluated and confirmed with standard available diagnostic tests. Our ELASA assay was successfully diag-
nosed with clinical specimens with very high sensitivity and specificity. This simple, specific, and the sensitive 
method can be used as a rapid and early diagnosis tool, as well as the point of care near the patient.

Methods
The production of recombinant nucleoprotein (NP).  The NP was produced, as explained previously17. 
Briefly, the NP of CCHFV was designed and synthesized on pBSK ( +) simple-Amp vector and sub-cloned into 
the pAC4 expression vector, which adds AviTag to the 3’ end of NP. The pAC4 vector containing CCHFV-NP 
was transferred to Escherichia coli BL21 (DE3) for expression. Protein purification and simultaneous refold-
ing were performed on the AbMCA chromatography column of Avidity, LLC (Aurora, Colorado, USA). The 
recombinant NP was evaluated using Circular Dichroism, Western Blotting, ELISA, and Immunofluorescence 
methods.

Preparation of CCHFV NP and Magnetic Beads complex (NP‑MB).  Biotin was enzymatically added 
to the carboxyl end of NP. The BirA enzyme (EC 6.3.4.15) activates biotin to the form of 5’-adenylate biotinyl and 
adds it to the AviTag at the carboxyl end of NP. The biotinylated NP was stabilized on the surface of the dyna-
beads magnetic beads based on the biotin and streptavidin interaction. The formation of the NP-MB complex 
was checked using the specific antibody for NP.

SELEX procedure.  Oligonucleotides, including the random 80-nucleotide ssDNA aptamer library (GCC​
TGT​TGT​GAG​CCT​CCT​AAC (N40) GGG​AGA​CAA​GAA​TAA​GCA​) and primers, were purchased from the 
Metabion (GmbH, Germany ). The forward and reverse primers used were as follows: CCA​TGG​GCC​TGT​TGT​
GAG​CCT​CCT​AAC and GGA​TCC​GGG​AGA​CAA​GAA​TAA​GCA​. The same primers were also used in the bioti-
nylated and phosphorylated forms.

For the elimination of the aptamers having affinity toward MB, the first round of SELEX was performed as 
negative SELEX. The amount of 810 pmol of the aptamer library in PBS as a binding buffer was heated at 95° C 
for 5 min and was immediately cooled on an ice bath. The aptamer library was incubated at 4° C with 70 μl of 
MB with gentle shaking for 1 h, then were precipitated, and the supernatant which contains unbounded aptamers 
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was removed. The supernatant was added to 70 μl of NP-MB and incubated for 90 min at 4° C with gentle shak-
ing. The mixture was precipitated with a magnet, and the supernatant was removed. The pellet was washed with 
70 μl of PBS and suspended in 75 μl of RNase DNase free water at 70° C. Fifteen μl of the suspended pellet was 
stored at − 20 °C, and the remaining 60 μl was entered into 4 PCR reactions as a template and amplified for the 
next round of SELEX.

The output of each SELEX was amplified with slight changes in PCR reaction conditions. The PCR products 
were single-stranded by the lambda exonuclease enzyme (Cat No: EN0561, Thermo Fisher Scientific Inc.) and 
were purified by ethanol precipitation. The binding conditions became gradually stringent from the 1st to the 
9th rounds of SELEX by reducing the incubation time from 75 min in the first round to 15 min in the last round 
and increasing the washing steps from 1 to 7 times.

To assess the efficiency of SELEXs progress and terminate the SELEX procedure at the optimum round, the 
DNA aptamers of the SELEX rounds 0, 6, 7, 8, and 9 were analyzed by real-time PCR. The PCR product of each 
round was converted to ssDNA with lambda exonuclease, and the level of ssDNA was measured at 260 nm. The 
same concentrations from aptamers of bands zero, 6, 7, 8, and 9 were separately mixed with recombinant NP 
and incubated for 1 h. The supernatant containing unbounded aptamers was removed, and the pallet containing 
MB-NP-Apt was washed three times, and the bounded aptamers were analyzed with the real-time PCR20. PCR 
reaction was conducted in triplets, each containing 20 μl TaKaRa ExTaq SYBR kit (Cat No: RR086A, Takara Bio, 
Siga, Japan) and the two μl of the sample from each SELEX rounds. The analysis of the test results was performed 
with the Rotor-Gene Q software, and the Threshold cycle (Ct) of each step was determined.

The PCR product of last SELEX was cloned using a pTG19-T vector (Qiagen, Hilden, Germany) with the 
white/blue screening technology. White colonies were screened using colony PCR method and were sequenced 
on both direction using forward and reverse primers. The sequencing results were assembled using CLC Main 
Workbench 5.5 software (CLC Bio, Cambridge, MA).

SPR evaluation of aptamer enrichment and determination of KD.  The affinity of aptamers was 
measured using BioNavis Surface Plasmon Resonance (SPR) device (VASA MP-SPR NaviTM 210A VASA, Bio-
Navis Ltd, Finland) according to the manufacturer’s instructions31. Briefly, PBS was used as a running buffer and 
pre immobilized streptavidin chip was used to stabilize biotinylated NP. After activating by running buffer (PBS, 
2 M NaCl, and 0.1 M NaOH) for 2 min, the biotinylated NP at an optimum concentration of 80 μg / ml in PBS 
was immobilized at a surface density of 300 resonance units (RU) on the Fc1 (flow cell) of SA chips, at a flow rate 
of 30 mL/min for 15 min. Two different channels were used simultaneously, one as control where the only buffer 
was passed through, and the other channel was used for the test sample. The aptamers were injected above NP 
at four or five different concentrations ranged from 10 to 100 nM at a flow rate of 25 ml/min for 2 min. Kinetic 
parameters, including kon (on-rate constant), koff (off-rate constant), and apparent KD (dissociation constant), 
were calculated using Trace DrawerTM for SPR NaviTM. The KD values were calculated as the ratio of koff/kon 
rate constants by using the 1:1 Langmuir interaction analyte model.

Secondary structure prediction of aptamers.  Vienna RNA Secondary Structure server of the online 
database and the RNA fold web server of Vienna University, Institute for Theoretical Chemistry of Vienna Uni-
versity at http://​rna.​tbi.​univie.​ac.​at//​cgi-​bin/​RNAWe​bSuite/​RNAfo​ld.​cgi were used for determining the second-
ary structure of the Aptamers18.

Selecting aptamer for the aptamer‑antibody sandwich method.  The selection of aptamer, with a 
unique binding site (rather than antibody binding site) to CCHF-NP, was important for the aptamer-antibody 
sandwich method used in this study. To obtain such an aptamer, the viral recombinant NP was added to the wells 
pre-coated with murine anti-CCHF antibody. Biotinylated aptamers was then added to the wells, and after wash-
ing with PBS, HRP labeled streptavidin (Thermofishr scientific, Cat No: SA10001) diluted 1:10000 was added 
to the wells and incubated at room temperature for 1 h. After washing the wells with PBS, TMB substrate was 
added and the reactions was stopped with H2SO4 after 15 min and the OD was measured at 450 nm. The host cell 
extracts containing an un-induced vector instead of CCHFV NP, and the biotinylated aptamer library, instead of 
high binding aptamers were used as negative controls. For each aptamer, two wells were considered, one well as 
a test and the other as control where BSA was used instead of the CCHFV NP.

Aptamer‑antigen ELASA of clinical samples.  In the aptamer-antibody sandwich assay, a specific anti-
body against CCHFV NP with dilution1: 600 in PBS was coated into wells and incubating overnight at 4° C. The 
wells were washed three times with PBS-Tween20 (PBST) and were blocked with PBST buffer containing 3% 
non-fat dry milk (PBSTM). Wells was added with 100 μl of the serum and incubated at 37° C for 1 h. 100 ng of 
biotinylated aptamer with the highest affinity toward NP (Apt33), was added to the wells and incubated at room 
temperature with gentle mixing for 2 h. Conjugated streptavidin with HRP (Thermofisher Scientific, Cat No: 
SA10001) diluted 1:1000 was added to the wells and was incubated at room temperature with gentle mixing for 
1 h. The wells were washed three times and dried after each step. The TMB substrate was added, and the reaction 
was stopped with H2SO4, and the OD at 450 nm was recorded.

A total of 77 human serum samples obtained from the Department of Arboviruses and Viral Hemorrhagic 
Fevers (National Reference Laboratory) at Pasteur Institute of Iran were tested with our ELASA. Among 77 
sera samples from patients suspected to viral hemorrhagic fevers (VHFs), 49 were confirmed CCHF positive 
(by both Real Time PCR and antigen ELISA), along with 17 CCHF negative specimens, plus eleven positive 
Dengue or Chikungunya serum samples. Quantitative Real Time RT-PCR assay32 and Antigen ELISA (CCHFV-
Ag-ELISA,VectorBest, Novosibirsk, Russia) test were used to evaluate the presence or absence of CCHFV. The 

http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi
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quantification method of real-time RT-PCR were used to determine the copy numbers of CCHFV in clinical 
samples. The Real-Time RT-PCR FTD DENGUE/CHIK kit (FTD-Dengue/chik-43-64) used to confirm the 
presence of Dengue and Chikungunya viruses.

In our ELASA method for each sample, two wells were considered as test and control. Biotinylated Apt33 was 
added to the test wells and biotinylated primary library was added to the control wells.

Statistical analysis including calculation of sensitivity and specificity and confidence interval was carried out 
by Chi-sqare test using STATA softwar (version 9.2, Texas, USA).
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